
Ivan Lanese

Computer Science Department

University of Bologna/INRIA

Italy

Decidability Results for Dynamic Installation

of Compensation Handlers

Joint work with Gianluigi Zavattaro

Map of the talk

 Long-running transactions

 Compensation installation

 Gap in the expressive power

 Conclusions

Map of the talk

 Long-running transactions

 Compensation installation

 Gap in the expressive power

 Conclusions

Handling unexpected events

 Current applications run in environments such as the

Internet or smartphones

 Possible sources of errors

– Communication partners may disconnect

– Message loss

– Received data may not have the expected format

– Changes in the environment

– ...

 Unexpected events should be managed so to ensure

correct behavior even in unreliable environments

Compensation handling

 In service-oriented computing the concept of a long

running transaction has been proposed

– Computation that either succeeds or it aborts and is

compensated

 The compensation needs to take back the system to a

correct state

– Undoing cannot always be perfect

– Approximate rollback

 Programming compensations is a delicate task

Different primitives in the literature

 Long-running transactions used in practice

– WS-BPEL, Jolie

 A flurry of proposals in the literature

– Sagas, StAC, cjoin, SOCK, dcπ, webπ, …

 Are the proposed primitives equivalent?

 Which are the best ones?

A difficult problem

 Approaches to compensation handling can differ

according to many features

– Flat vs nested transactions

– Automatic vs programmed abort of subtransactions

– Static vs dynamic definition of compensations

 Approaches applied to different underlying languages

– Differences between the languages may hide differences

between the primitives

Our approach

 Taking the simplest possible calculus (π-calculus)

 Adding different primitives to it

 Comparing their expressive power

 Too many possible differences

 We concentrate on static vs dynamic definition of

compensations

 Decidability of termination (all computations terminate)

allows to discriminate them

– In a π-calculus without restriction

Map of the talk

 Long-running transactions

 Compensation installation

 Gap in the expressive power

 Conclusions

Static compensations

 The compensation code is fixed

– Java try P catch e Q

– Q is the compensation for the already executed part of P

– Q does not depend on when P has been interrupted

 First approach that has been proposed

 Still the most used in practice (WS-BPEL)

 Not flexible enough

Dynamic compensations

 The compensation can be updated during the
computation

– To take into account the changes in what has been done

 A primitive to define a new compensation is needed

– The new compensation may possibly extend the old one

𝑃 ∷= 0 inaction

 𝜋𝑖 . 𝑃𝑖𝑖 guarded choice

 ! 𝜋. 𝑃 guarded replication

 𝑃|𝑄 parallel composition

 𝑡[𝑃, 𝑄] transaction

 𝑃 protected block

 𝑖𝑛𝑠𝑡 𝜆𝑋. 𝑄 . 𝑃 compensation update

 𝑋 process variable

𝜋 ∷= 𝑎 𝑥 | 𝑎 𝑣

Syntax of the calculus

 Transactions can compute

𝑎 𝑏 |𝑡 𝑎 𝑥 . 𝑥. 0, 𝑄 → 0|𝑡 𝑏. 0, 𝑄

 Transactions can be aborted

𝑡 |𝑡 𝑎. 0, 𝑄 → 𝑄

 Transactions can commit suicide

𝑡 𝑡 . 0|𝑎. 0, 𝑄 → 𝑄

 Protected code is protected

𝑡 𝑡 . 0| 𝑎. 0 , 𝑄 → 𝑎. 0 | 𝑄

Simple examples

 Parallel update

𝑡 𝑖𝑛𝑠𝑡 𝜆𝑋. 𝑃|𝑋 . 𝑎. 0, 𝑄 → 𝑡 𝑎. 0, 𝑃|𝑄

 Nested update (reverse order)

