
1

Reversible Computing

Ivan Lanese

Focus research group

Computer Science and Engineering Department

University of Bologna/INRIA

Bologna, Italy

Roll-π reminder

 Controlled version of rhopi

 Based on operator roll γ

 Semantics defined by the rule below

𝑘 > 𝑀 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒(𝑀 𝜇, 𝑘 𝑘′: 𝑟𝑜𝑙𝑙 𝑘)

𝑀 𝜇, 𝑘 𝑘′: 𝑟𝑜𝑙𝑙 𝑘 ⇝ 𝜇|𝑀 ↳ 𝑘

Is roll-π a controlled rhopi?

 Let φ be a function that removes all γ and replaces all

rolls with 0

– Maps roll-π configurations to rhopi configurations

 𝑀 → 𝑀′ (controlled) iff 𝜑 𝑀 → 𝜑(𝑀′) (uncontrolled)

 If 𝑀 ⇝ 𝑀′ (controlled) then 𝜑 𝑀 ⇝+ 𝜑(𝑀′)
(uncontrolled)

– The opposite implication holds only if a suitable roll exists

A graphical interpretation of Roll

 One can see the processes involved in a rollback as the

tree of consequences of the key of the roll

roll k

[μ,k]

Roll and concurrency

 Two rolls may interfere

 Executing one roll removes the other

 In a concurrent setting I would be able to execute both of

them

roll k

[μ,k]

roll k’

[μ’,k’]

Concurrent semantics for Roll

 I can get the power of concurrent rolls with a simple trick

 Two steps rollback

– First, I mark the target memory

– Second, I execute the roll

𝜇, 𝑘 𝑘′: 𝑟𝑜𝑙𝑙 𝑘 ⇝ 𝜇, 𝑘 ° 𝑘′: 𝑟𝑜𝑙𝑙 𝑘

𝑘 > 𝑀 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒(𝑀|[𝜇, 𝑘]°)

𝑀|[𝜇, 𝑘]° ⇝ 𝜇|𝑀 ↳ 𝑘

Executing two concurrent rolls

roll k

[μ,k]

roll k’

[μ’,k’]

Executing two concurrent rolls

roll k

[μ,k]º

roll k’

[μ’,k’]

Executing two concurrent rolls

roll k

[μ,k]º

roll k’

[μ’,k’]º

Executing two concurrent rolls

[μ,k]º μ’

Executing two concurrent rolls

μ μ’

