
1

Reversible Computing

Ivan Lanese

Focus research group

Computer Science and Engineering Department

University of Bologna/INRIA

Bologna, Italy

2

Transactions

Exploiting reversibility

Interacting transactions

 We have been able to encode interacting transactions

from

[Edsko de Vries, Vasileios Koutavas, Matthew

Hennessy: Communicating Transactions. CONCUR

2010]

 Improving on the original semantics

 Now we have the tools to understand why

Transactions with compensations

 They have the form 𝑃, 𝑄 𝛾

 A transaction executing 𝑃, with compensation 𝑄 and

with name γ

 Behaves as 𝑃

 In case of commit, only 𝑃 remains

 In case of abort, the effects of 𝑃 are undone, and only 𝑄

remains

Transactions in croll-π

 𝑃, 𝑄 𝛾 =

 𝜈𝑎 𝜈𝑐 𝑎 0 %𝑐 0 %0 𝑎 𝑋 ⊳𝛾 𝑃 𝑐(𝑌) ⊳ 𝑄

 Abort is 𝑟𝑜𝑙𝑙 𝛾

 Commit is implicit: if there is no 𝑟𝑜𝑙𝑙 𝛾 then the

compensation and the transaction machinery become

garbage

 We simulate the transaction boundary with causality

tracking

 Atomic transaction: 𝑃 is executed all or nothing

– If 𝑃 aborts all its effects are undone

 Not isolated

Interacting transactions in TransCCS

 Syntax

𝑃 ∷= 𝑎 𝑎. 𝑃 𝑃 𝑄 𝜈𝑎 𝑃 0 𝑃 ⊳𝑘 𝑄 | 𝑐𝑜 𝑘

 Semantics

 𝑎 | 𝑎. 𝑃 → 𝑃

𝑃 ⊳𝑘 𝑄 | 𝑅 → 𝑃 𝑅 ⊳𝑘 𝑄 𝑅 if 𝑘 ∉ 𝑓𝑛 𝑅

𝑃| 𝑐𝑜 𝑘 ⊳𝑘𝑄 → 𝑃

𝑃 ⊳𝑘 𝑄 → 𝑄

 Processes from the environment moved into the

transaction to interact with it

– Saved also in the compensation

 Implicit abort, explicit commit

Example: transactions interacting

 𝑎 ⊳𝑘 𝑄 | 𝑎. 𝑃 ⊳ℎ 𝑄′ →

 𝑎. 𝑃 𝑎 ⊳𝑘 𝑄 ⊳ℎ 𝑄′ 𝑎 ⊳𝑘 𝑄 →

𝑎 | 𝑎. 𝑃 ⊳𝑘𝑄 | 𝑎. 𝑃 ⊳ℎ 𝑄′| 𝑎 ⊳𝑘 𝑄 →

𝑃 ⊳𝑘 𝑄 | 𝑎. 𝑃 ⊳ℎ 𝑄′| 𝑎 ⊳𝑘 𝑄

 Using the other embedding would have been fine too

 If other processes would be in the transaction 𝑘 together

with 𝑎 then they would have entered the transaction ℎ

too

Example: external interactions aborted

 𝑎 𝑎. 𝑅 𝑃 ⊳𝑘 𝑄 →

𝑃 𝑎 𝑎. 𝑅 ⊳𝑘 𝑄 𝑎 𝑎. 𝑅 →

𝑃 𝑅 ⊳𝑘 𝑄 𝑎 | 𝑎. 𝑅 →

𝑄 𝑎 𝑎. 𝑅

 Why undoing the synchronization on 𝑎?

 No reason for it to occur inside the transaction

Interacting transactions in croll-π

 𝑃 ⊳𝑙 𝑄 = 𝜈𝑙 𝑃 𝑙 𝑟𝑜𝑙𝑙 𝛾 𝑙 𝑋 ⊳ 𝑋, 𝑄 𝛾

 We simulate the automatic abort with a 𝑟𝑜𝑙𝑙 that can be

enabled at any moment

 𝑐𝑜 𝑙 = 𝑙 𝑋 ⊳ 0

 A commit disables the abort

Comparing the two approaches

 𝑃 ⊳𝑙 𝑄 = 𝜈𝑙 𝑃 𝑙 𝑟𝑜𝑙𝑙 𝛾 𝑙 𝑋 ⊳ 𝑋, 𝑄 𝛾

 In croll-π only reductions depending on the transaction

body are undone

– In TransCCS other reductions are undone, and then redone

– Difference due to a more precise causality tracking

 In croll-π abort is not atomic

– First, commit becomes impossible

– Then, abort is performed

 Atomicity problem solvable with choice

– 𝑟𝑜𝑙𝑙 𝛾 + 𝑙 𝑋 ⊳ 0

– With 𝑙 0 as commit

11

Debugging

Reversing more realistic languages

Debugging

 Going back and forward can help in finding a bug

 Some commercial debuggers provide the command

“step back” in a sequential setting

– For instance, gcc

 Our theory enables the definition of step back in a

concurrent setting

– The user specifies the thread to step back

– Only threads which have no active consequences can step

back

 Are there other commands we may add to a debugger to

help the programmer to debug concurrent applications?

