
1

Reversible Computing

Ivan Lanese

Focus research group

Computer Science and Engineering Department

University of Bologna/INRIA

Bologna, Italy

ρCCS: reminder

 Causal-consistent Reversible CCS

 Syntax:

𝑀 ∷= 𝑘: 𝑃 𝑎, 𝑃, 𝑃′, 𝑘, 𝑘′, 𝑘′′, 𝑘′′′ 𝑘 ≺ 𝑘′, 𝑘′′ |
 𝑀 𝑀′ 𝜈𝑢 𝑀 | 0

 𝑃 ∷= 𝑎. 𝑃 𝑎 . 𝑃 𝑃 + 𝑃′ 𝑃 𝑃′ 𝜈𝑎 𝑃 0

 Reduction rules:

𝑘: 𝑎 . 𝑃 + 𝑄 |𝑘′: 𝑎. 𝑃′ + 𝑄′

→ 𝜈ℎ 𝜈ℎ′ ℎ: 𝑃|ℎ′: 𝑃′|[𝑎, 𝑄, 𝑄′, 𝑘, 𝑘′, ℎ, ℎ′]
ℎ: 𝑃 ℎ′: 𝑃′ 𝑎, 𝑄, 𝑄′, 𝑘, 𝑘′, ℎ, ℎ′
 ⇝ 𝑘: 𝑎 . 𝑃 + 𝑄 |𝑘′: (𝑎. 𝑃′ + 𝑄′)

Example

𝑘: 𝑎 . 𝑃 𝑘′: 𝑎. 𝑏. 0 + 𝑎. 𝑐. 0 𝑘′′: 𝑏 . (𝑄|𝑄′) →
𝜈ℎ 𝜈ℎ′ 𝑎, 0, 𝑎. 𝑐. 0, 𝑘, 𝑘′, ℎ, ℎ′ ℎ: 𝑃 ℎ′: 𝑏. 0|𝑘′′: 𝑏 . 𝑄 𝑄′

→
𝜈ℎ 𝜈ℎ′ 𝜈𝑙 𝜈𝑙′ 𝑎, 0, 𝑎. 𝑐. 0, 𝑘, 𝑘′, ℎ, ℎ′ ℎ: 𝑃 𝑏, 0,0, 𝑘′′, ℎ′, 𝑙′, 𝑙
𝑙: 0 𝑙′: 𝑄 𝑄′ ⇝
𝜈ℎ 𝜈ℎ′ 𝜈𝑙 𝜈𝑙′ 𝑎, 0, 𝑎. 𝑐. 0, 𝑘, 𝑘′, ℎ, ℎ′ ℎ: 𝑃 ℎ′: 𝑏. 0|𝑘′′: 𝑏 . 𝑄 𝑄′
 ⇝
𝜈ℎ 𝜈ℎ′ 𝜈𝑙 𝜈𝑙′𝑘: 𝑎 . 𝑃 𝑘′: 𝑎. 𝑏. 0 + 𝑎. 𝑐. 0 𝑘′′: 𝑏 . (𝑄|𝑄′)

Programming in ρCCS

 We said that the programmer will write processes as

usual, only the runtime support should change

 Here we have a lot of additional information

 Where does the additional information comes from?

ρCCS vs CCS

 Given a CCS process P we can generate a ρCCS

configuration as 𝜈𝑘 𝑘: 𝑃

– No memories

– No causal dependencies

 The programmer writes the CCS process and we can

transform it into a ρCCS configuration

 Given a ρCCS configuration we can generate a CCS

process by removing all the additional information

 The two transformations form a Galois connection

– α from ρCCS to CCS

– c from CCS to ρCCS

ρCCS vs CCS, behaviorally

 Forward reductions of ρCCS configurations are CCS

reductions

𝑀 → 𝑀′ implies 𝛼 𝑀 → 𝛼(𝑀′)

