
Ivan Lanese
Computer Science Department

University of Bologna/INRIA
Italy

Retractable and Speculative Contracts

Joint work with Franco Barbanera
and Ugo de'Liguoro

Map of the talk

 What retractable/speculative contracts are?
 Motivating example
 Results
 Conclusion

Map of the talk

 What retractable/speculative contracts are?
 Motivating example
 Results
 Conclusion

Contracts

 A contract is the abstract description of
 the behavior of either a client or a server

 A client complies with a server if all her requirements
are fulfilled
– by reaching a distinguished satisfaction state or
– by running an infinite interaction without ever getting stuck

 A client that does not comply with its server may get
stuck without succeeding

 Compliance is statically decidable

Beyond classical contracts

 Contracts describing basic client/server interactions
have been introduced in 2006 by Carpineti, Castagna,
Laneve and Padovani

 We want to consider two features of (some) interacting
systems not covered by classic contracts:

– rollback, enabling one to go back to past states of
the interaction till a successful path is found

– speculation, enabling one to try different paths
concurrently till a successful path is found

Why retractable contracts?

 Undo operations are useful and widespread
– Undo command in your favorite editor
– Back button in your favorite browser
– Restore a backup

 In interacting systems (unilateral) undo may lead to
unpredictable or undesired results
– What happens if you press the back button when reserving a

flight?
– You don’t want a client to undo her payment after a purchase

 Undo activities must be disciplined

Why speculative contracts?

 Speculation is used for performance reasons in many
contexts
– Simulation, thread-level optimizations, web services

 Do these optimizations preserve correctness?
– Not trivial, think to all the issues related to weak memory

models

 Also speculation activities must be disciplined

Retractable/speculative contracts: syntax

 Retractable and speculative contracts have very different
origin and aim

 Yet we describe both of them with the same syntax (but
different semantics)

σ ::= 1 success
⊕

i∈I
 a

i
.σ

i
internal output choice

Σ
i∈I

 a
i
.σ

i
external input choice

 X variable
rec X.σ recursion
⊕

i∈I
 a

i
.σ

i
 internal input choice

Σ
i∈I

 a
i
.σ

i
 retractable/speculative output choice

Standard
contracts

Retractable/speculative contracts: main idea

 The peculiar operator is retractable/speculative
output choice:
Σ

i∈I
 a

i
.σ

i

 In the retractable semantics it behaves as follows:
– we perform an output, but other options are stored
– if the computation gets stuck, the choice is undone

and we try another option
 In the speculative semantics it behaves as follows:

– we perform an output, but other options are not
discarded and can be activated in parallel threads

Map of the talk

 What retractable/speculative contracts are?
 Motivating example
 Results
 Conclusion

Retractable contracts: history information

 To give semantics to retractable contracts we need
history information

 We add ○ (no alternatives left) to contracts σ
 Histories are stacks of contracts h ::= [] | h:σ
 Contracts with history: h ≺ σ

Motivating problem

 A buyer wants to buy either a bag or a belt
 She will decide whether to pay by card or cash after

knowing the price
 Buyer =

bag.price.(card ⊕ cash) ⊕ belt.price.(card ⊕ cash)

 The seller accepts cards only for bags, not for belts

 Seller =

bag.price.(card + cash) + belt.price.cash

 Buyer and seller are not compliant

Reversibility to the rescue

 Buyer =
bag.price.(card ⊕ cash) ⊕ belt.price.(card ⊕ cash)

 Seller =

bag.price.(card + cash) + belt.price.cash

 They become compliant if we make the buyer choice

between bag and belt retractable
– Or the one between card and cash (for belt)

 The buyer is still able to pay a belt with card if

interacting with a seller allowing this

 Retractable choice “facilitates” compliance

Reversibility to the rescue

 Buyer =
bag.price.(card ⊕ cash) + belt.price.(card ⊕ cash)