– Based on our reversibility techniques

Which language to debug?

 No one programs in CCS or HOπ

 We would be very happy to build a debugger for Java,

C++ or Erlang

– For now, this requires too much effort

 We want to experiment on a simple programming

language

– Concurrent

– Sharing features with more widespread languages

– With a formal semantics

– Sharing features with the calculi we can reverse

 We have chosen μOz

μOz

 A kernel language of Oz

[P. Van Roy and S. Haridi. Concepts, Techniques and

Models of Computer Programming. MIT Press, 2004]

 Oz is at the base of the Mozart language

 Higher-order language

– Procedures can be communicated

 Thread-based concurrency

 Asynchronous communication via ports

 Variables are always created fresh and never modified

 Shared memory

– Variable names are sent, not their content

µOz syntax

 S ::= [Statements]

 skip [Empty statement]

 S1 S2 [Sequence]

 let x = v in S end [Variable declaration]

 if x then S1 else S2 end [Conditional]

 thread S end [Thread creation]

 let x=c in S end [Procedure declaration]

 {x x1 … xn} [Procedure call]

 let x=Newport in S end [Port creation]

 {Send x y} [Send]

 let x ={Receive y} in S end [Receive]

 c ::= proc {x1 … xn} S end

μOz semantics

 Semantics defined by a stack-based abstract machine

 The abstract machine exploits a run-time syntax

 Each thread is a stack of instructions

– The starting program is inserted into a stack

– Thread creation creates new stacks

 Procedures are stored as closures

 Ports are queues of variables

 Semantics closed under

– Contexts (for both code and state)

– Structural congruence

μOz semantics: rules

μOz reversible semantics

 We give unique names to threads

 We add histories to threads to remember past actions

 We add a delimiter to record when scopes end

– For let

– For procedure body

– For if-then-else

 Ports have histories too

– Should record also sender and receiver of each message

– We do not want to change the order of communications

μOz reversible semantics: forward rules

μOz reversible semantics: backward rules

Debugging μOz

 An interpreter of the reversible semantics is nearly a

reversible debugger

 A debugger needs the following commands

– Commands to control execution

– Commands to explore the configuration

» Both code and state

Step commands

 Step forward

– Standard

– The user specifies the target thread

– Step forward not enabled if waiting for resources

– Receive from an empty queue

 Step backward

– Only in reversible debuggers

– The user specifies the target thread

– Not enabled if waiting for dependencies to be undone

– E.g, cannot step back the creation of a thread with not empty

history

Other execution commands

 Run

– Standard

– Requires to define a scheduler

 Roll

– Only in causal consistent reversible debuggers

– Undo of a past action, including its consequences

– May involve many threads

– Should follow the dependencies

Configuration commands

 List of threads

– Only in concurrent debuggers

 Display of the store

 Display of the code of a thread

 Display of the history of a thread

– Only in reversible debuggers

Dump and restore

 When debugging I may go back

 If the try is unsuccessful I may go forward again to the

state I come from

 I normally do not record forward states

 Dump and restore solve the issue

Our prototype debugger

 Disclaimer: only a prototype

– Quite unusable

– Will improve in the future

 Written in Java

 Closely follows the semantics we have seen

 Available at

http://proton.inrialpes.fr/~mezzina/deb/

 Starts with java –jar deb.jar inputfile

http://proton.inrialpes.fr/~mezzina/deb/
http://proton.inrialpes.fr/~mezzina/deb/
http://proton.inrialpes.fr/~mezzina/deb/
http://proton.inrialpes.fr/~mezzina/deb/
http://proton.inrialpes.fr/~mezzina/deb/

27

Conclusions

Summary

 Uncontrolled reversibility, for various languages

 Mechanisms for controlling reversibility

– In particular using roll

 How to avoid looping using alternatives

 Some applications

– State space exploration

– Interacting transactions

– Debugging

Future work: framework

 Many open questions

 Can we apply our techniques to mainstram concurrent

languages?

– Concurrent ML, Erlang, Java, ...

 Behavioral equivalences

– How can we reason on reversible programs?

– How to define compositional semantics?

 Implementation issues

– Can we store histories in more efficient ways?

– How much overhead do we have?

– Trade-off between efficiency and granularity of reversibility

Future work: applications

 Can we find other killer applications?

– Software transactional memories

– Existing algorithms for distributed checkpointing

 Improving the debugger

– Which are the commands we can provide?

– Which debugging strategies they enable?

– Which kind of bugs can they help to find?

Finally

