
Towards Global and Local Types

for Adaptation

Ivan Lanese

Computer Science Department

University of Bologna/INRIA

Italy

Joint work with Mario Bravetti, Marco Carbone,

Thomas Hildebrandt, Jacopo Mauro, Jorge A.

Perez and Gianluigi Zavattaro

Many distributed participants

Complex multiparty interactions

 Jacopo and Ivan were working on adaptive choreographies

(with others)

 Marco was working on multiparty session types (with

others)

 Mario, Jorge and Gianluigi were working on adaptable

calculi (with others)

 Thomas was working on adaptable case management

systems (with others)

 Mario, Marco, Thomas, Ivan, Jacopo, Jorge and Gianluigi

wanted to start a collaboration on multiparty session types

and adaptation

Message-based communication (e-mail)

 CaseStudy: Thomas → Mario

Thomas sends a proposal for a case study to Mario

 CommentsReq: Mario → Ivan

Mario asks Ivan for comments on the syntax

 WriteConcl: Gianluigi → Jorge

Gianluigi asks Jorge to write conclusions

 Cut: Mario → Jacopo

Mario asks Jacopo to cut the paper to respect the page limit

Participants act according to the choreography

 CommentsReq: Mario → Ivan; Comments: Ivan → Mario

 Ivan behavior should follow the type:

CommentsReqMario;CommentsMario

 Ivan code interleaves different sessions:

k : CommentsReqMario(x);

k’ : BuyBreadWife;

k’ : BreadWife<1kg>;

k : CommentsMario<comm.txt>

 Each session respects a given type

Unexpected adaptation needs

 External adaptation need:

– Simon Gay announces BEAT II: the choreography is adapted to

submit a work-in-progress to it

– Marco notices that most of us will attend DisCoTec 2013: the

choreography is adapted to exploit this occasion to work together

» Marco is a participant of the choreography, but

» DisCoTec attendance is not mentioned in the choreography

» It may be part of another choreography Marco is participating to

 Internal adaptation need:

– Mario finds a bug in the definition of traces: the choreography is

adapted by adding interactions to fix it

Our plan

 Write choreographies to describe complex multiparty

interactions

 Derive a description of the behavior of each participant

 Type the code of each participant according to its local

description(s)

– The code may involve many interleaved sessions

 Typing ensures good properties

– The code follows the expected protocol(s)

– No deadlock

Our plan

 Write choreographies to describe complex multiparty

interactions

 Derive a description of the behavior of each participant

 Type the code of each participant according to its local

description(s)

– The code may involve many interleaved sessions

 Typing ensures good properties

– The code follows the expected protocol

– No deadlock

Adaptation

 Systems should live for long periods of time

 Systems should adapt to

– Changes in the environment (new technologies, protocols,

unexpected workload)

– Changes in users minds (new requirements, changing business

rules)

 Adaptation happens at runtime

 The system should be adapted with minimal disruption of

functionalities

– No shut down, recompile, and restart

How to face the unexpected?

 Adaptation details (frequently) not known when

the system has been designed or even started

 To face those unexpected challenges something should

come from outside

– New code

– Exploiting the new technology, defining the new business rule, ...

 The system should provide an interface to

– Interact with an adaptation middleware

– Get new code

– Combine it with the existing code

Internal vs external updates

 External updates

– New code from the environment

» A participant of another choreography

» The human user via some interface

– Fundamental to deal with unexpected events

 Internal updates

– New code from a participant of the choreography

– Towards another area of the same choreography

– Useful as a programming construct, e.g., for error handling

– Enhances compositionality

– Specifying the choreographies and the updates in the same

language useful for refinement

Adaptation and multiparty session types

 Lots of works on adaptation exist

– Our main contribution is not an innovative way of doing

adaptation

 Formal approaches emerging only very recently

– Our main contribution is in guaranteeing desirable properties

 Trade off between

– Allowing substantial adaptations

» One would be able to change everything

– Preserving good properties

» Easier if one changes very little

» Easier if one knows in advance what is changing and how

 Adaptive multiparty session types provide a good trade off

Adaptation constructs

 Impossible to guarentee good properties if adaptations can

happen everywhere

– We need a construct to specify where adaptation can happen

– We call it a scope

– A scope contains code, to be executed if no adaptation occurs

– Running scopes can be adapted too (also from inside)

