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Roll-π reminder 

 Controlled version of rhopi 

 Based on operator roll γ 

 Semantics defined by the rule below 

𝑘 > 𝑀  𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒(𝑀 𝜇, 𝑘 𝑘′: 𝑟𝑜𝑙𝑙 𝑘)

𝑀 𝜇, 𝑘 𝑘′: 𝑟𝑜𝑙𝑙 𝑘 ⇝ 𝜇|𝑀 ↳ 𝑘
 

 

 

 



Is roll-π a controlled rhopi? 

 Let φ be a function that removes all γ and replaces all 

rolls with 0 

– Maps roll-π configurations to rhopi configurations 

 𝑀 → 𝑀′ (controlled) iff 𝜑 𝑀 → 𝜑(𝑀′) (uncontrolled) 

 If 𝑀 ⇝ 𝑀′ (controlled) then 𝜑 𝑀 ⇝+ 𝜑(𝑀′) 
(uncontrolled) 

– The opposite implication holds only if a suitable roll exists 

 

 

 

 



A graphical interpretation of Roll 

 One can see the processes involved in a rollback as the 

tree of consequences of the key of the roll 
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Roll and concurrency 

 Two rolls may interfere 

 

 

 

 

 

 

 Executing one roll removes the other 

 In a concurrent setting I would be able to execute both of 

them 
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Concurrent semantics for Roll 

 I can get the power of concurrent rolls with a simple trick 

 Two steps rollback 

– First, I mark the target memory 

– Second, I execute the roll 

 

𝜇, 𝑘 𝑘′: 𝑟𝑜𝑙𝑙 𝑘 ⇝ 𝜇, 𝑘 °  𝑘′: 𝑟𝑜𝑙𝑙 𝑘 

 
𝑘 > 𝑀  𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒(𝑀|[𝜇, 𝑘]°)

𝑀|[𝜇, 𝑘]° ⇝ 𝜇|𝑀 ↳ 𝑘
 

 

 

 



Executing two concurrent rolls 
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Executing two concurrent rolls 
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Executing two concurrent rolls 
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Executing two concurrent rolls 
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Executing two concurrent rolls 
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Going towards an implementation 

 The rule defining the behavior of roll is not easy to 

implement 

– It involves an unbounded number of processes 

 This semantics is a specification, not a guide to the 

implementation 

 We can define a lower level semantics nearer to an 

implementation 

 The low level semantics and the concurrent semantics are 

equivalent 



A lower level semantics 

 Essentially a distributed algorithm based on message 

passing 

 The marked memory sends messages “freeze” to all the 

descendants 

– The descendants forward the messages 

– If the descendant is a memory, the process(es) depending on the 

roll key are frozen 

 When the message reaches a leaf, the leaf suicides by 

notifying its ancestors 

– If the leaf is a memory, non frozen processes are released 

 The algorithm terminates when the marked memory is 

reached 



Lower level semantics features 

 Only binary interactions 

 Easy to implement 

 Indeed, we implemented it in Maude 

 Roll execution is no more atomic 

– Loss of atomicity causes no fake interactions 

– But a roll execution may not terminate 

 Difficult to find a correspondence with the sequential 

semantics 

– Would require global locks 
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Specifying 

 alternatives 

No divergence please 



Specifying alternatives in croll-π 

 In roll-π every process featuring an executable roll has a 

divergent computation 

 We want to give to the programmer tools to avoid this 

 We use alternatives 

 We add the simplest possible form of alternative 

– If something is simple and works, it is probably good 



Messages with alternative 

 We attach alternatives only to messages 

 Instead of messages 𝑎 𝑃  we use messages with 

alternative 

– 𝑎 𝑃 %0 : try 𝑎 𝑃 , then stop trying 

– 𝑎 𝑃 %𝑏 𝑄 %0 : try 𝑎 𝑃 , then 𝑏 𝑄 , then stop trying 

 If the message with alternative is the target of the roll, it 

is replaced by its alternative 

 Very little change to the syntax 

 Also the semantics is very similar 

 The expressive power increases considerably 

 

 

 



