
1

Reversible Computing

Ivan Lanese

Focus research group

Computer Science and Engineering Department

University of Bologna/INRIA

Bologna, Italy

Roll-π reminder

 Controlled version of rhopi

 Based on operator roll γ

 Semantics defined by the rule below

𝑘 > 𝑀 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒(𝑀 𝜇, 𝑘 𝑘′: 𝑟𝑜𝑙𝑙 𝑘)

𝑀 𝜇, 𝑘 𝑘′: 𝑟𝑜𝑙𝑙 𝑘 ⇝ 𝜇|𝑀 ↳ 𝑘

Is roll-π a controlled rhopi?

 Let φ be a function that removes all γ and replaces all

rolls with 0

– Maps roll-π configurations to rhopi configurations

 𝑀 → 𝑀′ (controlled) iff 𝜑 𝑀 → 𝜑(𝑀′) (uncontrolled)

 If 𝑀 ⇝ 𝑀′ (controlled) then 𝜑 𝑀 ⇝+ 𝜑(𝑀′)
(uncontrolled)

– The opposite implication holds only if a suitable roll exists

A graphical interpretation of Roll

 One can see the processes involved in a rollback as the

tree of consequences of the key of the roll

roll k

[μ,k]

Roll and concurrency

 Two rolls may interfere

 Executing one roll removes the other

 In a concurrent setting I would be able to execute both of

them

roll k

[μ,k]

roll k’

[μ’,k’]

Concurrent semantics for Roll

 I can get the power of concurrent rolls with a simple trick

 Two steps rollback

– First, I mark the target memory

– Second, I execute the roll

𝜇, 𝑘 𝑘′: 𝑟𝑜𝑙𝑙 𝑘 ⇝ 𝜇, 𝑘 ° 𝑘′: 𝑟𝑜𝑙𝑙 𝑘

𝑘 > 𝑀 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒(𝑀|[𝜇, 𝑘]°)

𝑀|[𝜇, 𝑘]° ⇝ 𝜇|𝑀 ↳ 𝑘

Executing two concurrent rolls

roll k

[μ,k]

roll k’

[μ’,k’]

Executing two concurrent rolls

roll k

[μ,k]º

roll k’

[μ’,k’]

Executing two concurrent rolls

roll k

[μ,k]º

roll k’

[μ’,k’]º

Executing two concurrent rolls

[μ,k]º μ’

Executing two concurrent rolls

μ μ’

