
Android Internals
(This is not the droid you’re loking for...)

Giacomo Bergami
giacomo90@libero.it

Università di Bologna

My Thesis work
How Android is (really) made

Impact Therapy
Native Applications
Example: Our first Client/Server.

JNI
Binder’s Anatomy & System Startup

C++ Services
Java Services
A final review

AudioFlinger
Yet Another Android Hotchpotch (1)
Android AOSP Compilation
Yet Another Android Hotchpotch (2)

PjMedia Issue: Codecs

My thesis work
Main Goals

§ Can a pjsip-based VoIP application (pjsua) run on
Android?
The question “seems legitimate”, as pjsua is a non-standard
Java-Android application. It’s a C-native app.
˛ Can I crosscompile a GNU/Linux application to Android?
˛ Does a native application directly interact with the Kernel?
˛ How does Android know that I want to gain access to the

microphone?
˛ How can I dodge Android’s controls?

My thesis work
Subproblems

˛ Android SDK Emulator
§ Communication between
emulators.

§ Audio hardware emulation
is not provided.

˛ Olivetti Olitab (Medion Life
Tab)

§ No factory image
§ No sourcecode support
§ Non standard “rooting”
procedure (nvflash)
ñ Samsung Galaxy

Nexus.

My thesis work
PjProject Architecture

Hardware

/dev/binder
Android Kernel

Permission
Controller

DVM

JNI+libs
media_server

+ services

Pjproject (pjsip)

Native Apps (pjsua)

Android Audio
Libraries

Permission
Checker

Data obtainer

HW audio libs

1

2

3

4

5

A
nd

ro
id

A
rc

hi
te

ct
ur

e
O

ve
rv

ie
w

(K
er

ne
l+

A
O

S
P
)

G
N

U
/L

in
ux

W
in

do
w

s

Modifications

1. Redefinition of entry-point
_start inside Android
NDK.

2. Resizing “Conference” Buffer
for previous overflow.

3. Removal of the access limit
to audio sampling to a client
only.

Code Analysis

4. Analysis on the IPC Buffer
for sampled audio.

5. Client/Service Interaction.

How Android is (really) made
Google Point of View

How Android is (really) made
marakana.com Point of View

System Apps

Device: /system/app/

Src: packages/

User Apps

Device: /data/app/

Src: device/marakana/alpha/app/

Java Libraries

Device:
/system/framework/

Src: libcore/

(java.* and javax.*)System Services

Device: /system/app/
Src:
frameworks/base/cmds/system_server
frameworks/base/core/

Android Framework Libraries

Device: /system/framework/ (android.*)

Src: frameworks/base/core/

Linux Kernel

Not part of Android source (AOSP)

Native Libs

Device: /system/lib/

Src:
bionic/
external/
frameworks/base

HAL

Device:
/system/lib/hw

Src:
hardware/

Native Daemons

Device: /system/bin

Src:
system/
external/
frameworks/base/cmds/

Init/Toolbox

Device:
/init
/system/bin

Src: system/core/

Dalvik Runtime

Device: /system/bin/dalvikvm and /system/bin/app_process
Src: dalvik/ and frameworks/base/core/

API
Level

Binder

JNI

App

Java
lib

Service

Native
lib

Native
bin

.so

Driver

The site has been updated!!

How Android is (really) made
Yaghmour Point of View

AOSP Source, Upsyscalls and Services... But where is the
“middleware”??

But what’s my point of view? I’ll explain it later...

Definitions
Android Applications

Java apps All-Java code. Compiled with javac and SDK API-s.
(Good for Google Play...)

Native apps (JNI) All-Java code with JNI to access to
system-dependant ad hoc features. (How to sell your
app? - ndk-build script)

Native apps Using the processor directly without any DVM - but is
it for real?? (No package, no aptitude: nerd mode
on!!)

I call Android Open Source Project Source (AOSP Source for
short) the superstructure that implements the Android
Middleware, wich is the collection of services and native libraries
given by Google, immediately over the Kernel Level.

Impact Therapy
Native applications (1)

Let’s start with native applications...
˛ Is it really possible to create native applications? yes!
˛ How could we do it? crosscompilers!
˛ Does Google provide a crosscompiler? yes!
˛ Does it work? no (android-ndk-r8b)

˛ Why? Let’s see...

