Reversible Computing’

lvan Lanese
Focus research group
Computer Science and Engineering Departm
University of Bologna/INRIA
Bologna, Italy

Transactions

Exploiting reversibility

Interacting transactions

e \We have been able to encode interacting transactions
from

[Edsko de Vries, Vasileios Koutavas, Matthew

Hennessy: Communicating Transactions. CONCUR
2010]

e Improving on the original semantics
e Now we have the tools to understand why

Transactions with compensations

e They have the form [P, Q],

e A transaction executing P, with compensation @ and
with name vy

e Behavesas P
e In case of commit, only P remains

e In case of abort, the effects of P are undone, and only Q
remains

Transactions In croll-r

o [[P,Q]] =
va ve a{0)%c(0)%0 | a(X) =, [P]|c(Y) = [Q]

e Abortisroll y

e Commit is implicit: if there is no roll y then the
compensation and the transaction machinery become
garbage

e \We simulate the transaction boundary with causality
tracking

e Atomic transaction: P is executed all or nothing
— If P aborts all its effects are undone

e Not isolated

Interacting transactions in TransCCS

e Syntax
P:=alaP|PlQ|vaP|O0|[P>, Q]|cok
e Semantics |
ala.P - P
[P, Q]|R - [P|R>, Q|R] if k€& fn(R)
|P| co k >,Q] - P
[P > Q] - Q
e Processes from the environment moved Into the
transaction to interact with it
— Saved also in the compensation

e Implicit abort, explicit commit

Example: transactions interacting

o [acy Q]|[a.P >y Q'] -
la.P |[a & Q] &p Q' |[@ & Q1] -
[[@|a.P>rQ|aP] &, Q'|[a o Q1] -
[[P>r QlaP] o Q'@ & Q]

e Using the other embedding would have been fine too

e |If other processes would be in the transaction k together
with a then they would have entered the transaction h
too

Example: external interactions aborted

edal|laR|[Pe,Q] »
|Pld|a.R>;, Q| a
[PIR >, Qla]a.
Olala.R

e \Why undoing the synchronization on a?

e No reason for it to occur inside the transaction

a.R] -
| -

Interacting transactions in croll-m

o [[P = QI = [VI[P]|Krolly)|L(X) = X, [Q]l,
e \We simulate the automatic abort with a roll that can be
enabled at any moment

o [col] =1(X)e=0
e A commit disables the abort

Comparing the two approaches

o [[P = QI = WLIP] | Krolly) | I(X) = X, [Q]],

e In croll-m only reductions depending on the transaction
body are undone
— In TransCCS other reductions are undone, and then redone
— Difference due to a more precise causality tracking

e In croll-m abort Is not atomic
— First, commit becomes impossible
— Then, abort is performed
e Atomicity problem solvable with choice
- rolly+1(X) >0
— With [{0) as commit

o
Tt
=

Debugging

Reversing more realistic languages.

11

Debugging

e Going back and forward can help in finding a bug

e Some commercial debuggers provide the command
“step back” 1n a sequential setting

— For instance, gcc
e Our theory enables the definition of step back in a
concurrent setting

— The user specifies the thread to step back

— Only threads which have no active consequences can step
back

e Are there other commands we may add to a debugger to
help the programmer to debug concurrent applications?

— Based on our reversibility technigues

Which language to debug?

e No one programs in CCS or HOm

e \We would be very happy to build a debugger for Java,
C++ or Erlang

— For now, this requires too much effort

e \We want to experiment on a simple programming
language

— Concurrent
— Sharing features with more widespread languages
— With a formal semantics
— Sharing features with the calculi we can reverse
e \We have chosen nOz

uOz

e A kernel language of Oz
[P. Van Roy and S. Haridi. Concepts, Techniques and
Models of Computer Programming. MIT Press, 2004]

e Oz Is at the base of the Mozart language

e Higher-order language
— Procedures can be communicated

e Thread-based concurrency
e Asynchronous communication via ports
e Variables are always created fresh and never modified

e Shared memory
— Variable names are sent, not their content

Oz syntax

o S:= Statements]
skip Empty statement]
S; S, Sequence]
letx=vin S end 'Variable declaration]
If X then S, else S, end ‘Conditional]
thread S end ‘Thread creation]
let x=c in S end Procedure declaration]
{XX;... X} Procedure call]
let x=Newport in S end Port creation]
{Send x y} Send]
let x ={Receive y} inSend [Receive]

e c:=proc{x,...Xx}Send

uOz semantics

e Semantics defined by a stack-based abstract machine
e The abstract machine exploits a run-time syntax

e Each thread is a stack of instructions
— The starting program is inserted into a stack
— Thread creation creates new stacks

e Procedures are stored as closures
e Ports are queues of variables

e Semantics closed under
— Contexts (for both code and state)
— Structural congruence

uOz semantics: rules

' (skipT) || T
R:skp 0 H 0
Rovar (let z =vin S end T) H (S{": [e} T) ot frosh
0 H r =v
lesz=cinSend T) | (S{¥/f}T) .. .,
R:npr if ', & fresh
P 0 | 2"=¢]¢:c :
(let © = NewPort in S end T') H sS{ELYTY L
R:mpt ; if 2/, & fresh
P 0 BT
RAif] (if z then S; else S, end T) | (S T)
. x = true || x = true
Ronth (thread Send T) || T | (S ()
' 0 | 0
e (o120} T) | (S) T
r=¢| & :proc{y...y, } S end ||:UISHS:prOC{yl...yn}Send
({Sendzy } T) | T
R:snd
- r=Ee:Q [2=¢€l¢:%Q
Rirey (let x = { Receive y } in S end T) i (S{* [} T) 2 frosh

