
Ivan Lanese

Computer Science Department

University of Bologna/INRIA

Italy

Decidability Results for Dynamic Installation

of Compensation Handlers

Joint work with Gianluigi Zavattaro

Map of the talk

 Long-running transactions

 Compensation installation

 Gap in the expressive power

 Conclusions

Map of the talk

 Long-running transactions

 Compensation installation

 Gap in the expressive power

 Conclusions

Handling unexpected events

 Current applications run in environments such as the

Internet or smartphones

 Possible sources of errors

– Communication partners may disconnect

– Message loss

– Received data may not have the expected format

– Changes in the environment

– ...

 Unexpected events should be managed so to ensure

correct behavior even in unreliable environments

Compensation handling

 In service-oriented computing the concept of a long

running transaction has been proposed

– Computation that either succeeds or it aborts and is

compensated

 The compensation needs to take back the system to a

correct state

– Undoing cannot always be perfect

– Approximate rollback

 Programming compensations is a delicate task

Different primitives in the literature

 Long-running transactions used in practice

– WS-BPEL, Jolie

 A flurry of proposals in the literature

– Sagas, StAC, cjoin, SOCK, dcπ, webπ, …

 Are the proposed primitives equivalent?

 Which are the best ones?

A difficult problem

 Approaches to compensation handling can differ

according to many features

– Flat vs nested transactions

– Automatic vs programmed abort of subtransactions

– Static vs dynamic definition of compensations

 Approaches applied to different underlying languages

– Differences between the languages may hide differences

between the primitives

Our approach

 Taking the simplest possible calculus (π-calculus)

 Adding different primitives to it

 Comparing their expressive power

 Too many possible differences

 We concentrate on static vs dynamic definition of

compensations

 Decidability of termination (all computations terminate)

allows to discriminate them

– In a π-calculus without restriction

Map of the talk

 Long-running transactions

 Compensation installation

 Gap in the expressive power

 Conclusions

Static compensations

 The compensation code is fixed

– Java try P catch e Q

– Q is the compensation for the already executed part of P

– Q does not depend on when P has been interrupted

 First approach that has been proposed

 Still the most used in practice (WS-BPEL)

 Not flexible enough

Dynamic compensations

 The compensation can be updated during the
computation

– To take into account the changes in what has been done

 A primitive to define a new compensation is needed

– The new compensation may possibly extend the old one

𝑃 ∷= 0 inaction

 𝜋𝑖 . 𝑃𝑖𝑖 guarded choice

 ! 𝜋. 𝑃 guarded replication

 𝑃|𝑄 parallel composition

 𝑡[𝑃, 𝑄] transaction

 𝑃 protected block

 𝑖𝑛𝑠𝑡 𝜆𝑋. 𝑄 . 𝑃 compensation update

 𝑋 process variable

𝜋 ∷= 𝑎 𝑥 | 𝑎 𝑣

Syntax of the calculus

 Transactions can compute

𝑎 𝑏 |𝑡 𝑎 𝑥 . 𝑥. 0, 𝑄 → 0|𝑡 𝑏. 0, 𝑄

 Transactions can be aborted

𝑡 |𝑡 𝑎. 0, 𝑄 → 𝑄

 Transactions can commit suicide

𝑡 𝑡 . 0|𝑎. 0, 𝑄 → 𝑄

 Protected code is protected

𝑡 𝑡 . 0| 𝑎. 0 , 𝑄 → 𝑎. 0 | 𝑄

Simple examples

 Parallel update

𝑡 𝑖𝑛𝑠𝑡 𝜆𝑋. 𝑃|𝑋 . 𝑎. 0, 𝑄 → 𝑡 𝑎. 0, 𝑃|𝑄

 Nested update (reverse order)

