Choreography Automata

Franco Barbanera¹, Ivan Lanese², Emilio Tuosto³

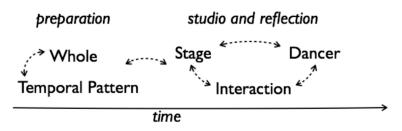
¹ University of Catania
 ² University of Bologna/INRIA
 ³ GSSI/University of Leicester

Coordination@DisCoTec 2020 - Malta, June 2020

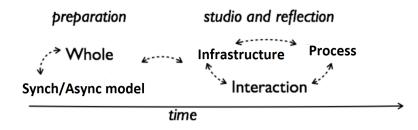
Good ideas are recyclable

If you have a bunch of dancers...

Good ideas are recyclable


If you have a bunch of dancers...

....would you like to end up with this....


or with THIS?

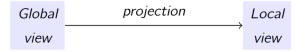
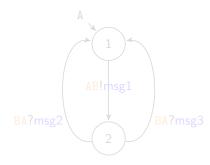


Figure 10. Focal points along the creative phases.

More abstractly: coexistence of two distinct but related views of a system: the *global* and the *local* views.

projection is an operation producing the local view from the global one

The choreographic approach:

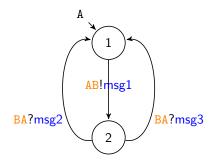

A lighthouse on the Formal Verification road

- specification languages: WS-CDL, BPMN, ...
- choreographies for microservices;
- experimental choreographic langauges: Chor
- etc.

HUNTERS ATTENTION BOUNTY A simple, clear and widely-agreed upon, Theoretical Choreography Model \$5,000 REWARDI NEAREST LAW ENFORCEMENT AGENCY

9/40

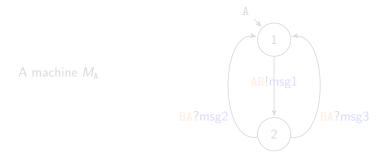
Which abstraction for processes?



メロト メロト メヨト メヨト

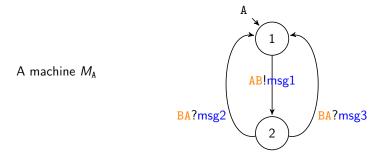
æ

Which abstraction for processes?

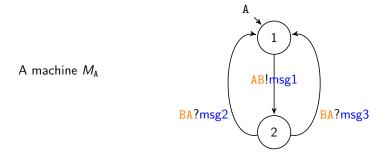


メロト メロト メヨト メヨト

10/40


э

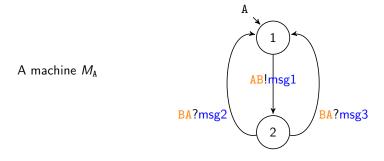
A formalism for the description and the analysis of distributed systems.


- *M*_A can send msg1 to machine *M*_B; asynchronously; through the directed buffered FIFO channel AB
- Then, either msg2 or msg3 can be received from M_B; through channel BA;
- ▶ and so on....

A formalism for the description and the analysis of distributed systems.

- *M*_A can send msg1 to machine *M*_B; asynchronously; through the directed buffered FIFO channel AB
- Then, either msg2 or msg3 can be received from M_B; through channel BA;
- ▶ and so on....

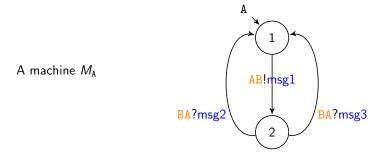
A formalism for the description and the analysis of distributed systems.



*M*_A can send msg1 to machine *M*_B; asynchronously; through the directed buffered FIFO channel AB

Then, either msg2 or msg3 can be received from M_B; through channel BA;

▶ and so on....


A formalism for the description and the analysis of distributed systems.

- *M*_A can send msg1 to machine *M*_B; asynchronously; through the directed buffered FIFO channel AB
- Then, either msg2 or msg3 can be received from M_B; through channel BA;

and so on....