 A construct is needed for internal update

– Should provide the new code for a given scope

 Similar constructs at the level of choreographies, endpoints

and code

Constructs for external update

 None

 External updates come from outside

– Not specified in the choreography

– The system does not know how things will change

 We add external updates to the semantics, extending the

notion of traces

 External updates are updates coming from a parallel

(unspecified) choreography

Choreography language

 Composed by interactions of the form

CommentsReq: Mario → Ivan

 Standard composition operators:

sequence ; parallel | choice + Kleene star *

 Two operators for adaptation

– X:T[C] scope with name X executing choreography C with set

of roles (at most) T

– Xr{C} internal update of a scope done by role r, inserting in the

scope with name X the new choreography C

Endpoint language

 Processes composed by inputs and outputs of the form

CommentsReqIvan CommentsReqMario

 The same composition operators as before:

sequence ; parallel | choice + Kleene star *

 Two operators for adaptation

– X[P] scope with name X executing process P

– X(r1,...,rn){P1,...,Pn} update of a scope X sending process Pi to

endpoint ri

» A single update involves multiple endpoints

 A system description is a parallel composition of endpoints

– Each endpoint has a name and executes a process

Projection

 Allows one to automatically derive from a choreography

the description of each endpoint

 Distributing the behavior among participants

 Op: r → s | r = Ops

Op: r → s | s = Opr

Op: r → s | r’ = 1

 X:T[C] | r = X[C|r] if r in T

X:T[C] | r = 1 otherwise

 Xs{C} | r = X(r1,...,rn){C|r1,...,C|rn} if r=s, type(X)={r1,...,rn}

Xs{C} | r = 1 otherwise

 Other operators are projected homomorphically

Expected result

 The traces of the projected system are included in the

traces of the choreography

– For all possible adaptations

 Holds only for well formed choreographies and adaptations

 Key challenge: ensuring that all the participants agree on

where we are in the choreography

– Which branch has been taken in a choice

– Whether a given scope should be adapted or not

– Which is the new code for a given scope

– When one should stop executing the old code and start executing

the new one

 Semantics carefully crafted to ensure this

Adapting a scope, graphically

X X→ X

Adapting a scope, graphically

X X→ X

proj

Adapting a scope, graphically

X X→ X

X→

proj proj

Adapting a scope, graphically

X X→ X

X→

proj proj proj

And now the foggy part

Typing a concrete language

 We see endpoint processes as protocol types for programs

written in a more concrete language

 A program will execute different sessions in interleaving

– Ivan program will execute the ‘Working on adaptive session

types’ session, the ‘Take care of family’ session, ...

 Each participant in each session follows a protocol

– Obtained by projecting the corresponding choreography on the

chosen participant

 This ensures that the good properties of the protocols are

reflected in the program

– More troubles come from the interleaving of sessions

Adapting interleaved sessions

 To adapt the code of a participant

– All the protocols executed by the code should allow for the

adaptation

» They should all feature a scope with the given name

– The adaptation may come from one of them or from outside

 Adapting one participant requires to update the other

participants too

– May be involved in other protocols

– More participants may need to be considered

Current state

 This is a work in (very slow) progress

 What we have

– Syntax and semantics for choreographies and endpoints

– Projection

– A more serious example

 What we have still to do

– Correctness proof, concrete language, typing rules, correctness

of typing

Introducing next talk

 This work is very related to the work on adaptive

choreographies presented in next talk

– This work is at the level of types, the other one at the level of

language

– The other work only considers external updates

– The other work is at a more advanced stage (currently

submitted)

Future work

 Complete the current work

 Fully understand the interplay between

interleaved sessions and adaptation

 Refinement

– This was our original motivation

– Having internal updates motivated (also) by this

End of talk

