Reversible Computing’

lvan Lanese
Focus research group
Computer Science and Engineering Departm
University of Bologna/INRIA
Bologna, Italy

Roll-t reminder

e Controlled version of rhopi
e Based on operator roll y

e Semantics defined by the rule below
k> M complete(M||u, k]|k'":roll k)

M|[w k]|k':roll k = u|M L k

Is roll-n a controlled rhopi?

e Let o be afunction that removes all y and replaces all
rolls with O
— Maps roll-z configurations to rhopi configurations

e M — M' (controlled) iff (M) — @ (M") (uncontrolled)
o IfM w M’ (controlled) then (M) w* @ (M")

(uncontrolled)
— The opposite implication holds only if a suitable roll exists

A graphical interpretation of Roll

e One can see the processes involved in a rollback as the
tree of consequences of the key of the roll

[1.K]

roll k

Roll and concurrency

e Two rolls may interfere

e Executing one roll removes the other

e Inaconcurrent setting | would be able to execute both of
them

Concurrent semantics for Roll

e | can get the power of concurrent rolls with a simple trick

e Two steps rollback
— First, | mark the target memory
— Second, | execute the roll

lu, kl|k"-roll k w» |, k]°| k':roll k

k > M complete(M|[u, k]°)
M|[i, k]° = u[M L k

Executing two concurrent rolls

Executing two concurrent rolls

Executing two concurrent rolls

Executing two concurrent rolls

KN

Executing two concurrent rolls

Going towards an implementation

e The rule defining the behavior of roll is not easy to
Implement

— It involves an unbounded number of processes

e This semantics Is a specification, not a guide to the
Implementation

e \We can define a lower level semantics nearer to an
Implementation

e The low level semantics and the concurrent semantics are
equivalent

A lower level semantics

e Essentially a distributed algorithm based on message
passing

e The marked memory sends messages “freeze” to all the
descendants

— The descendants forward the messages

— If the descendant is a memory, the process(es) depending on the
roll key are frozen

e When the message reaches a leaf, the leaf suicides by
notifying its ancestors
— If the leaf is a memory, non frozen processes are released

e The algorithm terminates when the marked memory is
reached

| ower level semantics features

Only binary interactions

Easy to implement

Indeed, we implemented it in Maude
Roll execution Is no more atomic

— Loss of atomicity causes no fake interactions
— But a roll execution may not terminate

e Difficult to find a correspondence with the sequential

semantics
— Would require global locks

o
Tt
=

‘épecifying
alternatives

No divergence please

15

Specifying alternatives In croll-n

e Inroll-w every process featuring an executable roll has a
divergent computation

e We want to give to the programmer tools to avoid this
e We use alternatives

e \We add the simplest possible form of alternative
— If something is simple and works, it is probably good

Messages with alternative

e \We attach alternatives only to messages

e Instead of messages a(P) we use messages with
alternative
- a({P)%0 : try a(P), then stop trying
- a(P)%b{Q)%0 : try a(P), then b{(Q), then stop trying

e |If the message with alternative is the target of the roll, it
IS replaced by its alternative

e Very little change to the syntax
e Also the semantics is very similar
e The expressive power increases considerably

Croll-r syntax

o M:=k:P||wk]|lk<Kk,k'"| MM |vuM]|O
o P::=a(P)%A‘a(X)l>yP‘P|Q|vaP|X|O
| roll y | roll k
o u:u=kia(P)%Alk":a(X) >, Q
o A:=0]a(P)%0
e Now messages have alternatives

Croll-t semantics

e Little changes to the forward rule
k:a(PY%A | k':a(X) =, Q —
vk" k" QP /X}(k" /3 1 k"]
e Little changes to the backward rule
k> M complete(M||u, k]|k'":roll k)

M|u, k]|lk':roll k w» xtr(u)|M |, k

e Function xtr replaces messages with alternative with
their alternative

o xtr(a(P)%A)=A

Arbitrary alternatives

e \We only allow 0 and messages with 0O alternative as
alternatives?

— Is this enough?
e \We can encode arbitrary alternatives
o [a(P)%Q] = vc a({P)%c(Q)%0 | c(X) > X
e () can even have alternatives
e a,(P)%a,(P,)% ...%a, (P,)%0
— | try different options

— By choosing a4, ...,a, = aand P, ..., P,, = P | try the same
possibility n times before giving up

Endless retry

e | can retry the same alternative infinitely many times
— As inroll-n

o [al(P)] = vc Q |a([P])%c(Q)

o Q =c(2) > Z| a{[P])%c(Z)

e As for replication, we can encode infinite behaviors
using process duplication

Triggers with alternative

e \We can attach alternatives to triggers instead of
messages

S |[(a(X) C> Q)%b(Q')%O]] =
ve vd ¢(0)%d(0)%0 | (¢(Y) =, a(X) = [Q]) |
(d(Z) = b([Q'])%0)
e Triggers with alternative make the framework more
symmetric

e | cannot mix triggers with alternative and messages with
alternative

EXpressive power

e Do alternatives increase the expressive power?
e Yes!
e \We can prove this using encodings

e \We can encode roll-x into croll-n
— Using endless retry

e \We cannot do the opposite, preserving
— Existence of a backward reduction
— Termination

The 8 queens m

Q; = (act;(Z)v>p;(i, 1) +—... = p;(i,8) + £;{0) =0 |

(pi(xi) Dy, lei(xi) =0 | acti+1(0) | fix1(Y) > roll ~; | Wy

H;;ll ¢;(y;) > if err(x;i,y;) then roll ;))
err((x1,22), (y1,92)) = (x1 =y1 Vo =y2 V|1 —y1| = |z2 — y2|)
e ! denotes replication
— We know we can encode it
e Compact and concurrent implementation

e A more concurrent but less efficient implementation
also exists