A formalism for the description and the analysis of distributed systems.

- *M*_A can send msg1 to machine *M*_B; asynchronously; through the directed buffered FIFO channel AB
- Then, either msg2 or msg3 can be received from M_B; through channel BA;
- and so on....

A system of CFSMs:

$$S = (M_p)_{p \in \mathbf{P}}$$

- **P** is the set of *roles* (participants) of *S*, and
- for each $p \in \mathbf{P}$, $M_p = (Q_p, q_{0p}, \mathbb{A}, \delta_p)$ is a CFSM.

A configuration of S:

 $s = (\vec{q}, \vec{w})$

- $\begin{array}{ll} \vec{q} = (q_{\rm p})_{\rm p \in P} & the \ overall \ state \ of \ the \ system \\ \text{where} \ q_{\rm p} \in Q_{\rm p} & the \ current \ state \ of \ machine \ M_{\rm p} \end{array}$
- $\vec{w} = (w_{pq})_{pq\in Chan}$ with $w_{pq} \in \mathbb{A}^*$. the current contents of channels The initial configuration of S is $s_0 = (\vec{q_0}, \vec{\varepsilon})$ with $\vec{q_0} = (q_{0_n})_{p\in P}$.

A system of CFSMs:

$$S = (M_p)_{p \in \mathbf{P}}$$

- **P** is the set of *roles* (participants) of *S*, and
- for each $p \in \mathbf{P}$, $M_p = (Q_p, q_{0p}, \mathbb{A}, \delta_p)$ is a CFSM.

A configuration of S:

$$s = (\vec{q}, \vec{w})$$

- $\begin{array}{ll} \vec{q} = (q_{\rm p})_{\rm p \in P} & the \ overall \ state \ of \ the \ system \\ \text{where} \ q_{\rm p} \in Q_{\rm p} & the \ current \ state \ of \ machine \ M_{\rm p} \end{array}$
- $\vec{w} = (w_{pq})_{pq\in Chan}$ with $w_{pq} \in \mathbb{A}^*$. the current contents of channels The initial configuration of S is $s_0 = (\vec{q_0}, \vec{\varepsilon})$ with $\vec{q_0} = (q_{0_n})_{p\in P}$.

A system of CFSMs:

$$S = (M_p)_{p \in \mathbf{P}}$$

- **P** is the set of *roles* (participants) of *S*, and
- for each $\mathtt{p}\in \mathbf{P}$, $\mathit{M}_{\mathtt{p}}=(\mathit{Q}_{\mathtt{p}}, \mathit{q}_{0\mathtt{p}}, \mathbb{A}, \delta_{\mathtt{p}})$ is a CFSM.

A configuration of S:

 $s = (\vec{q}, \vec{w})$

- $\begin{array}{ll} \vec{q} = (q_{\rm p})_{\rm p \in P} & the \; overall \; state \; of \; the \; system \\ \text{where } q_{\rm p} \in Q_{\rm p} & the \; current \; state \; of \; machine \; M_{\rm p} \end{array}$
- $\vec{w} = (w_{pq})_{pq\in Chan}$ with $w_{pq} \in \mathbb{A}^*$. the current contents of channels The initial configuration of S is $s_0 = (\vec{q_0}, \vec{e})$ with $\vec{q_0} = (q_0)_{p\in P}$.

A system of CFSMs:

$$S = (M_p)_{p \in \mathbf{P}}$$

- **P** is the set of *roles* (participants) of *S*, and
- for each $\mathtt{p}\in \mathbf{P}$, $\mathit{M}_{\mathtt{p}}=(\mathit{Q}_{\mathtt{p}}, \mathit{q}_{0\mathtt{p}}, \mathbb{A}, \delta_{\mathtt{p}})$ is a CFSM.

