
Towards Global and Local Types

for Adaptation

Ivan Lanese

Computer Science Department

University of Bologna/INRIA

Italy

Joint work with Mario Bravetti, Marco Carbone,

Thomas Hildebrandt, Jacopo Mauro, Jorge A.

Perez and Gianluigi Zavattaro

Many distributed participants

Complex multiparty interactions

 Jacopo and Ivan were working on adaptive choreographies

(with others)

 Marco was working on multiparty session types (with

others)

 Mario, Jorge and Gianluigi were working on adaptable

calculi (with others)

 Thomas was working on adaptable case management

systems (with others)

 Mario, Marco, Thomas, Ivan, Jacopo, Jorge and Gianluigi

wanted to start a collaboration on multiparty session types

and adaptation

Message-based communication (e-mail)

 CaseStudy: Thomas → Mario

Thomas sends a proposal for a case study to Mario

 CommentsReq: Mario → Ivan

Mario asks Ivan for comments on the syntax

 WriteConcl: Gianluigi → Jorge

Gianluigi asks Jorge to write conclusions

 Cut: Mario → Jacopo

Mario asks Jacopo to cut the paper to respect the page limit

Participants act according to the choreography

 CommentsReq: Mario → Ivan; Comments: Ivan → Mario

 Ivan behavior should follow the type:

CommentsReqMario;CommentsMario

 Ivan code interleaves different sessions:

k : CommentsReqMario(x);

k’ : BuyBreadWife;

k’ : BreadWife<1kg>;

k : CommentsMario<comm.txt>

 Each session respects a given type

Unexpected adaptation needs

 External adaptation need:

– Simon Gay announces BEAT II: the choreography is adapted to

submit a work-in-progress to it

– Marco notices that most of us will attend DisCoTec 2013: the

choreography is adapted to exploit this occasion to work together

» Marco is a participant of the choreography, but

» DisCoTec attendance is not mentioned in the choreography

» It may be part of another choreography Marco is participating to

 Internal adaptation need:

– Mario finds a bug in the definition of traces: the choreography is

adapted to fix it

Our plan

 Write choreographies to describe complex multiparty

interactions

 Derive a description of the behavior of each participant

 Type the code of each participant according to its local

description(s)

– The code may involve many interleaved sessions

 Typing ensures good properties

– The code follows the expected protocol

– No deadlock

Our plan

 Write choreographies to describe complex multiparty

interactions

 Derive a description of the behavior of each participant

 Type the code of each participant according to its local

description(s)

– The code may involve many interleaved sessions

 Typing ensures good properties

– The code follows the expected protocol

– No deadlock

Adaptation

 Systems should live for long periods of time

 Systems should adapt to

– Changes in the environment (new technologies, protocols,

unexpected workload)

– Changes in users minds (new requirements, changing business

rules)

 Adaptation happens at runtime

 The system should be adapted with minimal disruption of

functionalities

– No shut down, recompile, and restart

How to face the unexpected?

 Adaptation details (frequently) not known when

the system has been designed or even started

 To face those unexpected challenges something should

come from outside

– New code

– Exploiting the new technology, defining the new business rule, ...

 The system should provide an interface to

– Interact with an adaptation middleware

– Get new code

– Combine it with the existing code

Internal vs external updates

 External updates

– New code from the environment

» A participant of another choreography

» The human user via some interface

– Fundamental to deal with unexpected events

 Internal updates

– New code from a participant of the choreography

– Towards another area of the same choreography

– Useful as a programming construct, e.g., for error handling

– Enhances compositionality

– Specifying the choreographies and the updates in the same

language useful for refinement

Adaptation and multiparty session types

 Lots of works on adaptation exist

– Our main contribution is not an innovative way of doing

adaptation

 Formal approaches emerging only very recently

– Our main contribution is in guaranteeing desirable properties

 Trade off between

– Allowing substantial adaptations

» One would be able to change everything

– Preserving good properties

» Easier if one changes very little

» Easier if one knows in advance what is changing and how

 Adaptive multiparty session types provide a good trade off

Adaptation constructs

 Impossible to guarentee good properties if adaptations can

happen everywhere

– We need a construct to specify where adaptation can happen

– We call it a scope

– A scope contains code, to be executed if no adaptation occurs

– Running scopes can be adapted too (also from inside)