 Given a CCS reduction, this can be done by any ρCCS

configuration mapped to it

𝑃 → 𝑃′ and 𝛼 𝑀 = 𝑃 implies 𝑀 → 𝑀′ and

𝛼 𝑀′ = 𝑃′

– History information has no impact on forward reductions

Valid configurations

 Not all the configurations are valid

 E.g., if the configuration contains a connector 𝑘 ≺ 𝑘′, 𝑘′′
then 𝑘′ and 𝑘′′ occur also as keys of a process, a memory

or another connector

 Causality information should form a partial order

 A bit difficult to characterize syntactically valid

configurations

 Semantic characterization: a configuration is valid iff it

can be derived from a configuration of the form 𝜈𝑘 𝑘: 𝑃

Parabolic Lemma

 Each computation is causally equivalent to a computation

obtained by doing a backward computation followed by a

forward computation

 Intuitively, I undo all what I have done and then compute

only forward

– Tries which are undone are not relevant

 Useful for proving the Causal consistency Theorem

Causal-consistent CCS in the literature

 In the literature there are two other causal-consistent

reversible CCS

– RCCS

[Vincent Danos, Jean Krivine: Reversible Communicating

Systems. CONCUR 2004]

LTS based, histories attached to threads

– CCSk

[Iain C. C. Phillips, Irek Ulidowski: Reversing Algebraic

Process Calculi. FoSSaCS 2006]

LTS based, process is not consumed, part of it is just annotated

as no more available

Are all those causal-consistent CCS equivalent?

 Yes!

 Reductions in ρCCS correspond to internal steps (τ

moves) of the other approaches

 Essentially they provide different run time support

definitions for the same language

 There exists a unique way to define a causal-consistent

extension of a given language

– Satisfying the expected properties

 Our approach is more easy to generalize

From ρCCS to Rhopi

 CCS is not expressive enough

 We want to consider more expressive languages

 We choose higher-order π-calculus

– Allows processes to communicate

HOpi

 Syntax

𝑃 ∷= 𝑎 𝑃 𝑎 𝑋 ⊳ 𝑃 𝑃 𝑄 𝜈𝑎 𝑃 𝑋 0

 Higher-order communication

 Asynchronous calculus

 You can imagine structural congruence

 A reduction rule

𝑎 𝑃 |𝑎(𝑋) ⊳ 𝑄 → 𝑄{𝑃 𝑋 }

Infinite behaviors

 HOπ can implement infinite behaviors

– No need for operators for replication or recursion

 𝑄 = 𝑎 𝑋 ⊳ 𝑃 𝑋 𝑎 𝑋

𝑄 | 𝑎 𝑄 reduces to 𝑃 Q 𝑎 𝑄

 This allows one to generate an infinite amount of

copies of 𝑃

How to make HOπ reversible?

 The main novelty is given by substitutions

 In ρCCS we can take the continuations from the

configuration

 Here this is no more true

 From Q{𝑃 𝑋 } I cannot recover 𝑄 or 𝑃

 Not even 𝑄 if I know 𝑃

– 𝑃|𝑋, 𝑋|𝑃, 𝑃|𝑃, 𝑋|𝑋 all produce the same result

 Not even 𝑃 if I know 𝑄

– If 𝑄 does not contain 𝑋

Rhopi

 Syntax:

𝑀 ∷= 𝑘: 𝑃 μ, 𝑘 𝑘 ≺ 𝑘′, 𝑘′′ | 𝑀 𝑀′ 𝜈𝑢 𝑀 | 0

 𝜇 ∷= 𝑘: 𝑎 𝑃 |𝑘′: 𝑎(𝑋) ⊳ 𝑄

 Reduction rules:

𝑘: 𝑎 𝑃 𝑘′: 𝑎 𝑋 ⊳ 𝑄 → 𝜈𝑘′′ 𝑘′′: 𝑄 𝑃 𝑋 𝜇, 𝑘′′

𝑘′′: 𝑅| 𝜇, 𝑘′′ ⇝ 𝜇

 A unique continuation since the calculus is asynchronous

 I store the whole configuration

– Not really memory efficient

– But it works, and provides a simple semantics

– I may optimize it later

Restriction

 It seems we do not consider restriction

 Indeed, this is what we do

 We can do it!

