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ρCCS: reminder 

 Causal-consistent Reversible CCS 

 Syntax: 

𝑀 ∷= 𝑘: 𝑃  𝑎, 𝑃, 𝑃′, 𝑘, 𝑘′, 𝑘′′, 𝑘′′′   𝑘 ≺ 𝑘′, 𝑘′′ | 
            𝑀 𝑀′  𝜈𝑢 𝑀 | 0 

    𝑃 ∷= 𝑎. 𝑃  𝑎 . 𝑃  𝑃 + 𝑃′  𝑃 𝑃′  𝜈𝑎 𝑃  0  

 Reduction rules: 

𝑘: 𝑎 . 𝑃 + 𝑄 |𝑘′: 𝑎. 𝑃′ + 𝑄′

→ 𝜈ℎ 𝜈ℎ′  ℎ: 𝑃|ℎ′: 𝑃′|[𝑎, 𝑄, 𝑄′, 𝑘, 𝑘′, ℎ, ℎ′] 
ℎ: 𝑃 ℎ′: 𝑃′ 𝑎, 𝑄, 𝑄′, 𝑘, 𝑘′, ℎ, ℎ′  
          ⇝ 𝑘: 𝑎 . 𝑃 + 𝑄 |𝑘′: (𝑎. 𝑃′ + 𝑄′) 

 

 



Example 

𝑘: 𝑎 . 𝑃  𝑘′: 𝑎. 𝑏. 0 + 𝑎. 𝑐. 0 𝑘′′: 𝑏 . (𝑄|𝑄′)  → 
𝜈ℎ 𝜈ℎ′ 𝑎, 0, 𝑎. 𝑐. 0, 𝑘, 𝑘′, ℎ, ℎ′ ℎ: 𝑃 ℎ′: 𝑏. 0|𝑘′′: 𝑏 . 𝑄 𝑄′  

→ 
𝜈ℎ 𝜈ℎ′ 𝜈𝑙 𝜈𝑙′ 𝑎, 0, 𝑎. 𝑐. 0, 𝑘, 𝑘′, ℎ, ℎ′ ℎ: 𝑃 𝑏, 0,0, 𝑘′′, ℎ′, 𝑙′, 𝑙  
𝑙: 0 𝑙′: 𝑄 𝑄′ ⇝ 
𝜈ℎ 𝜈ℎ′ 𝜈𝑙 𝜈𝑙′ 𝑎, 0, 𝑎. 𝑐. 0, 𝑘, 𝑘′, ℎ, ℎ′ ℎ: 𝑃 ℎ′: 𝑏. 0|𝑘′′: 𝑏 . 𝑄 𝑄′  
            ⇝ 
𝜈ℎ 𝜈ℎ′ 𝜈𝑙 𝜈𝑙′𝑘: 𝑎 . 𝑃  𝑘′: 𝑎. 𝑏. 0 + 𝑎. 𝑐. 0 𝑘′′: 𝑏 . (𝑄|𝑄′) 

 

 



Programming in ρCCS 

 We said that the programmer will write processes as 

usual, only the runtime support should change 

 Here we have a lot of additional information 

 Where does the additional information comes from? 

 

 



ρCCS vs CCS 

 Given a CCS process P we can generate a ρCCS 

configuration as 𝜈𝑘 𝑘: 𝑃 

– No memories 

– No causal dependencies 

 The programmer writes the CCS process and we can 

transform it into a ρCCS configuration 

 Given a ρCCS configuration we can generate a CCS 

process by removing all the additional information 

 The two transformations form a Galois connection 

– α from ρCCS to CCS 

– c from CCS to ρCCS 

 

 



ρCCS vs CCS, behaviorally 

 Forward reductions of ρCCS configurations are CCS 

reductions 

𝑀 → 𝑀′   implies  𝛼 𝑀 →  𝛼(𝑀′) 

 Given a CCS reduction, this can be done by any ρCCS 

configuration mapped to it 

𝑃 → 𝑃′ and 𝛼 𝑀 = 𝑃 implies 𝑀 → 𝑀′ and 

𝛼 𝑀′ = 𝑃′ 

– History information has no impact on forward reductions  

 

 



Valid configurations 

 Not all the configurations are valid 

 E.g., if the configuration contains a connector 𝑘 ≺ 𝑘′, 𝑘′′ 
then 𝑘′ and 𝑘′′ occur also as keys of a process, a memory 

or another connector 

 Causality information should form a partial order 

 A bit difficult to characterize syntactically valid 

configurations 

 Semantic characterization: a configuration is valid iff it 

can be derived from a configuration of the form 𝜈𝑘 𝑘: 𝑃  

 