𝑡 𝑖𝑛𝑠𝑡 𝜆𝑋. 𝑏. 𝑋 . 𝑎. 0, 𝑄 → 𝑡 𝑎. 0, 𝑏. 𝑄

 Replacing update

𝑡 𝑖𝑛𝑠𝑡 𝜆𝑋. 0 . 𝑎. 0, 𝑄 → 𝑡 𝑎. 0,0

Simple examples: compensation update

Classes of calculi

 Dynamic compensations

 Nested compensations

 Parallel compensations

 Replacing compensations

 Static compensations

Classes of calculi

 Dynamic compensations

– 𝜆𝑋. 𝑄 is arbitrary

 Nested compensations

 Parallel compensations

 Replacing compensations

 Static compensations

Classes of calculi

 Dynamic compensations

 Nested compensations

– Old compensation is preserved, inside a new context

– 𝜆𝑋. 𝑄 is linear

 Parallel compensations

 Replacing compensations

 Static compensations

Classes of calculi

 Dynamic compensations

 Nested compensations

 Parallel compensations

– New compensation items can be added in parallel

– 𝑄 = 𝑄′|𝑋 and Q′ does not contain 𝑋

 Replacing compensations

 Static compensations

Classes of calculi

 Dynamic compensations

 Nested compensations

 Parallel compensations

 Replacing compensations

– Old compensation is discarded

– 𝑄 does not contain X

 Static compensations

Classes of calculi

 Dynamic compensations

 Nested compensations

 Parallel compensations

 Replacing compensations

 Static compensations

– Compensation updates are never used

A partial order

Dynamic

Replacing

Nested

Parallel

Static

Are the inclusions strict?

A partial order

Dynamic

Replacing

Nested

Parallel

Static

[ESOP2010]

Relying on complex

conditions on allowed

encodings and operators

[Here]

Decidability of termination

Map of the talk

 Long-running transactions

 Compensation installation

 Gap in the expressive power

 Conclusions

Undecidability for nested compensations

 We prove that they can code RAMs

 RAMs are a Turing powerful model

– Termination is undecidable

 A RAM includes

– A set of registers containing non negative integers

– A set of indexed instructions

 Two possible instructions

– Inc(rj): increment rj and go to next instruction

– DecJump(rj,s): if rj is 0 go to instruction s, otherwise decrement

rj and go to next instruction,

 A RAM terminates if an undefined instruction is reached

Encoding idea

 Instructions are replicated processes ! 𝑝𝑖 . 𝑑𝑜 𝑖

– Can be triggered by an output on their name 𝑝𝑖

 A register is a transaction of the form 𝑟𝑗[𝑄, 𝑢
𝑛. 𝑧]

 𝑄 contains the code for managing the register

 The increment instruction asks to increment the register

using the compensation update 𝜆𝑋. 𝑢 . 𝑋

 The decrement instruction aborts the register

– If a 𝑧 becomes enabled, it recreates the register and jumps

– Otherwise it recreates the register with one less 𝑢 and goes to

next instruction

 The encoding preserves termination

Decidability for parallel/replacing compensations

 We exploit the theory of Well-Structured Transition

Systems (WSTS)

 Termination is known to be decidable for WSTS

 We just have to prove that for each process P its

derivatives form a WSTS

Well Quasi Ordering (wqo)

 A reflexive and transitive relation (S,≤) is a wqo if given

an infinite sequence s1,s2,… of elements in S, there exist

i<j such that si≤sj

Well-Structured Transition System

 (S,→,≤) is a WSTS if

– (S,→) is a finitely branching transition system

– (S,≤) is a wqo

– Compatibility: for every s1→s2 and s1≤t1 there exists

t1→t2 such that s2≤t2

s1

t2 s2

t1

≤

≤

Idea of the proof

 Given a process P with parallel or replacing

compensations in its derivatives

– No new names are generated

– The set of sequential subprocesses never increases

 This is not the case for nested compensations, since they

allow to create infinitely many sequential processes

 The order in the next slide is a wqo thanks to Higman’s

lemma

 Compatibility holds

 Decidability follows from the theory of WSTS

Wqo on processes

𝑃 ≡ 𝑆| 𝑡𝑖 𝑃𝑖 , 𝑄𝑖 | 𝑅𝑗
𝑚

𝑗=1

𝑛

𝑖=1

 ≤

𝑃′ ≡ 𝑆|𝑄| 𝑡𝑖 𝑃
′
𝑖 , 𝑄
′
𝑖 | 𝑅′𝑗

𝑚

𝑗=1

𝑛

𝑖=1

 if

 𝑃𝑖 ≤ 𝑃
′
𝑖 and 𝑄𝑖 ≤ 𝑄

′
𝑖 and 𝑅𝑗 ≤ 𝑅

′
𝑗

Map of the talk

 Long-running transactions

 Compensation installation

 Gap in the expressive power

 Conclusions

Summary

 We distinguished different forms of compensation

installation

 We showed that decidability of termination allows to

highlight a gap between

– Dynamic and nested compensations on one side

– Static, parallel and replacing compensations on the other side

 The result is robust

– Different ways of managing subtransactions

– The same holds for CCS with similar primitives

 Absence of restriction is fundamental

Future work

 Can we give termination preserving encodings of

– Dynamic into nested compensations?

– Parallel/replacing into static compensations?

 The full picture of the expressive power of primitives

for long running transactions is still far

– Other dimensions

– Which is the impact of the underlying calculus?

End of talk

