
Ivan Lanese
Computer Science Department

University of Bologna/INRIA
Italy

Retractable Contracts
And Beyond

Joint work with Franco Barbanera,
Mariangiola Dezani-Ciancaglini

and Ugo de'Liguoro

Map of the talk

 Why retractable contracts?
 What is a retractable contract?
 What is a speculative contract?
 What is beyond?

Map of the talk

 Why retractable contracts?
 What is a retractable contract?
 What is a speculative contract?
 What is beyond?

Undoing things considered harmful

 Undo operations are useful and widespread
● Undo command in your favorite editor
● Back button in your favorite browser
● Restore a past backup

 In interactions (unilateral) undo may lead to
unpredictable or undesired results
● What happens if you press the back button of the browser

while reserving a flight?
● You don’t want a client to be able to undo her payment after a

purchase
 Undo activities must be disciplined

Contracts

 A (binary) contract is the abstract description
of the behaviour of a client or a server

 A client complies with a server if all her requirements
are fulfilled
● by reaching a distinguished satisfaction state or
● by running an infinite interaction without ever getting stuck

 A client that does not comply with its server may get
stuck

Retractable contracts

 We start from binary contracts
 Getting stuck may depend on wrong choices taken

during the interaction
 Going back to past choices and trying different paths

may solve the problem
 This will “facilitate” compliance
 We explore a notion of contracts where past decisions

are stored and can be undone

Map of the talk

 Why retractable contracts?
 What is a retractable contract?
 What is a speculative contract?
 What is beyond?

Retractable contracts: syntax

 success
external input choice
internal output choice
retractable output choice
internal input choice
variable
recursion

 We add (no more alternatives) to contracts
 Histories are stacks of contracts
 Contracts with history:

σ ,ρ: :=1
∑i∈ I

ai .σi

⊕i∈ I ai .σi

∑i∈ I
ai .σi

x

rec x .σ

σ∘
h : :=[] | h :σ

h≺σ

⊕i∈ I ai .σi

Motivating problem

 A buyer wants to buy either a bag or a belt
 She will decide whether to pay by card or cash

after knowing the price

 The seller accepts cards only for bags, not for belts

 Buyer and seller are not compliant
 They become compliant if we make, e.g., the buyer choice

between bag and belt retractable
 The buyer is still able to pay a belt with card if interacting

with a seller allowing this

Buyer=bag . price .(card⊕cash)⊕belt . price .(card⊕cash)

Seller=bag . price .(card+cash)+belt . price .cash

Motivating problem

 A buyer wants to buy either a bag or a belt
 She will decide whether to pay by card or cash

after knowing the price

 The seller accepts cards only for bags, not for belts

 Buyer and seller are not compliant
 They become compliant if we make, e.g., the buyer choice

between bag and belt retractable
 The buyer is still able to pay a belt with card if interacting

with a seller allowing this

Buyer=bag . price .(card⊕cash)+belt . price .(card⊕cash)

Seller=bag . price .(card+cash)+belt . price .cash

Retractable contracts: semantics

 Contracts are executed as usual but…
 … branches in external choices which are not selected are

stored in the history
 When the interaction is stuck, both client and server can pop

from the history the last state

Sample computation

 Buyer =

 Seller =

[] ≺ bag . price .(card⊕cash)+belt . price .(card⊕cash)

[] ≺ bag . price .(card+cash)+belt . price .cash

Sample computation

 Buyer =

 Seller =

[] ≺ bag . price .(card⊕cash)+belt . price .(card⊕cash)

[] ≺ bag . price .(card+cash)+belt . price .cash

→ [] :bag . price .(card⊕cash) ≺ price .(card⊕cash)

→ [] :bag . price .(card+cash) ≺ price .cash

Sample computation

 Buyer =

 Seller =

[] ≺ bag . price .(card⊕cash)+belt . price .(card⊕cash)

[] ≺ bag . price .(card+cash)+belt . price .cash

→ [] :bag . price .(card⊕cash) ≺ price .(card⊕cash)