 



Parabolic Lemma 

 Each computation is causally equivalent to a computation 

obtained by doing a backward computation followed by a 

forward computation 

 Intuitively, I undo all what I have done and then compute 

only forward 

– Tries which are undone are not relevant 

 Useful for proving the Causal consistency Theorem 

 

 



Causal-consistent CCS in the literature 

 In the literature there are two other causal-consistent 

reversible CCS 

– RCCS 

[Vincent Danos, Jean Krivine: Reversible Communicating 

Systems. CONCUR 2004] 

LTS based, histories attached to threads 

– CCSk 

[Iain C. C. Phillips, Irek Ulidowski: Reversing Algebraic 

Process Calculi. FoSSaCS 2006] 

LTS based, process is not consumed, part of it is just annotated 

as no more available 

 

 



Are all those causal-consistent CCS equivalent? 

 Yes! 

 Reductions in ρCCS correspond to internal steps (τ 

moves) of the other approaches 

 Essentially they provide different run time support 

definitions for the same language 

 There exists a unique way to define a causal-consistent 

extension of a given language 

– Satisfying the expected properties 

 Our approach is more easy to generalize 

 

 



From ρCCS to Rhopi 

 CCS is not expressive enough 

 We want to consider more expressive languages 

 We choose higher-order π-calculus 

– Allows processes to communicate 



HOpi 

 Syntax 

𝑃 ∷= 𝑎 𝑃   𝑎 𝑋 ⊳ 𝑃  𝑃 𝑄  𝜈𝑎 𝑃  𝑋  0 

 Higher-order communication 

 Asynchronous calculus 

 You can imagine structural congruence 

 A reduction rule 

𝑎 𝑃 |𝑎(𝑋) ⊳ 𝑄 → 𝑄{𝑃 𝑋 } 



Infinite behaviors 

 HOπ can implement infinite behaviors 

– No need for operators for replication or recursion 

 𝑄 = 𝑎 𝑋 ⊳ 𝑃 𝑋 𝑎 𝑋  

𝑄 | 𝑎 𝑄  reduces to 𝑃  Q  𝑎 𝑄  

 This allows one to generate an infinite amount of 

copies of 𝑃  



How to make HOπ reversible? 

 The main novelty is given by substitutions 

 In ρCCS we can take the continuations from the 

configuration 

 Here this is no more true 

 From Q{𝑃 𝑋 } I cannot recover 𝑄 or 𝑃 

 Not even 𝑄 if I know 𝑃 

– 𝑃|𝑋, 𝑋|𝑃, 𝑃|𝑃, 𝑋|𝑋 all produce the same result 

 Not even 𝑃 if I know 𝑄 

– If 𝑄 does not contain 𝑋   



Rhopi 

 Syntax: 

𝑀 ∷= 𝑘: 𝑃  μ, 𝑘   𝑘 ≺ 𝑘′, 𝑘′′ | 𝑀 𝑀′  𝜈𝑢 𝑀 | 0 

    𝜇 ∷= 𝑘: 𝑎 𝑃 |𝑘′: 𝑎(𝑋) ⊳ 𝑄 

 Reduction rules: 

𝑘: 𝑎 𝑃 𝑘′: 𝑎 𝑋 ⊳ 𝑄 → 𝜈𝑘′′ 𝑘′′: 𝑄 𝑃 𝑋 𝜇, 𝑘′′  

𝑘′′: 𝑅| 𝜇, 𝑘′′  ⇝  𝜇 

 A unique continuation since the calculus is asynchronous 

 I store the whole configuration 

– Not really memory efficient 

– But it works, and provides a simple semantics 

– I may optimize it later 



Restriction 

 It seems we do not consider restriction 

 Indeed, this is what we do 

 We can do it! 

 Try what happens with 

𝑘: 𝑎 𝜈𝑏 𝑐 𝑏 𝑄 . 0   𝑘′: 𝑎 𝑋 ⊳ 𝑋  𝑘′′: 𝑐(𝑌) ⊳ 𝑌 



Summarizing 

 We have been able to define reversible CCS and HOπ 

 Both causal consistent 

 Using almost the same techniques 

 But we are still at uncontrolled reversibility 
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Controlling 

