Decidability Results for Dynamic Installation of Compensation Handlers

University of Bologna/INRIA

Ivan Lanese Computer Science Department

Joint work with Gianluigi Zavattaro

Map of the talk

- Long-running transactions
- Compensation installation
- Gap in the expressive power
- Conclusions

Map of the talk

• Long-running transactions

- Compensation installation
- Gap in the expressive power
- Conclusions

Handling unexpected events

- Current applications run in environments such as the Internet or smartphones
- Possible sources of errors
 - Communication partners may disconnect
 - Message loss

. . .

- Received data may not have the expected format
- Changes in the environment
- Unexpected events should be managed so to ensure correct behavior even in unreliable environments

Compensation handling

- In service-oriented computing the concept of a long running transaction has been proposed
 - Computation that either succeeds or it aborts and is compensated
- The compensation needs to take back the system to a correct state
 - Undoing cannot always be perfect
 - Approximate rollback
- Programming compensations is a delicate task

Different primitives in the literature

- Long-running transactions used in practice
 WS-BPEL, Jolie
- A flurry of proposals in the literature
 Sagas, StAC, cjoin, SOCK, dcπ, webπ, …
- Are the proposed primitives equivalent?
- Which are the best ones?

A difficult problem

- Approaches to compensation handling can differ according to many features
 - Flat vs nested transactions
 - Automatic vs programmed abort of subtransactions
 - Static vs dynamic definition of compensations
- Approaches applied to different underlying languages
 - Differences between the languages may hide differences between the primitives

Our approach

- Taking the simplest possible calculus (π -calculus)
- Adding different primitives to it
- Comparing their expressive power
- Too many possible differences
- We concentrate on static vs dynamic definition of compensations
- Decidability of termination (all computations terminate) allows to discriminate them
 - In a π -calculus without restriction

Map of the talk

• Long-running transactions

- Compensation installation
- Gap in the expressive power
- Conclusions

Static compensations

- The compensation code is fixed
 - Java try P catch e Q
 - Q is the compensation for the already executed part of P
 - Q does not depend on when P has been interrupted
- First approach that has been proposed
- Still the most used in practice (WS-BPEL)
- Not flexible enough

Dynamic compensations

- The compensation can be updated during the computation
 - To take into account the changes in what has been done
- A primitive to define a new compensation is needed
 - The new compensation may possibly extend the old one

Syntax of the calculus

inaction P ::= 0 $\sum_i \pi_i \cdot P_i$ guarded choice $!\pi.P$ guarded replication P|Qparallel composition t[P,Q]transaction $\langle P \rangle$ protected block $inst | \lambda X. Q | P$ compensation update X process variable

$$\pi ::= a(x) \mid \bar{a} \langle v \rangle$$

Simple examples

- Transactions can compute $\overline{a}\langle b \rangle | t[a(x), x, 0, Q] \rightarrow 0 | t[b, 0, Q]$
- Transactions can be aborted $\overline{t}|t[a.0,Q] \rightarrow \langle Q \rangle$
- Transactions can commit suicide $t[\overline{t}, 0|a, 0, Q] \rightarrow \langle Q \rangle$
- Protected code is protected $t[\overline{t}.0|\langle a.0\rangle, Q] \rightarrow \langle a.0\rangle|\langle Q\rangle$

Simple examples: compensation update

- Parallel update $t[inst[\lambda X. P|X]. a. 0, Q] \rightarrow t[a. 0, P|Q]$
- Nested update (reverse order) $t[inst[\lambda X. b. X]. a. 0, Q] \rightarrow t[a. 0, b. Q]$
- Replacing update $t[inst[\lambda X.0].a.0,Q] \rightarrow t[a.0,0]$

- Dynamic compensations
- Nested compensations
- Parallel compensations
- Replacing compensations
- Static compensations

- Dynamic compensations
 λX. Q is arbitrary
- Nested compensations
- Parallel compensations
- Replacing compensations
- Static compensations

- Dynamic compensations
- Nested compensations
 - Old compensation is preserved, inside a new context
 - $-\lambda X.Q$ is linear
- Parallel compensations
- Replacing compensations
- Static compensations

- Dynamic compensations
- Nested compensations
- Parallel compensations
 - New compensation items can be added in parallel
 - Q = Q' | X and Q' does not contain X
- Replacing compensations
- Static compensations

- Dynamic compensations
- Nested compensations
- Parallel compensations
- Replacing compensations
 - Old compensation is discarded
 - Q does not contain X
- Static compensations

- Dynamic compensations
- Nested compensations
- Parallel compensations
- Replacing compensations
- Static compensations
 - Compensation updates are never used

Are the inclusions strict?

