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Handling unexpected events 

 Current applications run in environments such as the 

Internet or smartphones 

 Possible sources of errors 

– Communication partners may disconnect 

– Message loss 

– Received data may not have the expected format 

– Changes in the environment 

– ... 

 Unexpected events should be managed so to ensure 

correct behavior even in unreliable environments 

 

 



Compensation handling 

 In service-oriented computing the concept of a long 

running transaction has been proposed 

– Computation that either succeeds or it aborts and is 

compensated 

 The compensation needs to take back the system to a 

correct state 

– Undoing cannot always be perfect 

– Approximate rollback 

 Programming compensations is a delicate task 

 

 



Different primitives in the literature 

 Long-running transactions used in practice 

– WS-BPEL, Jolie 

 A flurry of proposals in the literature 

– Sagas, StAC, cjoin, SOCK, dcπ, webπ, … 

 Are the proposed primitives equivalent? 

 Which are the best ones? 

 

 

 



A difficult problem 

 Approaches to compensation handling can differ 

according to many features 

– Flat vs nested transactions 

– Automatic vs programmed abort of subtransactions 

– Static vs dynamic definition of compensations 

 Approaches applied to different underlying languages 

– Differences between the languages may hide differences 

between the primitives 

 

 



Our approach 

 Taking the simplest possible calculus (π-calculus) 

 Adding different primitives to it 

 Comparing their expressive power 

 

 Too many possible differences 

 We concentrate on static vs dynamic definition of 

compensations 

 Decidability of termination (all computations terminate) 

allows to discriminate them  

– In a π-calculus without restriction  
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Static compensations 

 The compensation code is fixed 

– Java try P catch e Q 

– Q is the compensation for the already executed part of P 

– Q does not depend on when P has been interrupted 

 First approach that has been proposed 

 Still the most used in practice (WS-BPEL) 

 Not flexible enough 

 



Dynamic compensations 

 The compensation can be updated during the 
computation 

– To take into account the changes in what has been done 

 A primitive to define a new compensation is needed 

– The new compensation may possibly extend the old one 

 

 

 

 



𝑃 ∷=   0         inaction 

          𝜋𝑖 . 𝑃𝑖𝑖       guarded choice 

             ! 𝜋. 𝑃           guarded replication            

             𝑃|𝑄            parallel composition 

     𝑡[𝑃, 𝑄]        transaction 

             𝑃              protected block 

         𝑖𝑛𝑠𝑡 𝜆𝑋. 𝑄 . 𝑃  compensation update 

             𝑋                 process variable 

 

𝜋 ∷= 𝑎 𝑥     |     𝑎 𝑣  

 

 

 

 

 

Syntax of the calculus 



 Transactions can compute 

𝑎 𝑏 |𝑡 𝑎 𝑥 . 𝑥. 0, 𝑄 → 0|𝑡 𝑏. 0, 𝑄  

 Transactions can be aborted 

𝑡 |𝑡 𝑎. 0, 𝑄 → 𝑄  

 Transactions can commit suicide 

𝑡 𝑡 . 0|𝑎. 0, 𝑄 → 𝑄  

 Protected code is protected 

𝑡 𝑡 . 0| 𝑎. 0 , 𝑄 → 𝑎. 0 | 𝑄  

 

 

 

 

Simple examples 



 Parallel update 

𝑡 𝑖𝑛𝑠𝑡 𝜆𝑋. 𝑃|𝑋 . 𝑎. 0, 𝑄 → 𝑡 𝑎. 0, 𝑃|𝑄  

 Nested update (reverse order) 

𝑡 𝑖𝑛𝑠𝑡 𝜆𝑋. 𝑏. 𝑋 . 𝑎. 0, 𝑄 → 𝑡 𝑎. 0, 𝑏. 𝑄  

 Replacing update 

𝑡 𝑖𝑛𝑠𝑡 𝜆𝑋. 0 . 𝑎. 0, 𝑄 → 𝑡 𝑎. 0,0  

 

 

 

Simple examples: compensation update 



Classes of calculi 

 Dynamic compensations 

 Nested compensations 

 Parallel compensations 

 Replacing compensations 

 Static compensations 

 

 

 



Classes of calculi 

 Dynamic compensations 

– 𝜆𝑋. 𝑄 is arbitrary 

 Nested compensations 

 Parallel compensations 

 Replacing compensations 

 Static compensations 

 

 



Classes of calculi 

 Dynamic compensations 

 Nested compensations 

– Old compensation is preserved, inside a new context 

–  𝜆𝑋. 𝑄 is linear  

 Parallel compensations 

 Replacing compensations 

 Static compensations 

 

 

 