 reversibility 

Power is nothing without control 



Roll-π 

 We want to use the roll operator to control reversibility in 

Rhopi 

 We have to attach labels γ to some actions 

– We choose triggers 

– Since triggers have a continuation 

 The challenge is to define the semantics of the roll 

operator 

– It involves an unbounded number of processes 



Roll-π syntax 

 𝑀 ∷= 𝑘: 𝑃  𝜇, 𝑘   𝑘 ≺ 𝑘′, 𝑘′′  𝑀 𝑀′   𝜈𝑢 𝑀  0  

 𝑃 ∷=

𝑎 𝑃   𝑎 𝑋 ⊳𝛾 𝑃  𝑃 𝑄  𝜈𝑎 𝑃  𝑋  0  𝑟𝑜𝑙𝑙 𝛾  𝑟𝑜𝑙𝑙 𝑘 

 𝜇 ∷= 𝑘: 𝑎 𝑃 |𝑘′: 𝑎(𝑋) ⊳𝛾 𝑄 

 Now γ attached to triggers 

 γ is a binder 

 At run-time γ replaced by k 

 

 

 

 

 



Roll-π semantics 

 Little changes to the forward rule 

𝑘: 𝑎 𝑃  | 𝑘′: 𝑎 𝑋 ⊳𝛾 𝑄 → 

𝜈𝑘′′ 𝑘′′: 𝑄 𝑃 𝑋 𝑘′′ 𝛾 | [𝜇, 𝑘′′] 

 A new, complex, backward rule 
𝑘 > 𝑀  𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒(𝑀 𝜇, 𝑘 𝑘′: 𝑟𝑜𝑙𝑙 𝑘)

𝑀 𝜇, 𝑘 𝑘′: 𝑟𝑜𝑙𝑙 𝑘 ⇝ 𝜇|𝑀 ↳ 𝑘
 

 The two preconditions require to involve only processes 

which depend on k, and all of them 

 We need to define the dependency relation 

 

 

 



Exploiting causality 

 Causal dependence: if in a term I have 

– 𝑘: 𝑎 𝑃 𝑘′: 𝑎 𝑋 ⊳𝛾 𝑄, 𝑘
′′  then 𝑘 > 𝑘′′ and 𝑘′ > 𝑘′′ 

– 𝑘 ≺ 𝑘′, 𝑘′′ then 𝑘 > 𝑘′ and 𝑘 > 𝑘′′ 

 𝑘 > 𝑀 if 𝑘 > ℎ for all ℎ: 𝑃, [𝜇, ℎ] and ℎ ≺ ℎ′, ℎ′′ in 𝑀  

 Completeness is essentially closure under consequences 

 Completeness: if in a term I have 

– 𝑘: 𝑎 𝑃 𝑘′: 𝑎 𝑋 ⊳𝛾 𝑄, 𝑘
′′  then there is another occurrence of 

𝑘′′ 

– 𝑘 ≺ 𝑘′, 𝑘′′ then there are other occurrences of 𝑘′ and 𝑘′′ 

 

 

 



Example 

𝑘: 𝑎 𝑃   𝑘′: 𝑎 𝑋 ⊳𝛾 𝑏 𝑌 ⊳ 𝑟𝑜𝑙𝑙 𝛾  𝑘′′: 𝑏 𝑃′ → 

 
𝜈𝑘′′′ 𝑘: 𝑎 𝑃   𝑘′: 𝑎 𝑋 ⊳𝛾 𝑏 𝑌 ⊳ 𝑟𝑜𝑙𝑙 𝛾, 𝑘′′′] | 𝑘′′′: 𝑏(𝑌)

⊳ 𝑟𝑜𝑙𝑙 𝑘′′′ | 𝑘′′: 𝑏 𝑃′  → 

 
𝜈𝑘′′′𝜈𝑘′′′′ 𝑘: 𝑎 𝑃   𝑘′: 𝑎 𝑋 ⊳𝛾 𝑏 𝑌 ⊳ 𝑟𝑜𝑙𝑙 𝛾, 𝑘′′′] | [𝑘′′′: 𝑏(𝑌)

⊳ 𝑟𝑜𝑙𝑙 𝑘′′′ | 𝑘′′: 𝑏 𝑃′ , 𝑘′′′′] | 𝑘′′′′: 𝑟𝑜𝑙𝑙 𝑘′′′ ⇝ 

 
𝜈𝑘′′′𝜈𝑘′′′′′𝑘: 𝑎 𝑃   𝑘′: 𝑎 𝑋 ⊳𝛾 𝑏 𝑌 ⊳ 𝑟𝑜𝑙𝑙 𝛾  𝑘′′: 𝑏 𝑃′  

   

 

 

 



Releasing resources 

 Processes which are not dependent on 𝑘′′′ but are in 

memories dependent on 𝑘′′′ can be seen as resources 

taken by the computation from the environment 

 They have to be restored in case of roll 𝑘′′′ 

 This is done by 𝑀 ↳ 𝑘′′′  

 

 

 