 Try what happens with

𝑘: 𝑎 𝜈𝑏 𝑐 𝑏 𝑄 . 0 𝑘′: 𝑎 𝑋 ⊳ 𝑋 𝑘′′: 𝑐(𝑌) ⊳ 𝑌

Summarizing

 We have been able to define reversible CCS and HOπ

 Both causal consistent

 Using almost the same techniques

 But we are still at uncontrolled reversibility

18

Controlling

 reversibility

Power is nothing without control

Roll-π

 We want to use the roll operator to control reversibility in

Rhopi

 We have to attach labels γ to some actions

– We choose triggers

– Since triggers have a continuation

 The challenge is to define the semantics of the roll

operator

– It involves an unbounded number of processes

Roll-π syntax

 𝑀 ∷= 𝑘: 𝑃 𝜇, 𝑘 𝑘 ≺ 𝑘′, 𝑘′′ 𝑀 𝑀′ 𝜈𝑢 𝑀 0

 𝑃 ∷=

𝑎 𝑃 𝑎 𝑋 ⊳𝛾 𝑃 𝑃 𝑄 𝜈𝑎 𝑃 𝑋 0 𝑟𝑜𝑙𝑙 𝛾 𝑟𝑜𝑙𝑙 𝑘

 𝜇 ∷= 𝑘: 𝑎 𝑃 |𝑘′: 𝑎(𝑋) ⊳𝛾 𝑄

 Now γ attached to triggers

 γ is a binder

 At run-time γ replaced by k

Roll-π semantics

 Little changes to the forward rule

𝑘: 𝑎 𝑃 | 𝑘′: 𝑎 𝑋 ⊳𝛾 𝑄 →

𝜈𝑘′′ 𝑘′′: 𝑄 𝑃 𝑋 𝑘′′ 𝛾 | [𝜇, 𝑘′′]

 A new, complex, backward rule
𝑘 > 𝑀 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒(𝑀 𝜇, 𝑘 𝑘′: 𝑟𝑜𝑙𝑙 𝑘)

𝑀 𝜇, 𝑘 𝑘′: 𝑟𝑜𝑙𝑙 𝑘 ⇝ 𝜇|𝑀 ↳ 𝑘

 The two preconditions require to involve only processes

which depend on k, and all of them

 We need to define the dependency relation

Exploiting causality

 Causal dependence: if in a term I have

– 𝑘: 𝑎 𝑃 𝑘′: 𝑎 𝑋 ⊳𝛾 𝑄, 𝑘
′′ then 𝑘 > 𝑘′′ and 𝑘′ > 𝑘′′

– 𝑘 ≺ 𝑘′, 𝑘′′ then 𝑘 > 𝑘′ and 𝑘 > 𝑘′′

 𝑘 > 𝑀 if 𝑘 > ℎ for all ℎ: 𝑃, [𝜇, ℎ] and ℎ ≺ ℎ′, ℎ′′ in 𝑀

 Completeness is essentially closure under consequences

 Completeness: if in a term I have

– 𝑘: 𝑎 𝑃 𝑘′: 𝑎 𝑋 ⊳𝛾 𝑄, 𝑘
′′ then there is another occurrence of

𝑘′′

– 𝑘 ≺ 𝑘′, 𝑘′′ then there are other occurrences of 𝑘′ and 𝑘′′

Example

𝑘: 𝑎 𝑃 𝑘′: 𝑎 𝑋 ⊳𝛾 𝑏 𝑌 ⊳ 𝑟𝑜𝑙𝑙 𝛾 𝑘′′: 𝑏 𝑃′ →

𝜈𝑘′′′ 𝑘: 𝑎 𝑃 𝑘′: 𝑎 𝑋 ⊳𝛾 𝑏 𝑌 ⊳ 𝑟𝑜𝑙𝑙 𝛾, 𝑘′′′] | 𝑘′′′: 𝑏(𝑌)

⊳ 𝑟𝑜𝑙𝑙 𝑘′′′ | 𝑘′′: 𝑏 𝑃′ →

𝜈𝑘′′′𝜈𝑘′′′′ 𝑘: 𝑎 𝑃 𝑘′: 𝑎 𝑋 ⊳𝛾 𝑏 𝑌 ⊳ 𝑟𝑜𝑙𝑙 𝛾, 𝑘′′′] | [𝑘′′′: 𝑏(𝑌)

⊳ 𝑟𝑜𝑙𝑙 𝑘′′′ | 𝑘′′: 𝑏 𝑃′ , 𝑘′′′′] | 𝑘′′′′: 𝑟𝑜𝑙𝑙 𝑘′′′ ⇝

𝜈𝑘′′′𝜈𝑘′′′′′𝑘: 𝑎 𝑃 𝑘′: 𝑎 𝑋 ⊳𝛾 𝑏 𝑌 ⊳ 𝑟𝑜𝑙𝑙 𝛾 𝑘′′: 𝑏 𝑃′

Releasing resources

 Processes which are not dependent on 𝑘′′′ but are in

memories dependent on 𝑘′′′ can be seen as resources

taken by the computation from the environment

 They have to be restored in case of roll 𝑘′′′

 This is done by 𝑀 ↳ 𝑘′′′

