
Dynamic Choreographies
Safe Runtime Updates of Distributed Applications

Ivan Lanese

Computer Science Department

University of Bologna/INRIA

Italy

Joint work with Mila Dalla Preda, Maurizio

Gabbrielli, Saverio Giallorenzo and Jacopo Mauro

Map of the talk

 Choreographic programming

 Dynamic updates

 Results

 Conclusion

Map of the talk

 Choreographic programming

 Dynamic updates

 Results

 Conclusion

Choreographic programming: aim

 Distributed applications are normally programmed using

send and receive primitives

– Difficult and error-prone

– Deadlocks, races, ...

 Choreographic programming aims at solving these

problems by raising the level of abstraction

Choreographic programming: basics

 The basic building block is an interaction, i.e. a

communication between two participants

– Not a send or a receive

 Interactions can be composed using standard constructs:

sequences, conditionals, cycles,...

 One choreographic program describes a whole distributed

application

– Not a single participant

Choreographic syntax

 I ∷= 𝑜: 𝑟 𝑒 → 𝑠 𝑥

 𝑥@𝑟 = 𝑒

 1

 I ; I
′

 I |I
′

 if 𝑏@𝑟 I else I′

 while 𝑏@𝑟 I

 For multiparty session types addicts

choreographic programs ≈ global types + data + conditions

A sample choreographic program

 𝑝𝑟𝑜𝑑𝑁𝑎𝑚𝑒@𝑏𝑢𝑦𝑒𝑟 = getInput();

 𝑝𝑟𝑖𝑐𝑒𝑅𝑒𝑞: 𝑏𝑢𝑦𝑒𝑟 𝑝𝑟𝑜𝑑𝑁𝑎𝑚𝑒 → 𝑠𝑒𝑙𝑙𝑒𝑟 𝑝𝑁𝑎𝑚𝑒 ;

 𝑝𝑟𝑖𝑐𝑒@𝑠𝑒𝑙𝑙𝑒𝑟 = getPrice 𝑝𝑁𝑎𝑚𝑒 ;

 𝑜𝑓𝑓𝑒𝑟: 𝑠𝑒𝑙𝑙𝑒𝑟(𝑝𝑟𝑖𝑐𝑒) → 𝑏𝑢𝑦𝑒𝑟 𝑝𝑟 ;

 ...

Advantages of choreographic programming

 Clear view of the global behavior

 No deadlocks and races since send and receive are paired

into interactions

How to execute choreographic programs?

 Most constructs involve many participants

 What each participant should do?

 We want to compile the choreographic program into a local

code for each participant

 We define a projection function to this end

 When executed, the derived participants should interact as

specified in the choreographic program

– Correctness of the compilation

– No deadlocks and no races

The target language

 P ∷= 𝑜: 𝑒 to 𝑟

 𝑜: 𝑥 from 𝑟

 𝑥 = 𝑒

 1

 P; P′

 P|P′

 if 𝑏 P else P′

 while 𝑏 P

 A distributed application is composed by named

participants executing Ps

Projection: basic idea

 An interaction 𝑜1: 𝑟1 5 → 𝑠1 𝑥 becomes

– A send 𝑜1: 5 to 𝑠1 on 𝑟1

– A receive 𝑜1: 𝑥 from 𝑟1 on 𝑠1

– A skip 1 on all the other participants

 Assignments 𝑥@𝑟 = 𝑒 are executed by the role 𝑟

 Other constructs are projected homomorphically

 Very simple…

 …but it does not work

Projection: problems and solutions

 Participants are independent
𝑜1: 𝑟1 5 → 𝑠1 𝑥 ; 𝑜2: 𝑟2 7 → 𝑠2 𝑦

 Interaction on 𝑜2 should happen after interaction on 𝑜1

– No participant can force this

 Participants’ execution may depend on other participants

if 𝑥@𝑟1 𝑜: 𝑟2 5 → 𝑠 𝑥 else 𝑜: 𝑟2 7 → 𝑠 𝑥

 Participant 𝑟2 should send 5 or 7 according to a local

decision of 𝑟1

 These problems are solved by

– adding auxiliary communications beyond the ones specified

– restricting the allowed compositions (connectedness)

Map of the talk

 Choreographic programming

 Dynamic updates

 Results

 Conclusion

Dynamic updates

 We want to change the code of running applications, by

integrating new pieces of code coming from outside

 Those pieces of code are called updates

 The set of updates

– is not known when the application is designed, programmed or

even started

– may change at any moment and without notice

 Many possible uses

– Deal with emergency behavior

– Deal with changing business rules or environment conditions

– Specialise the application to user preferences

Our approach, syntactically

 Pair a running application with a set of updates

– Each update is a choreographic program

– The set of updates may change at any time

 At the choreographic level, the update may replace a part

of the application

– Which part?

 Extend choreographic programs with scopes

– scope @𝑟 {I}

– Before starting, the scope may be replaced by an update

Our approach, semantically

 A scope can either execute, or be replaced by an update

Σ, 𝐈, 𝑠𝑐𝑜𝑝𝑒 @𝑟 {I}
no−up

Σ, 𝐈, I

𝑟𝑜𝑙𝑒𝑠 I
′

⊆ 𝑟𝑜𝑙𝑒𝑠 I I
′

∈ 𝐈 I
′
𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑

Σ, 𝐈, 𝑠𝑐𝑜𝑝𝑒 @𝑟 {I}
I

′

→ Σ, 𝐈, I
′

 Updates can change at any time

Σ, 𝐈, I
I′
→ Σ, 𝐈′, I

Our approach, graphically

Our approach, graphically

proj

Our approach, graphically

proj proj

A sample update

 𝑐𝑎𝑟𝑑𝑅𝑒𝑞: 𝑠𝑒𝑙𝑙𝑒𝑟() → 𝑏𝑢𝑦𝑒𝑟();