y=¢&[§:Q;z] z=w y=¢[6:Qz=w|z"=w

uOz reversible semantics

e \We give unique names to threads
e \We add histories to threads to remember past actions

e \We add a delimiter to record when scopes end
— For let
— For procedure body
— For if-then-else

e Ports have histories too
— Should record also sender and receiver of each message
— We do not want to change the order of communications

uOz reversible semantics: forward rules

R:fw:skp t[H](skip C) | t[H skip]C

0 || 0
R-forvar t[H](let z =v in S end C) || t[H S’{J’ "I} (esc C)) “f 2/ frosh
0 || ' =w
R:fw:mpr tlH](let = = Eln S end €) H HH * J;J <Sg H/xé}.(fsc) if 2', € fresh
R:fw:npt tH](let = = NewF(’)ort in S end C) H t[H ’ij](?‘%i?ﬂfﬁfc) i ', € fresh
Rofwsifl t[H](if x then S else S; end C) || ¢[H if(x)5:](S: (esc C))
r = true H r = true
Refwnth t[H](threa((]i S end C) H t{H = t'|C (|]| t'[LI(S () £ 4 fresh
o U e @)7) €) || HH Lo (@)} JUSU™ DE (ese O))
r=¢|&:proc{ (yi)7 } Send || z=¢ Hf'PPOC{ (4:)7 } S end
t{H]{({ Send z y } C) || t[H T z|C
R:fw:snd
o r=€lE: KK, || z=¢[€: tyK|Kh
Refw rey t[H](let y = { Receive x } in S end C) H t[H y(S{¥'/,} (esc C))
o 01 &: K;t':z|Kp, | 9||§ K|t’thth—w
ify fresh AN 0=22x=¢(|z=w
R:fw:scp t[H](e(:)sc C) H t[H (SSC]C

uOz reversible semantics: backward rules

R:bk:skp t|H s(l)qp](] H t[H](séqp)
R-blvar t[H a:ﬂ]?(f iesc C)) || t[H](let x = 16 in S end C)

o t[H *x](S (esc C)) || t[H]{let x =cin S end C)
R:bk:npr T=EEc 5

T t{H = z|(S (esc C)) | t[H](let x = NewPort in S end C)
R:bk:npt T & 1L ” 5
R-bleif] t[H if(x)S2](S1 {esc C)) || ¢[H](if z then S; else S end C)

R xr = true || r = true

/
Re-blenth tlH =t'|C (|)\ t'[L](S H t[H]({ threa(c)l S end C)
t|H 1 z]C | t{H]{{ Send 2y } C)
R:bk:snd
o r=CEty KK, | w=E[&: KK,

Reblirey t{H | z(2)](S (esc C)) | t[H](let z = { Receive x } in S end O)

T z=wlz=¢ || K[y, 6 Ky | r=& | & Kt y|Ky,
R:bk:scp t[H esc]C || t[H]({esc C)

o || 0

Debugging nOz

e An interpreter of the reversible semantics is nearly a
reversible debugger

e A debugger needs the following commands
— Commands to control execution

— Commands to explore the configuration
» Both code and state

Step commands

e Step forward
— Standard
— The user specifies the target thread
— Step forward not enabled if waiting for resources
— Receive from an empty queue

e Step backward
— Only in reversible debuggers
— The user specifies the target thread
— Not enabled if waiting for dependencies to be undone

— E.g, cannot step back the creation of a thread with not empty
history

Other execution commands

e Run
— Standard
— Requires to define a scheduler

e Roll

— Only in causal consistent reversible debuggers

— Undo of a past action, including its consequences
— May involve many threads

— Should follow the dependencies

Configuration commands

e List of threads
— Only in concurrent debuggers

e Display of the store
e Display of the code of a thread

e Display of the history of a thread
— Only In reversible debuggers

Dump and restore

e \When debugging | may go back

e |f the try iIs unsuccessful | may go forward again to the
state | come from

e | normally do not record forward states
e Dump and restore solve the issue

Our prototype debugger

e Disclaimer: only a prototype
— Quite unusable
— Will improve in the future

e \Written in Java
e Closely follows the semantics we have seen

e Available at
http://proton.inrialpes.fr/ "mezzina/deb/

e Starts with Jjava —-jar deb.jar inputfile

http://proton.inrialpes.fr/~mezzina/deb/
http://proton.inrialpes.fr/~mezzina/deb/
http://proton.inrialpes.fr/~mezzina/deb/
http://proton.inrialpes.fr/~mezzina/deb/
http://proton.inrialpes.fr/~mezzina/deb/

Conclusions

27

Summary

e Uncontrolled reversibility, for various languages

e Mechanisms for controlling reversibility
— In particular using roll

e How to avoid looping using alternatives

e Some applications
— State space exploration
— Interacting transactions
— Debugging

Future work: framework

e Many open questions
e Can we apply our techniques to mainstram concurrent
languages?
— Concurrent ML, Erlang, Java, ...
e Behavioral equivalences

— How can we reason on reversible programs?
— How to define compositional semantics?

e Implementation issues
— Can we store histories in more efficient ways?
— How much overhead do we have?
— Trade-off between efficiency and granularity of reversibility

Future work: applications

e Can we find other killer applications?
— Software transactional memories
— Existing algorithms for distributed checkpointing

e Improving the debugger
— Which are the commands we can provide?

— Which debugging strategies they enable?
— Which kind of bugs can they help to find?