Classes of calculi 

 Dynamic compensations 

 Nested compensations 

 Parallel compensations 

– New compensation items can be added in parallel  

– 𝑄 = 𝑄′|𝑋 and Q′ does not contain 𝑋 

 Replacing compensations 

 Static compensations 

 

 



Classes of calculi 

 Dynamic compensations 

 Nested compensations 

 Parallel compensations 

 Replacing compensations 

– Old compensation is discarded 

– 𝑄 does not contain X 

 Static compensations 

 

 

 



Classes of calculi 

 Dynamic compensations 

 Nested compensations 

 Parallel compensations 

 Replacing compensations 

 Static compensations 

– Compensation updates are never used 

 

 

 



A partial order 

Dynamic 

Replacing 

Nested 

Parallel 

Static 

Are the inclusions strict? 



A partial order 

Dynamic 

Replacing 

Nested 

Parallel 

Static 

[ESOP2010] 

Relying on complex 

conditions on allowed 

encodings and operators 

[Here] 

Decidability of termination 
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Undecidability for nested compensations 

 We prove that they can code RAMs 

 RAMs are a Turing powerful model 

– Termination is undecidable 

 A RAM includes 

– A set of registers containing non negative integers 

– A set of indexed instructions 

 Two possible instructions 

– Inc(rj): increment rj and go to next instruction 

– DecJump(rj,s): if rj is 0 go to instruction s, otherwise decrement 

rj and go to next instruction,  

 A RAM terminates if an undefined instruction is reached 

 
 

 

 



Encoding idea 

 Instructions are replicated processes ! 𝑝𝑖 . 𝑑𝑜 𝑖 

– Can be triggered by an output on their name 𝑝𝑖  

 A register is a transaction of the form 𝑟𝑗[𝑄, 𝑢 
𝑛. 𝑧 ] 

 𝑄 contains the code for managing the register 

 The increment instruction asks to increment the register 

using the compensation update 𝜆𝑋. 𝑢 . 𝑋 

 The decrement instruction aborts the register 

– If a 𝑧  becomes enabled, it recreates the register and jumps 

– Otherwise it recreates the register with one less 𝑢  and goes to 

next instruction  

 The encoding preserves termination 

 

 

 

 



Decidability for parallel/replacing compensations 

 We exploit the theory of Well-Structured Transition 

Systems (WSTS) 

 Termination is known to be decidable for WSTS 

 We just have to prove that for each process P its 

derivatives form a WSTS 

 

 

 

 

 



Well Quasi Ordering (wqo) 

 A reflexive and transitive relation (S,≤) is a wqo if given 

an infinite sequence s1,s2,… of elements in S, there exist 

i<j such that si≤sj 

 

 

 

 

 



Well-Structured Transition System 

 (S,→,≤) is a WSTS if 

– (S,→) is a finitely branching transition system 

– (S,≤) is a wqo 

– Compatibility: for every s1→s2 and s1≤t1 there exists 

t1→t2 such that s2≤t2 
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Idea of the proof 

 Given a process P with parallel or replacing 

compensations in its derivatives 

– No new names are generated 

– The set of sequential subprocesses never increases 

 This is not the case for nested compensations, since they 

allow to create infinitely many sequential processes 

 The order in the next slide is a wqo thanks to Higman’s 

lemma 

 Compatibility holds 

 Decidability follows from the theory of WSTS 

 

 



Wqo on processes 

𝑃 ≡ 𝑆| 𝑡𝑖 𝑃𝑖 , 𝑄𝑖 |  𝑅𝑗
𝑚

𝑗=1

𝑛

𝑖=1
 

                                       ≤ 

𝑃′ ≡ 𝑆|𝑄| 𝑡𝑖 𝑃
′
𝑖 , 𝑄
′
𝑖 |  𝑅′𝑗

𝑚

𝑗=1

𝑛

𝑖=1
 

                       if 

                  𝑃𝑖 ≤ 𝑃
′
𝑖 and  𝑄𝑖 ≤ 𝑄

′
𝑖 and 𝑅𝑗 ≤ 𝑅

′
𝑗 
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Summary 

 We distinguished different forms of compensation 

installation 

 We showed that decidability of termination allows to 

highlight a gap between 

– Dynamic and nested compensations on one side 

– Static, parallel and replacing compensations on the other side 

 The result is robust 

– Different ways of managing subtransactions 

– The same holds for CCS with similar primitives 

 Absence of restriction is fundamental 



Future work 

 Can we give termination preserving encodings of 

– Dynamic into nested compensations? 

– Parallel/replacing into static compensations? 

 The full picture of the expressive power of primitives 

for long running transactions is still far 

– Other dimensions 

– Which is the impact of the underlying calculus?  

 

 

 



End of talk 