→ [] :bag . price .(card+cash) ≺ price .cash

→ [] :bag . price .(card⊕cash):∘ ≺ card⊕cash

→ [] :bag . price .(card+cash) :∘ ≺ cash

Sample computation

 Buyer =

 Seller =

[]: bag . price .(card⊕cash) :∘ ≺ card⊕cash

[]: bag . price .(card+cash) :∘ ≺ cash

Sample computation

 Buyer =

 Seller =

[]: bag . price .(card⊕cash) :∘ ≺ card⊕cash

[]: bag . price .(card+cash) :∘ ≺ cash

→ [] :bag . price .(card⊕cash):∘ ≺ card

Sample computation

 Buyer =

 Seller =

[]: bag . price .(card⊕cash) :∘ ≺ card⊕cash

[]: bag . price .(card+cash) :∘ ≺ cash

→ [] :bag . price .(card⊕cash):∘ ≺ card

Interaction
 is stuck

Sample computation

 Buyer =

 Seller =

[]: bag . price .(card⊕cash) :∘ ≺ card

[]: bag . price .(card+cash) :∘ ≺ cash

Sample computation

 Buyer =

 Seller =

[]: bag . price .(card⊕cash) :∘ ≺ card

[]: bag . price .(card+cash) :∘ ≺ cash

→ [] :bag . price .(card⊕cash) ≺ ∘

→ [] :bag . price .(card+cash) ≺ ∘

Sample computation

 Buyer =

 Seller =

[]: bag . price .(card⊕cash) :∘ ≺ card

[]: bag . price .(card+cash) :∘ ≺ cash

→ [] :bag . price .(card⊕cash) ≺ ∘

→ [] :bag . price .(card+cash) ≺ ∘

→ [] ≺ bag . price .(card⊕cash)

→ [] ≺ bag . price .(card+cash)

Sample computation

 Buyer =

 Seller =

[] ≺ bag . price .(card⊕cash)

[] ≺ bag . price .(card+cash)

Sample computation

 Buyer =

 Seller =

[] ≺ bag . price .(card⊕cash)

→ [] :∘ ≺ price .(card⊕cash)

→ [] :∘ ≺ price .(card+cash)

[] ≺ bag . price .(card+cash)

Sample computation

 Buyer =

 Seller =

[] ≺ bag . price .(card⊕cash)

→ [] :∘ ≺ price .(card⊕cash)

→ [] :∘ ≺ price .(card+cash)

[] ≺ bag . price .(card+cash)

→ [] :∘:∘ ≺ card⊕cash

→ [] :∘:∘ ≺ card+cash

Sample computation

 Buyer =

 Seller =

[]:∘:∘ ≺ card⊕cash

[]:∘:∘ ≺ card+cash

Sample computation

 Buyer =

 Seller =

[]:∘:∘ ≺ card⊕cash

[]:∘:∘ ≺ card+cash

→ [] :∘:∘ ≺ card

Sample computation

 Buyer =

 Seller =

[]:∘:∘ ≺ card⊕cash

[]:∘:∘ ≺ card+cash

→ [] :∘:∘ ≺ card

→ [] :∘:∘:∘ ≺ 1

[]:∘:∘: cash ≺ 1

Compliance

 We can use the standard notion of compliance
● If the computation gets stuck, then the client is satisfied

 We can define a formal system to decide compliance
 The main novelty is that two external choices are compliant

iff there exists a compatible branch

 The formal system is correct, complete and terminating,
hence it can be transformed into a procedure

 The procedure requires
● More than for standard contracts

O(n5)

Γ,α .ρ+ρ '⊣α .σ+σ ' ▷ ρ⊣σ

Γ ▷ α .ρ+ρ '⊣α .σ+σ '

Duality and subcontract relation

 From the notion of compliance we can define a notion of
subcontract
● Replacing a contract with a subcontract preserves

compliance
 The syntactic dual is also a semantic dual

● The more general compliant contract

ba c

a⊕b a⊕c b⊕c

a+b a+c b+c

a⊕b⊕c

a+b+c

Map of the talk

 Why retractable contracts?
 What is a retractable contract?
 What is a speculative contract?
 What is beyond?

Speculative contracts

 We start again from binary contracts
 For efficiency reasons one may want to try different

options concurrently
 As soon as one of them succeeds, the whole

computation is successful
 We use the same syntax that we used for retractable

contracts
● Now external choice among outputs has the

speculative behaviour above
● External since the environment can slow down

undesired paths selecting the one he wants to succeed

Speculative contracts: results

 The decision procedure for retractable contracts and for
speculative contracts coincide

 As a consequence, all the results about compliance,
duality and subcontract apply

Map of the talk

 Why retractable contracts?
 What is a retractable contract?
 What is a speculative contract?
 What is beyond?

Summary

 We presented a model of contracts with retractable
choice
● Compliance
● Subcontract relation
● Duality

 Simple and neat extension of the theory of binary
contracts

 Using retractable choice instead of normal choice
extends the set of compliant contracts

 The same theory captures also speculative execution

What is beyond?

 Explore the notion of retractable contracts
in multiparty sessions

 Are there other meaningful ways to exploit
contracts/behavioural types to control reversibility?

 Are there other useful computational patterns that can
be tamed using contracts?

End of talk

Most related work

Franco Barbanera, Mariangiola Dezani-Ciancaglini, Ugo
de'Liguoro: Compliance for reversible client/server
interactions. BEAT 2014
also considered contracts with rollback

 BEAT 2014 vs PLACES 2015
 Free rollback vs rollback only when stuck
 Explicit checkpoint vs implicit checkpoint
 One checkpoint vs stack of checkpoints
 Compliance harder vs compliance easier

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 36