A configuration of S:

$$s = (\vec{q}, \vec{w})$$

- $\begin{array}{ll} \vec{q} = (q_{\rm p})_{\rm p \in P} & the \ overall \ state \ of \ the \ system \\ \text{where} \ q_{\rm p} \in Q_{\rm p} & the \ current \ state \ of \ machine \ M_{\rm p} \end{array}$
- $\vec{w} = (w_{pq})_{pq\in Chan}$ with $w_{pq} \in \mathbb{A}^*$. the current contents of channels The initial configuration of S is $s_0 = (\vec{q_0}, \vec{e})$ with $\vec{q_0} = (q_0)_{p\in P}$.

A system of CFSMs:

$$S = (M_p)_{p \in \mathbf{P}}$$

- **P** is the set of *roles* (participants) of *S*, and
- for each $\mathrm{p}\in\mathsf{P}$, $\mathit{M}_{\mathrm{p}}=(\mathit{Q}_{\mathrm{p}},\mathit{q}_{0\mathrm{p}},\mathbb{A},\delta_{\mathrm{p}})$ is a CFSM.

A configuration of S:

 $s = (\vec{q}, \vec{w})$

- $\vec{q} = (q_p)_{p \in P}$ the overall state of the system where $q_p \in Q_p$ the current state of machine M_p

- $\vec{w} = (w_{pq})_{pq \in Chan}$ with $w_{pq} \in \mathbb{A}^*$. the current contents of channels The initial configuration of S is $s_0 = (\vec{q}_0, \vec{e})$ with $\vec{q}_0 = (q_{0_n})_{p \in \mathbf{P}}$.

A system of CFSMs:

$$S = (M_p)_{p \in \mathbf{P}}$$

- **P** is the set of *roles* (participants) of *S*, and
- for each $\mathtt{p}\in \mathbf{P}$, $\mathit{M}_{\mathtt{p}}=(\mathit{Q}_{\mathtt{p}}, \mathit{q}_{0\mathtt{p}}, \mathbb{A}, \delta_{\mathtt{p}})$ is a CFSM.

A configuration of S:

$$s = (\vec{q}, \vec{w})$$

- $\begin{array}{ll} ~\vec{q} = (q_{\rm p})_{{\rm p} \in {\rm P}} & \textit{the overall state of the system} \\ & \text{where } q_{\rm p} \in Q_{\rm p} & \textit{the current state of machine } M_{\rm p} \end{array}$
- $\vec{w} = (w_{pq})_{pq \in Chan}$ with $w_{pq} \in \mathbb{A}^*$. the current contents of channels

The initial configuration of S is $s_0 = (\vec{q_0}, \vec{\varepsilon})$ with $\vec{q_0} = (q_{0_p})_{p \in \mathbf{P}}$.

A system of CFSMs:

$$S = (M_p)_{p \in \mathbf{P}}$$

- **P** is the set of *roles* (participants) of *S*, and
- for each $\mathrm{p}\in\mathsf{P}$, $\mathit{M}_{\mathrm{p}}=(\mathit{Q}_{\mathrm{p}},\mathit{q}_{0\mathrm{p}},\mathbb{A},\delta_{\mathrm{p}})$ is a CFSM.

A configuration of S:

$$s = (\vec{q}, \vec{w})$$

 $\begin{array}{ll} - ~\vec{q} = (q_{\rm p})_{{\rm p} \in {\rm P}} & \textit{the overall state of the system} \\ & \text{where } q_{\rm p} \in Q_{\rm p} & \textit{the current state of machine } M_{\rm p} \end{array}$

- $\vec{w} = (w_{pq})_{pq\in Chan}$ with $w_{pq} \in \mathbb{A}^*$. the current contents of channels The initial configuration of S is $s_0 = (\vec{q_0}, \vec{\varepsilon})$ with $\vec{q_0} = (q_{0_n})_{p\in \mathbf{P}}$.