A partial order

[ESOP2010] Relying on complex conditions on allowed

encodings and operators

[Here]

Decidability of termination

Map of the talk

- Long-running transactions
- Compensation installation
- Gap in the expressive power
- Conclusions

Undecidability for nested compensations

- We prove that they can code RAMs
- RAMs are a Turing powerful model
 - Termination is undecidable
- A RAM includes
 - A set of registers containing non negative integers
 - A set of indexed instructions
- Two possible instructions
 - $Inc(r_i)$: increment r_i and go to next instruction
 - $DecJump(r_j,s)$: if r_j is 0 go to instruction s, otherwise decrement r_j and go to next instruction,
- A RAM terminates if an undefined instruction is reached

Encoding idea

- Instructions are replicated processes ! p_i . do i
 - Can be triggered by an output on their name $\overline{p_i}$
- A register is a transaction of the form $r_j[Q, \overline{u}^n, \overline{z}]$
- Q contains the code for managing the register
- The increment instruction asks to increment the register using the compensation update $\lambda X. \overline{u}. X$
- The decrement instruction aborts the register
 - If a \overline{z} becomes enabled, it recreates the register and jumps
 - Otherwise it recreates the register with one less \overline{u} and goes to next instruction
- The encoding preserves termination

Decidability for parallel/replacing compensations

- We exploit the theory of Well-Structured Transition Systems (WSTS)
- Termination is known to be decidable for WSTS
- We just have to prove that for each process P its derivatives form a WSTS

Well Quasi Ordering (wqo)

 A reflexive and transitive relation (S,≤) is a wqo if given an infinite sequence s₁,s₂,... of elements in S, there exist i<j such that s_i≤s_j

Well-Structured Transition System

- (S, \rightarrow, \leq) is a WSTS if
 - (S, \rightarrow) is a finitely branching transition system
 - (S, \leq) is a wqo
 - Compatibility: for every $s_1 \rightarrow s_2$ and $s_1 \leq t_1$ there exists $t_1 \rightarrow t_2$ such that $s_2 \leq t_2$

Idea of the proof

- Given a process P with parallel or replacing compensations in its derivatives
 - No new names are generated
 - The set of sequential subprocesses never increases
- This is not the case for nested compensations, since they allow to create infinitely many sequential processes
- The order in the next slide is a wqo thanks to Higman's lemma
- Compatibility holds
- Decidability follows from the theory of WSTS

Wqo on processes

$$P \equiv S | \prod_{i=1}^{n} t_{i}[P_{i}, Q_{i}]| \prod_{j=1}^{m} \langle R_{j} \rangle$$

$$\stackrel{\leq}{P' \equiv S |Q| \prod_{i=1}^{n} t_{i}[P'_{i}, Q'_{i}]| \prod_{j=1}^{m} \langle R'_{j} \rangle$$
if
$$P_{i} \leq P'_{i} \text{ and } Q_{i} \leq Q'_{i} \text{ and } R_{j} \leq R'_{j}$$

Map of the talk

- Long-running transactions
- Compensation installation
- Gap in the expressive power
- Conclusions

Summary

- We distinguished different forms of compensation installation
- We showed that decidability of termination allows to highlight a gap between
 - Dynamic and nested compensations on one side
 - Static, parallel and replacing compensations on the other side
- The result is robust
 - Different ways of managing subtransactions
 - The same holds for CCS with similar primitives
- Absence of restriction is fundamental

Future work

- Can we give termination preserving encodings of
 - Dynamic into nested compensations?
 - Parallel/replacing into static compensations?
- The full picture of the expressive power of primitives for long running transactions is still far
 - Other dimensions
 - Which is the impact of the underlying calculus?

End of talk