Croll-π syntax 

 𝑀 ∷= 𝑘: 𝑃  𝜇, 𝑘   𝑘 ≺ 𝑘′, 𝑘′′  𝑀 𝑀′   𝜈𝑢 𝑀  0 

 𝑃 ∷= 𝑎 𝑃 %𝐴  𝑎 𝑋 ⊳𝛾 𝑃  𝑃 𝑄  𝜈𝑎 𝑃  𝑋  0 

            𝑟𝑜𝑙𝑙 𝛾  𝑟𝑜𝑙𝑙 𝑘  

 𝜇 ∷= 𝑘: 𝑎 𝑃 %𝐴 |𝑘′: 𝑎(𝑋) ⊳𝛾 𝑄 

 𝐴 ∷= 0 | 𝑎 𝑃 %0 

 Now messages have alternatives 

 

 

 

 

 



Croll-π semantics 

 Little changes to the forward rule 

𝑘: 𝑎 𝑃 %𝐴 | 𝑘′: 𝑎 𝑋 ⊳𝛾 𝑄 → 

𝜈𝑘′′ 𝑘′′: 𝑄 𝑃 𝑋 𝑘′′ 𝛾 | [𝜇, 𝑘′′] 

 Little changes to the backward rule 
𝑘 > 𝑀  𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒(𝑀 𝜇, 𝑘 𝑘′: 𝑟𝑜𝑙𝑙 𝑘)

𝑀 𝜇, 𝑘 𝑘′: 𝑟𝑜𝑙𝑙 𝑘 ⇝ 𝑥𝑡𝑟(𝜇)|𝑀 ↳ 𝑘
 

 Function 𝑥𝑡𝑟 replaces messages with alternative with 

their alternative 

 𝑥𝑡𝑟 𝑎 𝑃 %𝐴 = 𝐴 

 

 

 



Arbitrary alternatives 

 We only allow 0 and messages with 0 alternative as 

alternatives? 

– Is this enough? 

 We can encode arbitrary alternatives 

 𝑎 𝑃 %𝑄 = 𝜈𝑐 𝑎 𝑃 %𝑐 𝑄 %0 | 𝑐(𝑋) ⊳ 𝑋 

 𝑄 can even have alternatives 

 𝑎1 𝑃1 %𝑎2 𝑃2 %…%𝑎𝑛 𝑃𝑛 %0 

– I try different options 

– By choosing 𝑎1, … , 𝑎𝑛 = 𝑎 and 𝑃1, … , 𝑃𝑛 = 𝑃 I try the same 

possibility n times before giving up 

 

 

 

 



Endless retry 

 I can retry the same alternative infinitely many times 

– As in roll-π 

 𝑎 𝑃 =  𝜈𝑐 𝑄 |𝑎 𝑃 %𝑐 𝑄  

 𝑄 = 𝑐 𝑍 ⊳ 𝑍| 𝑎 𝑃 %𝑐 𝑍  

 As for replication, we can encode infinite behaviors 

using process duplication 

 

 

 

 



Triggers with alternative 

 We can attach alternatives to triggers instead of 

messages 

 𝑎 𝑋 ⊳𝛾 𝑄 %𝑏 𝑄′ %0 =

𝜈𝑐 𝜈𝑑 𝑐 0 %𝑑 0 %0  𝑐 𝑌 ⊳𝛾 𝑎 𝑋 ⊳ 𝑄   
 (𝑑(𝑍) ⊳ 𝑏 𝑄′ %0)  

 Triggers with alternative make the framework more 

symmetric 

 I cannot mix triggers with alternative and messages with 

alternative 

 

 

 

 

 



Expressive power 

 Do alternatives increase the expressive power? 

 Yes! 

 We can prove this using encodings 

 We can encode roll-π into croll-π 

– Using endless retry 

 We cannot do the opposite, preserving 

– Existence of a backward reduction 

– Termination 

 

 

 



The 8 queens 

 

 

 

 

 ! denotes replication 

– We know we can encode it 

 Compact and concurrent implementation  

 A more concurrent but less efficient implementation 

also exists 