System transitions:

$$(q, w) \stackrel{\mathtt{AB}!msg}{\longrightarrow} (q', w')$$

Similarly for

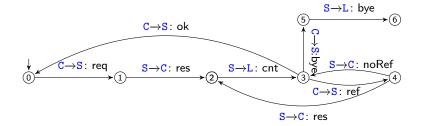
$$(q, w) \stackrel{\mathtt{AB?msg}}{\longrightarrow} (q', w')$$

<ロト < 部ト < 言ト < 言ト ミ のへで 13/40

Synchronous communications

It is easy to equip CFSMs also with a synchronous communications.

It takes a thief to catch a thief... so

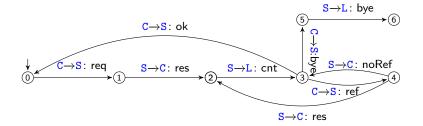

It takes a thief to catch a thief... so

It takes a thief to catch a thief ... so

It takes a thief to catch a thief ... so

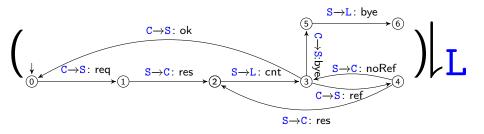
It takes a thief to catch a thief ... so

Choreography Automata through an Example

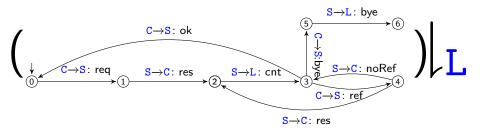

<ロト<部ト<注ト<注ト<き、 16/40 An apparent resemblance

Choreography Automata **vs.** Conversation Protocols (by Bultan et al.)

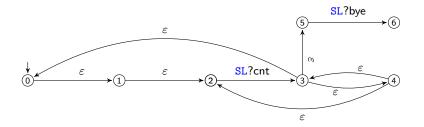
They look alike, but actually their semantics and underlying communication models do differ.


(a thorough comparison in the Related Works section of the paper)