 𝑐𝑎𝑟𝑑𝑆𝑒𝑛𝑑: 𝑏𝑢𝑦𝑒𝑟 𝑐𝑎𝑟𝑑𝐼𝑑 → 𝑠𝑒𝑙𝑙𝑒𝑟 𝑏𝑢𝑦𝑒𝑟𝐼𝑑 ;

 if isValid 𝑏𝑢𝑦𝑒𝑟𝐼𝑑 @𝑠𝑒𝑙𝑙𝑒𝑟

 {𝑝𝑟𝑖𝑐𝑒@𝑠𝑒𝑙𝑙𝑒𝑟 = getPrice 𝑝𝑁𝑎𝑚𝑒 ∗ 0.9; }

 else

 {𝑝𝑟𝑖𝑐𝑒@𝑠𝑒𝑙𝑙𝑒𝑟 = getPrice 𝑝𝑁𝑎𝑚𝑒 ; }

 𝑜𝑓𝑓𝑒𝑟: 𝑠𝑒𝑙𝑙𝑒𝑟(𝑝𝑟𝑖𝑐𝑒) → 𝑏𝑢𝑦𝑒𝑟 𝑝𝑟 ;

Making the choreographic program updatable

 𝑝𝑟𝑜𝑑𝑁𝑎𝑚𝑒@𝑏𝑢𝑦𝑒𝑟 = getInput();

 𝑝𝑟𝑖𝑐𝑒𝑅𝑒𝑞: 𝑏𝑢𝑦𝑒𝑟 𝑝𝑟𝑜𝑑𝑁𝑎𝑚𝑒 → 𝑠𝑒𝑙𝑙𝑒𝑟 𝑝𝑁𝑎𝑚𝑒 ;

 𝑝𝑟𝑖𝑐𝑒@𝑠𝑒𝑙𝑙𝑒𝑟 = getPrice 𝑝𝑁𝑎𝑚𝑒 ;

 𝑜𝑓𝑓𝑒𝑟: 𝑠𝑒𝑙𝑙𝑒𝑟(𝑝𝑟𝑖𝑐𝑒) → 𝑏𝑢𝑦𝑒𝑟 𝑝𝑟 ;

 ...

Making the choreographic program updatable

 𝑝𝑟𝑜𝑑𝑁𝑎𝑚𝑒@𝑏𝑢𝑦𝑒𝑟 = getInput();

 𝑝𝑟𝑖𝑐𝑒𝑅𝑒𝑞: 𝑏𝑢𝑦𝑒𝑟 𝑝𝑟𝑜𝑑𝑁𝑎𝑚𝑒 → 𝑠𝑒𝑙𝑙𝑒𝑟 𝑝𝑁𝑎𝑚𝑒 ;

 scope @𝑠𝑒𝑙𝑙𝑒𝑟 {

 𝑝𝑟𝑖𝑐𝑒@𝑠𝑒𝑙𝑙𝑒𝑟 = getPrice 𝑝𝑁𝑎𝑚𝑒 ;

 𝑜𝑓𝑓𝑒𝑟: 𝑠𝑒𝑙𝑙𝑒𝑟(𝑝𝑟𝑖𝑐𝑒) → 𝑏𝑢𝑦𝑒𝑟 𝑝𝑟 ;

 }

 ...

Dynamic updates: challenges

 All the participants should agree on

– whether to update a scope or not

– in case, which update to apply

 All the participants need to retrieve (their part of) the

update

– Not easy, since updates may disappear

 No participant should start executing a scope that needs to

be updated

Dynamic updates: our approach

 For each scope a single participant coordinates its

execution

– Decides whether to update it or not, and which update to apply

– Gets the update, and sends to the other participants their part

 The other participants wait for the decision before

executing the scope

 We add scopes (and higher-order communications) to the

target language, with the semantics above

Compositionality issue

 Applying an update at the choreographic level results in a

new choreographic program, composed by

– The unchanged part of the old choreographic program

– The update

 Even if the two parts are connected, the result may not be

connected

 Auxiliary communications are added to ensure

connectedness

Map of the talk

 Choreographic programming

 Dynamic updates

 Results

 Conclusion

Results

 A choreographic program and its projection behave the

same

– They have the same set of traces (up to auxiliary actions)

– Under all possible, dynamically changing, sets of updates

 The projected application is deadlock free and race free by

construction

 These results are strong given that we are considering an

application which is

– distributed

– updatable

Implementation

 Our result is quite abstract, and can be instantiated in

different ways

 AIOCJ is one such way [SLE 2014]

 A framework for safe rule-based adaptation of distributed

applications

 Updates are embedded into adaptation rules specifying

when and where to apply them

 Scopes include some more information driving the

application of adaptation rules

 Projection produces service-oriented code

 http://www.cs.unibo.it/projects/jolie/aiocj.html

http://www.cs.unibo.it/projects/jolie/aiocj.html

Map of the talk

 Choreographic programming

 Dynamic updates

 Results

 Conclusion

Conclusion

 A choreographic approach to dynamic updates

 The derived distributed application follows the behavior

defined by the choreographic program

 We ensures deadlock freedom and race freedom in a

challenging setting

 We instantiated the theoretical framework to adaptable

service-oriented applications

Future work

 Extend the approach to asynchronous communication

 How to cope with multiple interleaved sessions?

 How to improve the performance?

– Drop redundant auxiliary communications

 Can we instantiate our approach on existing frameworks

for adaptation?

– E.g., dynamic aspect-oriented programming

– To inject correctness guarentees

End of talk