 A construct is needed for internal update

– Should provide the new code for a given scope

 Similar constructs at the level of choreographies, endpoints

and code

Constructs for external update

 None

 External updates come from outside

– Not specified in the choreography

– The system does not know how things will change

 We add external updates to the semantics, extending the

notion of traces

 External updates are updates coming from a parallel

(unspecified) choreography

Choreography language

 Composed by interactions of the form

CommentsReq: Mario → Ivan

 Standard composition operators:

sequence ; parallel | choice + Kleene star *

 Two operators for adaptation

– X:T[C] scope with name X executing choreography C with set

of roles (at most) T

– Xr{C} internal update of a scope done by role r, putting into the

scope with name X the new choreography C

Endpoint language

 Processes composed by inputs and outputs of the form

CommentsReqIvan CommentsReqMario

 The same composition operators as before:

sequence ; parallel | choice + Kleene star *

 Two operators for adaptation

– X[P] scope with name X executing process P

– X(r1,...,rn){P1,...,Pn} update of a scope X sending process Pi to

endpoint ri

» A single update involves multiple endpoints

 A system description is a parallel composition of endpoints

– Each endpoint has a name and executes a process

Projection

 Allow one to automatically derive from a choreography the

description of each endpoint

 Moving from more abstract to more concrete

 Op: r → s | r = Ops

Op: r → s | s = Opr

Op: r → s | r’ = 1

 X:T[C] | r = X[C|r] if r in T

X:T[C] | r = 1 otherwise

 Xs{C} | r = X(r1,...,rn){C|r1,...,C|rn} if r=s, type(X)={r1,...,rn}

Xs{C} | r = 1 otherwise

 Other operators are projected homomorphically

Expected result

 The traces of the projected system are included in the

traces of the choreography

– For all possible adaptations

 Holds only for well formed choreographies and adaptations

 Key challenge: ensuring that all the participants agree on

where we are in the choreography

– Which branch has been taken in a choice

– Whether a given scope should be adapted or not

– Which is the new code for a given scope

– When one should stop executing the old code and start executing

the new one

 Semantics carefully crafted to ensure this

Adapting a scope, graphically

X X→ X

Adapting a scope, graphically

X X→ X

proj

Adapting a scope, graphically

X X→ X

X→

proj proj

Adapting a scope, graphically

X X→ X

X→

proj proj proj

And now the foggy part

Typing a concrete language

 We see endpoint processes as protocol types for programs

written in a more concrete language

 A program will execute different sessions in interleaving

– Ivan program will execute the ‘Working on adaptive session

types’ session, the ‘Take care of family’ session, ...

 Each session follows a protocol, defined by the projection

of the corresponding choreography on the chosen

participant

 This ensures that the good properties of the protocols are

reflected in the program

– More troubles come from the interleaving of sessions

Adapting interleaved sessions

 To adapt the code of a participant

– All the protocols executed by the code should allow for the

adaptation

» They should all feature a scope with the given name

– The adaptation may come from one of them or from outside

 Adapting one participant requires to update the other

participants too

– May be involved in other protocols

– More participants may need to be considered

Current state

 This is a work in progress

 What we have

– Syntax and semantics for choreographies and endpoints,

projection

– Similar to adaptive choreographies [LaneseEtAl2013], but

differs on some key design choices

» Allowing internal updates

» Abstract synchronization mechanism

– A more serious example in the paper

 What we are still working on

– Correctness proof, concrete language, typing rules, correctness

of typing

Future work

 Complete the current work

 Fully understand the interplay between

interleaved sessions and adaptation

 Refinement

– This was our original motivation

– Having internal updates motivated (also) by this

End of talk