Going towards an implementation

 The rule defining the behavior of roll is not easy to

implement

– It involves an unbounded number of processes

 This semantics is a specification, not a guide to the

implementation

 We can define a lower level semantics nearer to an

implementation

 The low level semantics and the concurrent semantics are

equivalent

A lower level semantics

 Essentially a distributed algorithm based on message

passing

 The marked memory sends messages “freeze” to all the

descendants

– The descendants forward the messages

– If the descendant is a memory, the process(es) depending on the

roll key are frozen

 When the message reaches a leaf, the leaf suicides by

notifying its ancestors

– If the leaf is a memory, non frozen processes are released

 The algorithm terminates when the marked memory is

reached

Lower level semantics features

 Only binary interactions

 Easy to implement

 Indeed, we implemented it in Maude

 Roll execution is no more atomic

– Loss of atomicity causes no fake interactions

– But a roll execution may not terminate

 Difficult to find a correspondence with the sequential

semantics

– Would require global locks

15

Specifying

 alternatives

No divergence please

Specifying alternatives in croll-π

 In roll-π every process featuring an executable roll has a

divergent computation

 We want to give to the programmer tools to avoid this

 We use alternatives

 We add the simplest possible form of alternative

– If something is simple and works, it is probably good

Messages with alternative

 We attach alternatives only to messages

 Instead of messages 𝑎 𝑃 we use messages with

alternative

– 𝑎 𝑃 %0 : try 𝑎 𝑃 , then stop trying

– 𝑎 𝑃 %𝑏 𝑄 %0 : try 𝑎 𝑃 , then 𝑏 𝑄 , then stop trying

 If the message with alternative is the target of the roll, it

is replaced by its alternative

 Very little change to the syntax

 Also the semantics is very similar

 The expressive power increases considerably

Croll-π syntax

 𝑀 ∷= 𝑘: 𝑃 𝜇, 𝑘 𝑘 ≺ 𝑘′, 𝑘′′ 𝑀 𝑀′ 𝜈𝑢 𝑀 0

 𝑃 ∷= 𝑎 𝑃 %𝐴 𝑎 𝑋 ⊳𝛾 𝑃 𝑃 𝑄 𝜈𝑎 𝑃 𝑋 0

 𝑟𝑜𝑙𝑙 𝛾 𝑟𝑜𝑙𝑙 𝑘

 𝜇 ∷= 𝑘: 𝑎 𝑃 %𝐴 |𝑘′: 𝑎(𝑋) ⊳𝛾 𝑄

 𝐴 ∷= 0 | 𝑎 𝑃 %0

 Now messages have alternatives

Croll-π semantics

 Little changes to the forward rule

𝑘: 𝑎 𝑃 %𝐴 | 𝑘′: 𝑎 𝑋 ⊳𝛾 𝑄 →

𝜈𝑘′′ 𝑘′′: 𝑄 𝑃 𝑋 𝑘′′ 𝛾 | [𝜇, 𝑘′′]

 Little changes to the backward rule
𝑘 > 𝑀 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒(𝑀 𝜇, 𝑘 𝑘′: 𝑟𝑜𝑙𝑙 𝑘)

𝑀 𝜇, 𝑘 𝑘′: 𝑟𝑜𝑙𝑙 𝑘 ⇝ 𝑥𝑡𝑟(𝜇)|𝑀 ↳ 𝑘

 Function 𝑥𝑡𝑟 replaces messages with alternative with

their alternative

 𝑥𝑡𝑟 𝑎 𝑃 %𝐴 = 𝐴

Arbitrary alternatives

 We only allow 0 and messages with 0 alternative as

alternatives?

– Is this enough?

 We can encode arbitrary alternatives

 𝑎 𝑃 %𝑄 = 𝜈𝑐 𝑎 𝑃 %𝑐 𝑄 %0 | 𝑐(𝑋) ⊳ 𝑋

 𝑄 can even have alternatives

 𝑎1 𝑃1 %𝑎2 𝑃2 %…%𝑎𝑛 𝑃𝑛 %0

– I try different options

– By choosing 𝑎1, … , 𝑎𝑛 = 𝑎 and 𝑃1, … , 𝑃𝑛 = 𝑃 I try the same

possibility n times before giving up

Endless retry

 I can retry the same alternative infinitely many times

– As in roll-π

 𝑎 𝑃 = 𝜈𝑐 𝑄 |𝑎 𝑃 %𝑐 𝑄

 𝑄 = 𝑐 𝑍 ⊳ 𝑍| 𝑎 𝑃 %𝑐 𝑍

 As for replication, we can encode infinite behaviors

using process duplication

Triggers with alternative

 We can attach alternatives to triggers instead of

messages

 𝑎 𝑋 ⊳𝛾 𝑄 %𝑏 𝑄′ %0 =

𝜈𝑐 𝜈𝑑 𝑐 0 %𝑑 0 %0 𝑐 𝑌 ⊳𝛾 𝑎 𝑋 ⊳ 𝑄
 (𝑑(𝑍) ⊳ 𝑏 𝑄′ %0)

 Triggers with alternative make the framework more

symmetric

 I cannot mix triggers with alternative and messages with

alternative

Expressive power

 Do alternatives increase the expressive power?

 Yes!

 We can prove this using encodings

 We can encode roll-π into croll-π

– Using endless retry

 We cannot do the opposite, preserving

– Existence of a backward reduction

– Termination

The 8 queens

 ! denotes replication

– We know we can encode it

 Compact and concurrent implementation

 A more concurrent but less efficient implementation

also exists