 Seller =

bag.price.(card + cash) + belt.price.cash

 They become compliant if we make the buyer choice

between bag and belt retractable
– Or the one between card and cash (for belt)

 The buyer is still able to pay a belt with card if

interacting with a seller allowing this

 Retractable choice “facilitates” compliance

Sample retractable computation

 Buyer’ =
[] ≺ bag.price.(card ⊕ cash) + belt.price.(card ⊕ cash)

 Seller =

[] ≺ bag.price.(card + cash) + belt.price.cash

Sample retractable computation

 Buyer’ =
[] ≺ bag.price.(card ⊕ cash) + belt.price.(card ⊕ cash)

bag.price.(card ⊕ cash) ≺ price.(card ⊕ cash)

 Seller =

[] ≺ bag.price.(card + cash) + belt.price.cash

bag.price.(card + cash) ≺ price.cash

Sample retractable computation

 Buyer’ =
[] ≺ bag.price.(card ⊕ cash) + belt.price.(card ⊕ cash)

bag.price.(card ⊕ cash) ≺ price.(card ⊕ cash)

bag.price.(card ⊕ cash) : ○ ≺ card ⊕ cash

 Seller =

[] ≺ bag.price.(card + cash) + belt.price.cash

bag.price.(card + cash) ≺ price.cash

bag.price.(card + cash) : ○ ≺ cash

Sample retractable computation

 Buyer’ =
[] ≺ bag.price.(card ⊕ cash) + belt.price.(card ⊕ cash)

bag.price.(card ⊕ cash) ≺ price.(card ⊕ cash)

bag.price.(card ⊕ cash) : ○ ≺ card ⊕ cash

bag.price.(card ⊕ cash) : ○ ≺ card

 Seller =

[] ≺ bag.price.(card + cash) + belt.price.cash

bag.price.(card + cash) ≺ price.cash

bag.price.(card + cash) : ○ ≺ cash

Sample retractable computation

 Buyer’ =
bag.price.(card ⊕ cash) : ○ ≺ card

 Seller =

bag.price.(card + cash) : ○ ≺ cash

Sample retractable computation

 Buyer’ =
bag.price.(card ⊕ cash) : ○ ≺ card

bag.price.(card ⊕ cash) ≺ ○

 Seller =

bag.price.(card + cash) : ○ ≺ cash

bag.price.(card + cash) ≺ ○

Sample retractable computation

 Buyer’ =
bag.price.(card ⊕ cash) : ○ ≺ card

bag.price.(card ⊕ cash) ≺ ○

[] ≺ bag.price.(card ⊕ cash)

 Seller =

bag.price.(card + cash) : ○ ≺ cash

bag.price.(card + cash) ≺ ○

[] ≺ bag.price.(card + cash)

Sample retractable computation

 Buyer’ =
[] ≺ bag.price.(card ⊕ cash)

 Seller =

[] ≺ bag.price.(card + cash)

Sample retractable computation

 Buyer’ =
[] ≺ bag.price.(card ⊕ cash)

○ ≺ price.(card ⊕ cash)

 Seller =

[] ≺ bag.price.(card + cash)

○ ≺ price.(card + cash)

Sample retractable computation

 Buyer’ =
[] ≺ bag.price.(card ⊕ cash)

○ ≺ price.(card ⊕ cash)

○ : ○ ≺ card ⊕ cash

 Seller =

[] ≺ bag.price.(card + cash)

○ ≺ price.(card + cash)

○ : ○ ≺ card + cash

Sample retractable computation

 Buyer’ =
○ : ○ ≺ card ⊕ cash

 Seller =

○ : ○ ≺ card + cash

Sample retractable computation

 Buyer’ =
○ : ○ ≺ card ⊕ cash

○ : ○ ≺ card

 Seller =

○ : ○ ≺ card + cash

Sample retractable computation

 Buyer’ =
○ : ○ ≺ card ⊕ cash

○ : ○ ≺ card

○ : ○ : ○ ≺ 1

 Seller =

○ : ○ ≺ card + cash

○ : ○ : cash ≺ 1

Example under the speculative semantics

 At runtime contracts are composed by multiple threads
– We use parallel composition |