Going towards an implementation

 The rule defining the behavior of roll is not easy to

implement

– It involves an unbounded number of processes

 This semantics is a specification, not a guide to the

implementation

 We can define a lower level semantics nearer to an

implementation

 The low level semantics and the concurrent semantics are

equivalent

A lower level semantics

 Essentially a distributed algorithm based on message

passing

 The marked memory sends messages “freeze” to all the

descendants

– The descendants forward the messages

– If the descendant is a memory, the process(es) depending on the

roll key are frozen

 When the message reaches a leaf, the leaf suicides by

notifying its ancestors

– If the leaf is a memory, non frozen processes are released

 The algorithm terminates when the marked memory is

reached

Lower level semantics features

 Only binary interactions

 Easy to implement

 Indeed, we implemented it in Maude

 Roll execution is no more atomic

– Loss of atomicity causes no fake interactions

– But a roll execution may not terminate

 Difficult to find a correspondence with the sequential

semantics

– Would require global locks

15

Specifying

 alternatives

No divergence please

Specifying alternatives in croll-π

 In roll-π every process featuring an executable roll has a

divergent computation

 We want to give to the programmer tools to avoid this

 We use alternatives

 We add the simplest possible form of alternative

– If something is simple and works, it is probably good

Messages with alternative

 We attach alternatives only to messages

 Instead of messages 𝑎 𝑃 we use messages with

alternative

– 𝑎 𝑃 %0 : try 𝑎 𝑃 , then stop trying

– 𝑎 𝑃 %𝑏 𝑄 %0 : try 𝑎 𝑃 , then 𝑏 𝑄 , then stop trying

 If the message with alternative is the target of the roll, it

is replaced by its alternative

 Very little change to the syntax

 Also the semantics is very similar

 The expressive power increases considerably

Croll-π syntax

 𝑀 ∷= 𝑘: 𝑃 𝜇, 𝑘 𝑘 ≺ 𝑘′, 𝑘′′ 𝑀 𝑀′ 𝜈𝑢 𝑀 0

 𝑃 ∷= 𝑎 𝑃 %𝐴 𝑎 𝑋 ⊳𝛾 𝑃 𝑃 𝑄 𝜈𝑎 𝑃 𝑋 0

 𝑟𝑜𝑙𝑙 𝛾 𝑟𝑜𝑙𝑙 𝑘

 𝜇 ∷= 𝑘: 𝑎 𝑃 %𝐴 |𝑘′: 𝑎(𝑋) ⊳𝛾 𝑄

 𝐴 ∷= 0 | 𝑎 𝑃 %0

 Now messages have alternatives

Croll-π semantics

 Little changes to the forward rule

𝑘: 𝑎 𝑃 %𝐴 | 𝑘′: 𝑎 𝑋 ⊳𝛾 𝑄 →

𝜈𝑘′′ 𝑘′′: 𝑄 𝑃 𝑋 𝑘′′ 𝛾 | [𝜇, 𝑘′′]

 Little changes to the backward rule
𝑘 > 𝑀 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒(𝑀 𝜇, 𝑘 𝑘′: 𝑟𝑜𝑙𝑙 𝑘)

𝑀 𝜇, 𝑘 𝑘′: 𝑟𝑜𝑙𝑙 𝑘 ⇝ 𝑥𝑡𝑟(𝜇)|𝑀 ↳ 𝑘

 Function 𝑥𝑡𝑟 replaces messages with alternative with

their alternative

 𝑥𝑡𝑟 𝑎 𝑃 %𝐴 = 𝐴

Arbitrary alternatives

 We only allow 0 and messages with 0 alternative as

alternatives?

– Is this enough?

 We can encode arbitrary alternatives

 𝑎 𝑃 %𝑄 = 𝜈𝑐 𝑎 𝑃 %𝑐 𝑄 %0 | 𝑐(𝑋) ⊳ 𝑋

 𝑄 can even have alternatives

 𝑎1 𝑃1 %𝑎2 𝑃2 %…%𝑎𝑛 𝑃𝑛 %0

– I try different options

– By choosing 𝑎1, … , 𝑎𝑛 = 𝑎 and 𝑃1, … , 𝑃𝑛 = 𝑃 I try the same

possibility n times before giving up

Endless retry

 I can retry the same alternative infinitely many times

– As in roll-π

 𝑎 𝑃 = 𝜈𝑐 𝑄 |𝑎 𝑃 %𝑐 𝑄

 𝑄 = 𝑐 𝑍 ⊳ 𝑍| 𝑎 𝑃 %𝑐 𝑍

 As for replication, we can encode infinite behaviors

using process duplication

Triggers with alternative

 We can attach alternatives to triggers instead of

messages

 𝑎 𝑋 ⊳𝛾 𝑄 %𝑏 𝑄′ %0 =

𝜈𝑐 𝜈𝑑 𝑐 0 %𝑑 0 %0 𝑐 𝑌 ⊳𝛾 𝑎 𝑋 ⊳ 𝑄
 (𝑑(𝑍) ⊳ 𝑏 𝑄′ %0)

 Triggers with alternative make the framework more

symmetric

 I cannot mix triggers with alternative and messages with

alternative

Expressive power

 Do alternatives increase the expressive power?

 Yes!

 We can prove this using encodings

 We can encode roll-π into croll-π

– Using endless retry

 We cannot do the opposite, preserving

– Existence of a backward reduction

– Termination

The 8 queens

 ! denotes replication

– We know we can encode it

 Compact and concurrent implementation

 A more concurrent but less efficient implementation

also exists