Choreography Automata through an Example

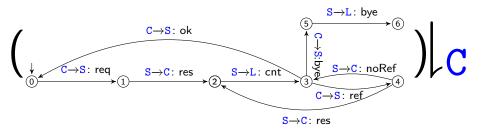

<ロト < 部ト < 注ト < 注ト 注 のへで 18/40

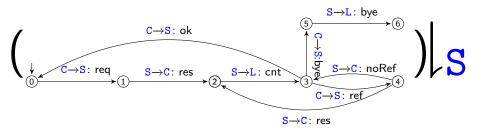
Projection

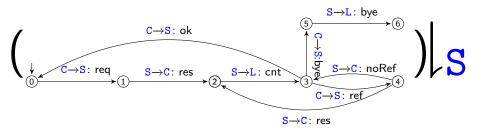


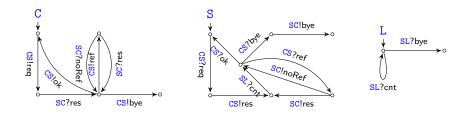
<ロト < 部ト < 目ト < 目ト 目 のので 19/40

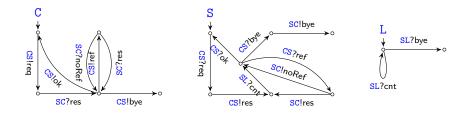
Projection

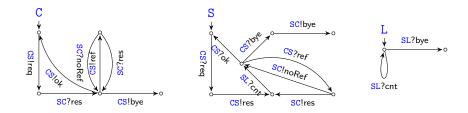

<ロト < 部ト < 目ト < 目ト 目 のので 19/40


<ロト<部ト<至ト<更ト<更ト 20/40

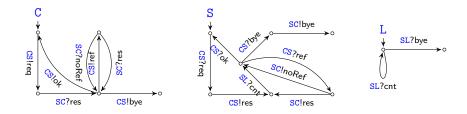



<ロト < 部ト < 言ト < 言ト ミ のへの 21/40

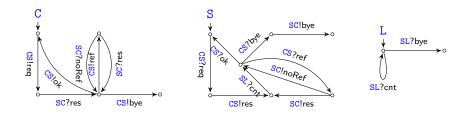

< □ ト < □ ト < 巨 ト < 巨 ト < 巨 ト 三 の Q () 22/40

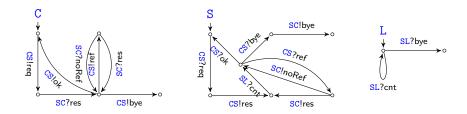


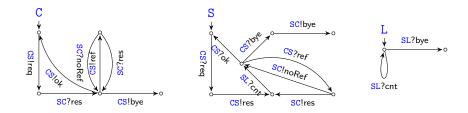
- The behaviour of the system of CFSMs perfectly match the overall behaviour described by the choreography automata:
- The system is Live, i.e. if a machine is willing to perform some actions, the system can evolve so that one eventually is done
- The system is Deadlock-Free i.e. it will never get stuck (the system does progress)
- The system is Lock-Free i.e. if a machine can perform some actions, sooner or later it will do one (any single machine does progress)



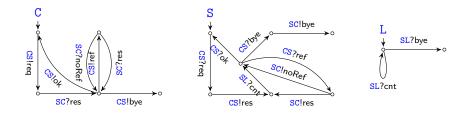
- The behaviour of the system of CFSMs perfectly match the overall behaviour described by the choreography automata:
- The system is Live, i.e. if a machine is willing to perform some actions, the system can evolve so that one eventually is done
- The system is Deadlock-Free *i.e.* it will never get stuck (the system does progress)
- The system is Lock-Free


 i.e. if a machine can perform some actions, sooner or later it will do
 one (any single machine does progress)
 i.e. if a machine does progress)


- The behaviour of the system of CFSMs perfectly match the overall behaviour described by the choreography automata:
- The system is Live, i.e. if a machine is willing to perform some actions, the system can evolve so that one eventually is done
- The system is Deadlock-Free i.e. it will never get stuck (the system does progress)
- The system is Lock-Free i.e. if a machine can perform some actions, sooner or later it will do one (any single machine does progress)


- The behaviour of the system of CFSMs perfectly match the overall behaviour described by the choreography automata:
- ► The system is **Live**, *i.e. if a machine is willing to perform some actions, the system can evolve so that one eventually is done*
- The system is Deadlock-Free i.e. it will never get stuck (the system does progress)
- The system is Lock-Free i.e. if a machine can perform some actions, sooner or later it will do one (any single machine does progress)

- The behaviour of the system of CFSMs perfectly match the overall behaviour described by the choreography automata:
- The system is Live, i.e. if a machine is willing to perform some actions, the system can evolve so that one eventually is done
- The system is Deadlock-Free *i.e.* it will never get stuck (the system does progress)
- The system is Lock-Free i.e. if a machine can perform some actions, sooner or later it will do one (any single machine does progress)


- The behaviour of the system of CFSMs perfectly match the overall behaviour described by the choreography automata:
- ► The system is **Live**, *i.e. if a machine is willing to perform some actions, the system can evolve so that one eventually is done*
- The system is Deadlock-Free i.e. it will never get stuck (the system does progress)
- The system is Lock-Free i.e. if a machine can perform some actions, sooner or later it will do one (any single machine does progress)

- The behaviour of the system of CFSMs perfectly match the overall behaviour described by the choreography automata:
- ► The system is **Live**, *i.e. if a machine is willing to perform some actions, the system can evolve so that one eventually is done*
- The system is Deadlock-Free i.e. it will never get stuck (the system does progress)

The system is Lock-Free

i.e. if a machine can perform some actions, sooner or later it will do one (any single machine does progress)

- The behaviour of the system of CFSMs perfectly match the overall behaviour described by the choreography automata:
- ► The system is **Live**, *i.e. if a machine is willing to perform some actions, the system can evolve so that one eventually is done*
- The system is Deadlock-Free i.e. it will never get stuck (the system does progress)
- The system is Lock-Free i.e. if a machine can perform some actions, sooner or later it will do one (any single machine does progress)

Both for Synchronous and Asynchronous communications

<ロト < 部 ト < 言 ト < 言 ト ミ の < @ 25/40

Only the projections of *well-behaved* Choreography Automata are *well-behaved*.