𝑡 𝑖𝑛𝑠𝑡 𝜆𝑋. 𝑏. 𝑋 . 𝑎. 0, 𝑄 → 𝑡 𝑎. 0, 𝑏. 𝑄

 Replacing update

𝑡 𝑖𝑛𝑠𝑡 𝜆𝑋. 0 . 𝑎. 0, 𝑄 → 𝑡 𝑎. 0,0

Simple examples: compensation update

Classes of calculi

 Dynamic compensations

 Nested compensations

 Parallel compensations

 Replacing compensations

 Static compensations

Classes of calculi

 Dynamic compensations

– 𝜆𝑋. 𝑄 is arbitrary

 Nested compensations

 Parallel compensations

 Replacing compensations

 Static compensations

Classes of calculi

 Dynamic compensations

 Nested compensations

– Old compensation is preserved, inside a new context

– 𝜆𝑋. 𝑄 is linear

 Parallel compensations

 Replacing compensations

 Static compensations

Classes of calculi

 Dynamic compensations

 Nested compensations

 Parallel compensations

– New compensation items can be added in parallel

– 𝑄 = 𝑄′|𝑋 and Q′ does not contain 𝑋

 Replacing compensations

 Static compensations

Classes of calculi

 Dynamic compensations

 Nested compensations

 Parallel compensations

 Replacing compensations

– Old compensation is discarded

– 𝑄 does not contain X

 Static compensations

Classes of calculi

 Dynamic compensations

 Nested compensations

 Parallel compensations

 Replacing compensations

 Static compensations

– Compensation updates are never used

A partial order

Dynamic

Replacing

Nested

Parallel

Static

Are the inclusions strict?

A partial order

Dynamic

Replacing

Nested

Parallel

Static

[ESOP2010]

Relying on complex

conditions on allowed

encodings and operators

[Here]

Decidability of termination

Map of the talk

 Long-running transactions

 Compensation installation

 Gap in the expressive power

 Conclusions

Undecidability for nested compensations

 We prove that they can code RAMs

 RAMs are a Turing powerful model

– Termination is undecidable

 A RAM includes

– A set of registers containing non negative integers

– A set of indexed instructions

 Two possible instructions

– Inc(rj): increment rj and go to next instruction

– DecJump(rj,s): if rj is 0 go to instruction s, otherwise decrement

rj and go to next instruction,

 A RAM terminates if an undefined instruction is reached

Encoding idea

 Instructions are replicated processes ! 𝑝𝑖 . 𝑑𝑜 𝑖

– Can be triggered by an output on their name 𝑝𝑖

 A register is a transaction of the form 𝑟𝑗[𝑄, 𝑢
𝑛. 𝑧]

 𝑄 contains the code for managing the register

 The increment instruction asks to increment the register

using the compensation update 𝜆𝑋. 𝑢 . 𝑋

 The decrement instruction aborts the register

– If a 𝑧 becomes enabled, it recreates the register and jumps

– Otherwise it recreates the register with one less 𝑢 and goes to

next instruction

 The encoding preserves termination

Decidability for parallel/replacing compensations

 We exploit the theory of Well-Structured Transition

Systems (WSTS)

 Termination is known to be decidable for WSTS

 We just have to prove that for each process P its

derivatives form a WSTS

Well Quasi Ordering (wqo)

 A reflexive and transitive relation (S,≤) is a wqo if given

an infinite sequence s1,s2,… of elements in S, there exist

i<j such that si≤sj

Well-Structured Transition System

 (S,→,≤) is a WSTS if

– (S,→) is a finitely branching transition system

– (S,≤) is a wqo

– Compatibility: for every s1→s2 and s1≤t1 there exists

t1→t2 such that s2≤t2

s1

t2 s2

t1

≤

≤

Idea of the proof

 Given a process P with parallel or replacing

compensations in its derivatives

– No new names are generated

– The set of sequential subprocesses never increases

 This is not the case for nested compensations, since they

allow to create infinitely many sequential processes

 The order in the next slide is a wqo thanks to Higman’s

lemma

 Compatibility holds

 Decidability follows from the theory of WSTS

Wqo on processes

𝑃 ≡ 𝑆| 𝑡𝑖 𝑃𝑖 , 𝑄𝑖 | 𝑅𝑗
𝑚

𝑗=1

𝑛

𝑖=1

 ≤

𝑃′ ≡ 𝑆|𝑄| 𝑡𝑖 𝑃
′
𝑖 , 𝑄
′
𝑖 | 𝑅′𝑗

𝑚

𝑗=1

𝑛

𝑖=1

 if

 𝑃𝑖 ≤ 𝑃
′
𝑖 and 𝑄𝑖 ≤ 𝑄

′
𝑖 and 𝑅𝑗 ≤ 𝑅

′
𝑗

Map of the talk

 Long-running transactions

 Compensation installation

 Gap in the expressive power

 Conclusions

Summary

 We distinguished different forms of compensation

installation

 We showed that decidability of termination allows to

highlight a gap between

– Dynamic and nested compensations on one side

– Static, parallel and replacing compensations on the other side

 The result is robust

– Different ways of managing subtransactions

– The same holds for CCS with similar primitives

 Absence of restriction is fundamental

Future work

 Can we give termination preserving encodings of

– Dynamic into nested compensations?

– Parallel/replacing into static compensations?

 The full picture of the expressive power of primitives

for long running transactions is still far

– Other dimensions

– Which is the impact of the underlying calculus?

End of talk

