Decidability Results for Dynamic Installatig
of Compensation Handlers 18]

\ [
I

l

2y lvan Lanese
f- _}m (J Ute l . C ' CAL lﬂ =1L (244317 tirdisatill mnm i,

ﬁn Unlversny of Bologna/fNRA " gl'
HN ‘H '
I

i\ﬁwﬁ: == ':";“"

y . Il
" s ¢ o]

-- l!jl work. 1618

1} .

’ pri l"‘ iy
L“U’ AL

Map of the talk

e Long-running transactions
e Compensation installation
e Gap In the expressive power
e Conclusions

Map of the talk

e Long-running transactions
®
®

Handling unexpected events

e Current applications run in environments such as the
Internet or smartphones

e Possible sources of errors
— Communication partners may disconnect
— Message loss
— Received data may not have the expected format
— Changes in the environment

e Unexpected events should be managed so to ensure
correct behavior even in unreliable environments

Compensation handling

e In service-oriented computing the concept of a long
running transaction has been proposed

— Computation that either succeeds or it aborts and is
compensated

e The compensation needs to take back the system to a
correct state
— Undoing cannot always be perfect
— Approximate rollback

e Programming compensations is a delicate task

Different primitives in the literature

e Long-running transactions used in practice
— WS-BPEL, Jolie

e A flurry of proposals in the literature
— Sagas, StAC, cjoin, SOCK, dcr, webm, ...

e Are the proposed primitives equivalent?
e \Which are the best ones?

A difficult problem

e Approaches to compensation handling can differ
according to many features
— Flat vs nested transactions
— Automatic vs programmed abort of subtransactions
— Static vs dynamic definition of compensations

e Approaches applied to different underlying languages

— Differences between the languages may hide differences
between the primitives

Our approach

e Taking the simplest possible calculus (w-calculus)
e Adding different primitives to it
e Comparing their expressive power

e Too many possible differences

e \We concentrate on static vs dynamic definition of
compensations

e Decidability of termination (all computations terminate)
allows to discriminate them

— In a w-calculus without restriction

Map of the talk

®
e Compensation installation
®

Static compensations

e The compensation code Is fixed et

— Javatry P catche Q
— Q Is the compensation for the already executed part of P
— Q does not depend on when P has been interrupted

e First approach that has been proposed
e Still the most used in practice (WS-BPEL)
e Not flexible enough

Dynamic compensations ",
s .

Ny?

e The compensation can be updated during the o |

computation
— To take into account the changes in what has been done

e A primitive to define a new compensation is needed
— The new compensation may possibly extend the old one

Syntax of the calculus

P =0 Inaction
2T P; guarded choice
I 1t. P guarded replication
P|Q parallel composition

inst|[AX.Q].P compensation update
X process variable

m s=alx) | a(v)

Simple examples

e Transactions can compute
a(b)|tla(x).x.0,Q] — 0|t[b.0, Q]
e Transactions can be aborted
t|tla.0,Q] - (Q)
e Transactions can commit suicide
t[t.0]a.0,Q] — (Q)
e Protected code Is protected

t[t.0[(a.0), Q] = {a.0)|{Q)

Simple examples: compensation update

e Parallel update
tlinst|AX.P|X].a.0,Q] — t|a.0, P|Q]

e Nested update (reverse order)
tlinst|AX.b.X].a.0,Q] = t|a.0,b.Q]
e Replacing update
tlinst|A1X.0].a.0,0Q] - t[a.0,0]

Classes of calculi

Dynamic compensations
Nested compensations
Parallel compensations
Replacing compensations
Static compensations

Classes of calculi

e Dynamic compensations
- AX.Q Is arbitrary

Nested compensations
Parallel compensations
Replacing compensations
Static compensations

Classes of calculi

e Dynamic compensations

e Nested compensations

— Old compensation is preserved, inside a new context
— AX.Q i1s linear

e Parallel compensations
e Replacing compensations
e Static compensations

Classes of calculi

e Dynamic compensations
e Nested compensations

e Parallel compensations
— New compensation items can be added in parallel
- Q = Q’'|X and Q' does not contain X

e Replacing compensations
e Static compensations

Classes of calculi

Dynamic compensations
Nested compensations
Parallel compensations

Replacing compensations
— Old compensation is discarded
- @ does not contain X

e Static compensations

Classes of calculi

Dynamic compensations
Nested compensations
Parallel compensations
Replacing compensations

Static compensations
— Compensation updates are never used

A partial order

Dynamic

Nes?\

X Replacing
Parallel

Static

Are the inclusions strict?

A partial order

Dynamic [ESOP2010]
Relying on complex
Nes?\ conditions on allowed
~~~~~~ ) _ encodings and operators
> Replacing
€ [Here]

Decidability of termination

Static



Map of the talk

o
®
e Gap In the expressive power




Undecidability for nested compensations

e \We prove that they can code RAMs

e RAMSs are a Turing powerful model
— Termination is undecidable

e A RAM includes
— A set of registers containing non negative integers
— A set of indexed instructions

e Two possible instructions
— Inc(r;): increment r; and go to next instruction

— DecJdump(r;,s): if r; is 0 go to Instruction s, otherwise decrement
r; and go to next instruction,

e A RAM terminates if an undefined instruction is reached



Encoding idea

e Instructions are replicated processes ! p;.do i
— Can be triggered by an output on their name p;

e A register Is a transaction of the form r;[Q, u™. Z]

e () contains the code for managing the register

e The increment instruction asks to increment the register
using the compensation update AX. u. X
e The decrement instruction aborts the register

— If a Z becomes enabled, it recreates the register and jumps

— Otherwise it recreates the register with one less u« and goes to
next instruction

e The encoding preserves termination



Decidability for parallel/replacing compensations

e \We exploit the theory of Well-Structured Transition
Systems (WSTS)

e Termination is known to be decidable for WSTS

e \We just have to prove that for each process P its
derivatives form a WSTS



Well Quasi Ordering (wqo)

e A reflexive and transitive relation (S,<) is a wgo If given
an Infinite sequence s,,S,,... of elements in S, there exist
I<J such that s;<s;



Well-Structured Transition System

o (S,—,)isa WSTS if
— (S,—) 1s a finitely branching transition system
— (S,<)1sawqo
— Compatibility: for every s,—s, and s,<t, there exists
t,—t, such that s,<t,

-———



|dea of the proof

e Given a process P with parallel or replacing
compensations in its derivatives

— No new names are generated
— The set of sequential subprocesses never increases

e This Is not the case for nested compensations, since they
allow to create infinitely many sequential processes

e The order 1n the next slide 1s a wqo thanks to Higman’s
lemma

e Compatibility holds
e Decidability follows from the theory of WSTS



W(Qo on processes

PiSP’iHHinSQiandeSR,j



Map of the talk

Conclusions




Summary

e \We distinguished different forms of compensation
Installation

e \We showed that decidability of termination allows to
highlight a gap between
— Dynamic and nested compensations on one side
— Static, parallel and replacing compensations on the other side
e The result is robust
— Different ways of managing subtransactions
— The same holds for CCS with similar primitives

e Absence of restriction i1s fundamental



Future work

e Can we give termination preserving encodings of
— Dynamic into nested compensations?
— Parallel/replacing into static compensations?
e The full picture of the expressive power of primitives
for long running transactions is still far
— Other dimensions
— Which is the impact of the underlying calculus?



- Thdllks

iii“im“w