Theorem

Given a well-formed c-automaton CA, the system obtained by projection, $(CA|_{A})_{A \in \mathcal{P}}$, is live, lock-free, and deadlock-free both for synchronous and asynchronous communications.

Definition (Well-formedness)

- when there is a choice, a single participant decides;
- all the partecipants are eventuelly made aware of the choices made;
- parallelism of independent interactions must be made explicit by interleaving them

Only the projections of *well-behaved* Choreography Automata are *well-behaved*.

Theorem

Given a well-formed c-automaton CA, the system obtained by projection, $(CA|_A)_{A \in \mathcal{P}}$, is live, lock-free, and deadlock-free both for synchronous and asynchronous communications.

Definition (Well-formedness)

- when there is a choice, a single participant decides;
- all the partecipants are eventuelly made aware of the choices made;
- parallelism of independent interactions must be made explicit by interleaving them

Only the projections of *well-behaved* Choreography Automata are *well-behaved*.

Theorem

Given a well-formed c-automaton CA, the system obtained by projection, $(CA|_A)_{A \in \mathcal{P}}$, is live, lock-free, and deadlock-free both for synchronous and asynchronous communications.

Definition (Well-formedness)

- when there is a choice, a single participant decides;
- all the partecipants are eventuelly made aware of the choices made;
- parallelism of independent interactions must be made explicit by interleaving them

Only the projections of *well-behaved* Choreography Automata are *well-behaved*.

Theorem

Given a well-formed c-automaton CA, the system obtained by projection, $(CA|_A)_{A\in\mathcal{P}}$, is live, lock-free, and deadlock-free both for synchronous and asynchronous communications.

Definition (Well-formedness)

- when there is a choice, a single participant decides;
- all the partecipants are eventuelly made aware of the choices made;
- parallelism of independent interactions must be made explicit by interleaving them

Only the projections of *well-behaved* Choreography Automata are *well-behaved*.

Theorem

Given a well-formed c-automaton CA, the system obtained by projection, $(CA|_A)_{A\in\mathcal{P}}$, is live, lock-free, and deadlock-free both for synchronous and asynchronous communications.

Definition (Well-formedness)

- when there is a choice, a single participant decides;
- all the partecipants are eventuelly made aware of the choices made;
- parallelism of independent interactions must be made explicit by interleaving them

Only the projections of *well-behaved* Choreography Automata are *well-behaved*.

Theorem

Given a well-formed c-automaton CA, the system obtained by projection, $(CA|_A)_{A \in \mathcal{P}}$, is live, lock-free, and deadlock-free both for synchronous and asynchronous communications.

Definition (Well-formedness)

- when there is a choice, a single participant decides;
- all the partecipants are eventuelly made aware of the choices made;
- parallelism of independent interactions must be made explicit by interleaving them

Usually choreographic models are good for the description of **closed** systems. What about **open** systems? The

"participants as interfaces" approach to choreography for open systems.

Usually choreographic models are good for the description of **closed** systems. What about **open** systems? The

"participants as interfaces" approach to choreography for open systems.

Usually choreographic models are good for the description of ${\bf closed}$ systems. What about ${\bf open}$ systems? The

"participants as interfaces" approach to choreography for open systems.

Usually choreographic models are good for the description of **closed** systems. What about **open** systems? The

"participants as interfaces" approach to choreography for open systems.

Usually choreographic models are good for the description of **closed** systems. What about **open** systems? The

"participants as interfaces" approach to choreography for open systems.

<ロト<部ト<単ト<単ト<単ト<単ト 28/40