
Ivan Lanese
Computer Science Department

University of Bologna/INRIA
Italy

Retractable Contracts

Joint work with Franco Barbanera,
Mariangiola Dezani-Ciancaglini

and Ugo de'Liguoro

Map of the talk

 Why retractable contracts?
 What is a retractable contract?
 Results
 Conclusion

Map of the talk

 Why retractable contracts?
 What is a retractable contract?
 Results
 Conclusion

Contracts

 A contract is the abstract description of
 the behavior of either a client or a server

 A client complies with a server if all her requirements
are fulfilled
– by reaching a distinguished satisfaction state or
– by running an infinite interaction without ever getting stuck

 A client that does not comply with its server may get
stuck

 Compliance is statically decidable

Undoing things considered harmful

 Undo operations are useful and widespread
– Undo command in your favorite editor
– Restore a past backup
– Back button in your favorite browser

 In interacting systems (unilateral) undo may lead to
unpredictable or undesired results
– What happens if you press the back button when reserving a

flight?
– You don’t want a client to undo her payment after a purchase

 Undo activities must be disciplined
 Retractable contracts are a way to discipline activities

including undo operations

Retractable contracts: approach

 Getting stuck may depend on wrong choices taken
during the interaction

 Going back to past choices and trying different paths
may solve the problem

 This will “facilitate” compliance
 In this work we explore a notion of contracts where past

decisions are stored and can be undone

Map of the talk

 Why retractable contracts?
 What is a retractable contract?
 Results
 Conclusion

Retractable contracts: syntax

σ ::= 1 success
⊕

i∈I
 a

i
.σ

i
internal output choice

Σ
i∈I

 a
i
.σ

i
external input choice

 X variable
rec X.σ recursion
Σ

i∈I
 a

i
.σ

i
 retractable output choice

 ⊕
i∈I

 a
i
.σ

i
 internal input choice

Standard
contracts

Retractable contracts: main idea

 The peculiar operator is retractable output choice:
Σ

i∈I
 a

i
.σ

i

 It behaves as follows:

– it performs an output, but other options are stored

– if the computation gets stuck, undo is performed and
another option is tried

Retractable contracts: history information

 To give semantics to contracts we need history
information

 We add ○ (empty contract) to contracts σ
 Histories are stacks of contracts h ::= [] | h:σ
 Contracts with history: h ≺ σ

Motivating problem

 A buyer wants to buy either a bag or a belt
 She will decide whether to pay by card or cash after

knowing the price
 Buyer =

bag.price.(card ⊕ cash) ⊕ belt.price.(card ⊕ cash)

 The seller accepts cards only for bags, not for belts

 Seller =

bag.price.(card + cash) + belt.price.cash

 Buyer and seller are not compliant

Reversibility to the rescue

 Buyer =
bag.price.(card ⊕ cash) ⊕ belt.price.(card ⊕ cash)

 Seller =

bag.price.(card + cash) + belt.price.cash

 They become compliant if we make the buyer choice

between bag and belt retractable
– Or the one between card and cash (for belt)

 The buyer is still able to pay a belt with card if

interacting with a seller allowing this

Reversibility to the rescue

 Buyer =
bag.price.(card ⊕ cash) + belt.price.(card ⊕ cash)

 Seller =

bag.price.(card + cash) + belt.price.cash

 They become compliant if we make the buyer choice

between bag and belt retractable
– Or the one between card and cash (for belt)

 The buyer is still able to pay a belt with card if

interacting with a seller allowing this

Sample computation

 Buyer’ =
[] ≺ bag.price.(card ⊕ cash) + belt.price.(card ⊕ cash)

 Seller =

[] ≺ bag.price.(card + cash) + belt.price.cash

Sample computation

 Buyer’ =
[] ≺ bag.price.(card ⊕ cash) + belt.price.(card ⊕ cash)

bag.price.(card ⊕ cash) ≺ price.(card ⊕ cash)

 Seller =

[] ≺ bag.price.(card + cash) + belt.price.cash

bag.price.(card + cash) ≺ price.cash

Sample computation

 Buyer’ =
[] ≺ bag.price.(card ⊕ cash) + belt.price.(card ⊕ cash)

bag.price.(card ⊕ cash) ≺ price.(card ⊕ cash)

bag.price.(card ⊕ cash) : ○ ≺ card ⊕ cash

 Seller =

[] ≺ bag.price.(card + cash) + belt.price.cash

bag.price.(card + cash) ≺ price.cash

bag.price.(card + cash) : ○ ≺ cash

Sample computation

 Buyer’ =
[] ≺ bag.price.(card ⊕ cash) + belt.price.(card ⊕ cash)

bag.price.(card ⊕ cash) ≺ price.(card ⊕ cash)

bag.price.(card ⊕ cash) : ○ ≺ card ⊕ cash

bag.price.(card ⊕ cash) : ○ ≺ card

 Seller =

[] ≺ bag.price.(card + cash) + belt.price.cash

bag.price.(card + cash) ≺ price.cash

bag.price.(card + cash) : ○ ≺ cash

Sample computation

 Buyer’ =
bag.price.(card ⊕ cash) : ○ ≺ card

 Seller =

bag.price.(card + cash) : ○ ≺ cash

Sample computation

 Buyer’ =
bag.price.(card ⊕ cash) : ○ ≺ card

bag.price.(card ⊕ cash) ≺ ○

 Seller =

bag.price.(card + cash) : ○ ≺ cash

bag.price.(card + cash) ≺ ○

Sample computation

 Buyer’ =
bag.price.(card ⊕ cash) : ○ ≺ card

bag.price.(card ⊕ cash) ≺ ○

[] ≺ bag.price.(card ⊕ cash)