 Each thread is identified by a unique prefix obtained by
composing past actions a1@...@a2@σ

 Only threads with dual prefix can interact

Sample speculative computation

 Buyer’ =
bag.price.(card ⊕ cash) + belt.price.(card ⊕ cash)

 Seller =

bag.price.(card + cash) + belt.price.cash

Sample speculative computation

 Buyer’ =
bag.price.(card ⊕ cash) + belt.price.(card ⊕ cash)

bag.price.(card ⊕ cash) | belt@price.(card ⊕ cash)

 Seller =

bag.price.(card + cash) + belt.price.cash

bag.price.(card + cash) | belt@price.cash

Sample speculative computation

 Buyer’ =
bag.price.(card ⊕ cash) + belt.price.(card ⊕ cash)

bag.price.(card ⊕ cash) | belt@price.(card ⊕ cash)

bag@price.(card ⊕ cash) | belt@price.(card ⊕ cash)

 Seller =

bag.price.(card + cash) + belt.price.cash

bag.price.(card + cash) | belt@price.cash

bag@price.(card + cash) | belt@price.cash

Sample speculative computation

 Buyer’ =
bag@price.(card ⊕ cash) | belt@price.(card ⊕ cash)

 Seller =

bag@price.(card + cash) | belt@price.cash

Sample speculative computation

 Buyer’ =
bag@price.(card ⊕ cash) | belt@price.(card ⊕ cash)

bag@price@(card ⊕ cash) | belt@price.(card ⊕ cash)

 Seller =

bag@price.(card + cash) | belt@price.cash

bag@price@(card + cash) | belt@price.cash

Sample speculative computation

 Buyer’ =
bag@price.(card ⊕ cash) | belt@price.(card ⊕ cash)

bag@price@(card ⊕ cash) | belt@price.(card ⊕ cash)

bag@price@(card ⊕ cash) | belt@price@(card ⊕ cash)

 Seller =

bag@price.(card + cash) | belt@price.cash

bag@price@(card + cash) | belt@price.cash

bag@price@(card + cash) | belt@price@cash

Sample speculative computation

 Buyer’ =
bag@price@(card ⊕ cash) | belt@price@(card ⊕ cash)

 Seller =

bag@price@(card + cash) | belt@price@cash

Sample speculative computation

 Buyer’ =
bag@price@(card ⊕ cash) | belt@price@(card ⊕ cash)

bag@price@card | belt@price@(card ⊕ cash)

 Seller =

bag@price@(card + cash) | belt@price@cash

Sample speculative computation

 Buyer’ =
bag@price@(card ⊕ cash) | belt@price@(card ⊕ cash)

bag@price@card | belt@price@(card ⊕ cash)

bag@price@card | belt@price@card

 Seller =

bag@price@(card + cash) | belt@price@cash

Sample speculative computation

 Buyer’ =
bag@price@(card ⊕ cash) | belt@price@(card ⊕ cash)

bag@price@card | belt@price@(card ⊕ cash)

bag@price@card | belt@price@card

bag@price@card@1 | belt@price@card

 Seller =

bag@price@(card + cash) | belt@price@cash

bag@price@card@1 | bag@price@cash |

belt@price@cash

Map of the talk

 What retractable/speculative contracts are?
 Motivating example
 Results
 Conclusion

Compliance

 The retractable compliance relation h ≺ σ ╢ k ≺ ρ
holds iff
 h ≺ σ || k ≺ ρ →* h’ ≺ σ’ || k’ ≺ ρ’ ↛ implies σ’ = 1

– If the computation stops then the client is satisfied

 The retractable compliance relation on contracts is
obtained by executing them with an empty history

