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Undoing things considered harmful

 Undo operations are useful and widespread
● Undo command in your favorite editor
● Back button in your favorite browser
● Restore a past backup

 In interactions (unilateral) undo may lead to 
unpredictable or undesired results
● What happens if you press the back button of the browser 

while reserving a flight?
● You don’t want a client to be able to undo her payment after a 

purchase
 Undo activities must be disciplined



Contracts

 A (binary) contract is the abstract description
of the behaviour of a client or a server

 A client complies with a server if all her requirements 
are fulfilled
● by reaching a distinguished satisfaction state or
● by running an infinite interaction without ever getting stuck

 A client that does not comply with its server may get 
stuck



Retractable contracts

 We start from binary contracts
 Getting stuck may depend on wrong choices taken 

during the interaction
 Going back to past choices and trying different paths 

may solve the problem
 This will “facilitate” compliance
 We explore a notion of contracts where past decisions 

are stored and can be undone
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Retractable contracts: syntax

  success
external input choice
internal output choice
retractable output choice
internal input choice
variable
recursion

 We add   (no more alternatives) to contracts 
 Histories are stacks of contracts   
 Contracts with history: 

σ ,ρ: :=1
∑i∈ I

ai .σi

⊕i∈ I ai .σi

∑i∈ I
ai .σi

x

rec x .σ

σ∘
h : :=[ ] | h :σ

h≺σ

⊕i∈ I ai .σi



Motivating problem

 A buyer wants to buy either a bag or a belt
 She will decide whether to pay by card or cash

after knowing the price

 The seller accepts cards only for bags, not for belts

 Buyer and seller are not compliant
 They become compliant if we make, e.g., the buyer choice 

between bag and belt retractable
 The buyer is still able to pay a belt with card if interacting 

with a seller allowing this

Buyer=bag . price .(card⊕cash)⊕belt . price .(card⊕cash)

Seller=bag . price .(card+cash)+belt . price .cash
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Retractable contracts: semantics

 Contracts are executed as usual but…
 … branches in external choices which are not selected are 

stored in the history
 When the interaction is stuck, both client and server can pop 

from the history the last state
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Compliance

 We can use the standard notion of compliance
● If the computation gets stuck, then the client is satisfied

 We can define a formal system to decide compliance
 The main novelty is that two external choices are compliant 

iff there exists a compatible branch

 The formal system is correct, complete and terminating, 
hence it can be transformed into a procedure 

 The procedure requires
● More than for standard contracts

 

O(n5)

Γ,α .ρ+ρ '⊣α .σ+σ ' ▷ ρ⊣σ

Γ ▷ α .ρ+ρ '⊣α .σ+σ '



Duality and subcontract relation

 From the notion of compliance we can define a notion of 
subcontract
● Replacing a contract with a subcontract preserves 

compliance
 The syntactic dual is also a semantic dual

● The more general compliant contract

ba c

a⊕b a⊕c b⊕c

a+b a+c b+c

a⊕b⊕c

a+b+c
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Speculative contracts

 We start again from binary contracts
 For efficiency reasons one may want to try different 

options concurrently
 As soon as one of them succeeds, the whole 

computation is successful
 We use the same syntax that we used for retractable 

contracts
● Now external choice among outputs has the 

speculative behaviour above
● External since the environment can slow down 

undesired paths selecting the one he wants to succeed



Speculative contracts: results

 The decision procedure for retractable contracts and for 
speculative contracts coincide

 As a consequence, all the results about compliance, 
duality and subcontract apply
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Summary

 We presented a model of contracts with retractable 
choice
● Compliance
● Subcontract relation
● Duality

 Simple and neat extension of the theory of binary 
contracts

 Using retractable choice instead of normal choice 
extends the set of compliant contracts

 The same theory captures also speculative execution



What is beyond?

 Explore the notion of retractable contracts 
in multiparty sessions

 Are there other meaningful ways to exploit 
contracts/behavioural types to control reversibility?

 Are there other useful computational patterns that can 
be tamed using contracts?



End of talk



Most related work

Franco Barbanera, Mariangiola Dezani-Ciancaglini, Ugo 
de'Liguoro: Compliance for reversible client/server 
interactions. BEAT 2014
also considered contracts with rollback

    BEAT 2014                 vs       PLACES 2015
 Free rollback                vs      rollback only when stuck
 Explicit checkpoint      vs      implicit checkpoint
 One checkpoint            vs      stack of checkpoints
 Compliance harder       vs      compliance easier   
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