 Seller =

bag.price.(card + cash) : ○ ≺ cash

bag.price.(card + cash) ≺ ○

[] ≺ bag.price.(card + cash)

Sample computation

 Buyer’ =
[] ≺ bag.price.(card ⊕ cash)

 Seller =

[] ≺ bag.price.(card + cash)

Sample computation

 Buyer’ =
[] ≺ bag.price.(card ⊕ cash)

○ ≺ price.(card ⊕ cash)

 Seller =

[] ≺ bag.price.(card + cash)

○ ≺ price.(card + cash)

Sample computation

 Buyer’ =
[] ≺ bag.price.(card ⊕ cash)

○ ≺ price.(card ⊕ cash)

○ : ○ ≺ card ⊕ cash

 Seller =

[] ≺ bag.price.(card + cash)

○ ≺ price.(card + cash)

○ : ○ ≺ card + cash

Sample computation

 Buyer’ =
○ : ○ ≺ card ⊕ cash

 Seller =

○ : ○ ≺ card + cash

Sample computation

 Buyer’ =
○ : ○ ≺ card ⊕ cash

○ : ○ ≺ card

 Seller =

○ : ○ ≺ card + cash

Sample computation

 Buyer’ =
○ : ○ ≺ card ⊕ cash

○ : ○ ≺ card

○ : ○ : ○ ≺ 1

 Seller =

○ : ○ ≺ card + cash

○ : ○ : cash ≺ 1

Map of the talk

 Why retractable contracts?
 What is a retractable contract?
 Results
 Conclusion

Compliance

 The compliance relation h ≺ σ ╢ k ≺ ρ holds iff
 h ≺ σ || k ≺ ρ →* h’ ≺ σ’ || k’ ≺ ρ’ ↛ implies σ’ = 1

– If the computation stops then the client is satisfied

 The compliance relation on contracts is obtained by
executing them with an empty history

Compliance: results

 Compliance is decidable even for contracts with
recursion

 The complexity is O(n5)

– Straightforward algorithm is exponential

 The algorithm extends in a non trivial way the one for
subtyping of recursive arrow and product types from
Pierce

Subcontract relation

 Subcontract relation for servers:
ρ ≼s ρ’ iff for each client σ. σ ╢ρ implies σ ╢ρ’

– ρ has more clients than ρ’
 Subcontract relation for clients is dual:

σ ≼c σ’ iff for each server ρ. σ ╢ρ implies σ’ ╢ρ
 The two subcontract relations are partial orders
 The dual σ of a client contract σ is the minimum server

compliant with σ

Subcontract relation: example

Duality has a simple syntactic characterization

1 ↔ 1

Σ
i∈I

 a
i
.σ

i ↔ ⊕
i∈I

 a
i
.σ

i

 Σ
i∈I

 a
i
.σ

i ↔ ⊕
i∈I

 a
i
.σ

i

X ↔ X

rec X.σ ↔ rec X.σ

Subcontract relation: results

 Subcontract relation for servers and for clients are
related:
ρ ≼s ρ’ iff ρ’ ≼c ρ

 Subcontract relation and compliance are related:
ρ ≼s ρ’ iff ρ ╢ρ’

 Also the subcontract relation can be decided in O(n5)

Retractable contracts vs reversible computation

 Take retractable contracts without retraction
 Apply to it the technique to make a calculus reversible

from Phillips and Ulidowski
 Retraction corresponds to a sequence of backward steps

in the resulting reversible calculus
 Hence, retractable contracts are a form of reversible

computation with internal/semantic control
 If you drop these forms of control then compliance

becomes trivial

Map of the talk

 Why retractable contracts?
 What is a retractable contract?
 Results
 Conclusion

Summary

 We presented a model of contracts with retractable
choice

 Using retractable choice instead of normal choice
ensures compliance with a larger set of partners

 Retractable contracts have most of the good properties
of contracts:

– decidability of compliance and subcontract relation
– efficient decidability algorithm
– easy syntactic characterization of duality

Future work

 Explore the notion of retractable contracts
in multiparty sessions

 How can we extract a contract from a reversible
application?

 Are there other meaningful ways to exploit
contracts/behavioural types to control reversibility?

End of talk

Most related work

 Franco Barbanera, Mariangiola Dezani-Ciancaglini,
Ugo de'Liguoro: Compliance for reversible client/server
interactions. BEAT 2014
also considered contracts with rollback

 BEAT 2014 vs PLACES 2015
 Free rollback vs rollback only when stuck
 Explicit checkpoint vs implicit checkpoint
 One checkpoint vs stack of checkpoints
 Compliance harder vs compliance easier

	Diapositiva 1
	Map of the talk
	Diapositiva 3
	Contracts
	Undoing things considered harmful
	Retractable contracts
	Diapositiva 7
	Retractable contracts: syntax
	Diapositiva 9
	Diapositiva 10
	Motivating problem
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Compliance
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Summary
	Future work
	End of talk
	Most related work