 The speculative compliance relation holds iff if the
computation stops then at least one of the threads of the
client is in the success state 1

Main result

 The retractable compliance and the speculative
compliance do coincide

 At first sight surprising, since they have different
definitions and work on different semantics

 Intuition: both require the existence of a successful path
– Two implementations of angelic nondeterminism

 Whether alternatives are explored sequentially or in
parallel does not make a difference

 Consequence: all the results we derive from the
compliance hold on both the settings

Compliance: decidability

 Compliance is decidable even for contracts with
recursion

 We use judgments of the form Γ ⊳ ρ ~| σ

Compliance: complexity

 One can define a recursive proof-search algorithm
reading bottom-up the rules

 The complexity is exponential
 Better solution: extend the algorithm for subtyping of

recursive arrow and product types from Pierce
– not a trivial extension
– keep trace not only of past successes, but also of

past failures
 The complexity is O(n5)

– Pierce’s algorithm has complexity O(n2)

Subcontract relation

 Subcontract relation for servers:
ρ ≼s ρ’ iff for each client σ. σ ╢ρ implies σ ╢ρ’

– ρ’ has more clients than ρ
 Subcontract relation for clients is dual:

σ ≼c σ’ iff for each server ρ. σ ╢ρ implies σ’ ╢ρ
 The two subcontract relations are partial orders

Subcontract relation: example

Duality

 We define the dual σ of a client contract σ as the
minimum server compliant with σ

 Duality enjoys the classic simple syntactic definition
– Swap inputs with outputs (a ↔ a) and

internal choice with external choice (⊕ ↔ Σ)

Subcontract relation: results

 Subcontract relation for servers and for clients are
related:
ρ ≼s ρ’ iff ρ’ ≼c ρ

 Subcontract relation and compliance are related:
ρ ≼s ρ’ iff ρ ╢ρ’

 Also the subcontract relation can be decided in O(n5)

Conservative extension

 Retractable/speculative contracts are conservative
extensions of classic contracts

– Syntactically
– Semantically
– From the point of view of compliance, subcontract

relation and duality

Map of the talk

 What retractable/speculative contracts are?
 Motivating example
 Results
 Conclusion

Summary

 We presented a model of contracts with
retractable/speculative choice

 Using retractable/speculative choice instead of normal
choice ensures compliance with a larger set of partners

 Retractable/speculative contracts are a conservative
extension of classic contracts, yet they preserve most of
the good properties of contracts:

– decidability of compliance and subcontract relation
– efficient decidability algorithm
– easy syntactic characterization of duality

Future work

 Explore the notion of retractable/speculative
contracts in multiparty sessions

 How can we extract a contract from a
reversible/speculative application?

– See ICE paper on retraction in session types:
Session types for orchestrated interactions,
by Barbanera and de’Liguoro

 Which is the relation between retractable contracts and
process calculi for reversible computation?
– Preliminary result: retractable contracts can be seen

as a controlled form of reversibility on classic
contracts

End of talk

Most related work

 Franco Barbanera, Mariangiola Dezani-Ciancaglini,
Ugo de'Liguoro: Compliance for reversible client/server
interactions. BEAT 2014
also considered contracts with rollback

 BEAT 2014 vs COORDINATION 2017

free rollback vs rollback only when stuck

explicit checkpoint vs implicit checkpoint

one checkpoint vs stack of checkpoints

compliance harder vs compliance easier

	Diapositiva 1
	Map of the talk
	Diapositiva 3
	Contracts
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Motivating problem
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 36
	Diapositiva 37
	Diapositiva 38
	Diapositiva 39
	Compliance
	Diapositiva 41
	Diapositiva 42
	Diapositiva 43
	Diapositiva 44
	Diapositiva 45
	Diapositiva 46
	Diapositiva 47
	Diapositiva 48
	Diapositiva 49
	Summary
	Future work
	End of talk
	Most related work