Impact Therapy
Native applications (2) - NDK problems

˛ (NDK): The cross-compiler didn’t use the _start entry point
and the one provided (well hidden) didn’t match with the
crosscompiler version.

˛ An example of this entry point (crt0.s) is given with the
sources.

˛ Necessary to initialize the C library... libc? no, bionic. Here’s a
different shared memory implementation via Android Services.

#define MAX 4096
#define NAME "regione"

void* data;
int fd = ashmem_create_region(NAME,MAX);
if (fd<=0) return;

if (data = mmap(NULL,MAX,PROT_READ|PROT_WRITE,MAP_SHARED,fd,0)) {
/* no further ancillary data is provided */

}

Impact Therapy
Native applications (3) - NDK Flags

˛ Not really essentials for SDK Emulators.
˛ Not necessary when you compile the AOSP.
˛ You must use them if you compile for a non standard ARM

device.

ARMv5:

-march=armv5te -mtune=xscale -msoft-float\
-fpic -ffunction-sections -funwind-tables -fstack-protector \
-fno-exceptions -D__ARM_ARCH_5__ -D__ARM_ARCH_5T__ \
-D__ARM_ARCH_5E__ -D__ARM_ARCH_5TE__ -Wno-psabi -mthumb -Os \
-fomit-frame-pointer -fno-strict-aliasing -finline-limit=64 \
-DANDROID -Wa,--noexecstack -O2 -mfpu=vfpv3-d16 -DNDEBUG -g

ARMv4:

-march=armv4t -mcpu=arm920t -mtune=xscale \
-msoft-float -fpic \
-mthumb-interwork \
-ffunction-sections \
-funwind-tables \
-fstack-protector \
-fno-short-enums \
-D__ARM_ARCH_4__ -D__ARM_ARCH_4T__ \
-D__ARM_ARCH_5E__ -D__ARM_ARCH_5TE__

And in some cases you could simply compile...

Example
Our first Client/Server Native C program (1)

I show that we could create a mobile application and then execute
it inside an Android Emulator. But first, we must setup an Android
Machine. Better if without Eclipse. See for instance the Android
UniBo Page: http://www.cs.unibo.it/projects/android.
Inside the SDK folder:

tools/android sdk

installs the Android APIs for the emulator. Then we shall create an
sdcard image in order to store our files.

tools/mksdcard size outfile

http://www.cs.unibo.it/projects/android

Example
Our first Client/Server Native C program (2)

Then we could create an Android Virtual Device instance.

tools/android create avd -n name_emu -t api -sdcard file

After this, we could run our new device:

tols/emulator -avd name_emu -partition-size 2047

And after that we could access the shell, push or pull some file.

platform-tools/adb -s number shell|push

where the number of the running device is given by:

platform-tools/adb devices

Example
Our first Client/Server Native C program (3)

Notice that /sdcard is mounted as not executable: you should
place your binaries into /data/local and create a subfolder ./bin.

Example
Our first Client/Server Native C program (3)

export LDFLAGS=" -nostdlib -Wl,-rpath-link=${ANDROID_SYSROOT}/usr
/lib -L${ANDROID_SYSROOT}/usr/lib "

export LIBS=" -lc -lgcc -lm"
export CFLAGS=" -I${ANDROID_SYSROOT}/usr/include -I${ANDROID_TC}/

include -mfloat-abi=softfp -mfpu=vfp -fpic -ffunction-
sections -fstack-protector -msoft-float -Os -fomit-frame-
pointer -fno-strict-aliasing -finline-limit=64 -
D__ARM_ARCH_5__ -D__ARM_ARCH_5T__ -D__ARM_ARCH_5E__ -
D__ARM_ARCH_5TE__ -DANDROID -Wa,--noexecstack -O2 -DNDEBUG
-g "

export CPPFLAGS=" ${CFLAGS} "
export CXXFLAGS=" --sysroot=${ANDROID_SYSROOT}"

˛ The source is given with the tarball: notice that is a simple C
program. (No Google APIs whatsoever - cliserver.c).

˛ The compilation script is also provided - from PjProject
(ndk-make-test)

§ ANDROID_NDK is the NDK path.
§ API_LEVEL selects the desired API level.
§ Selection of the target architecture and flags as showed above.

Example
Our first Client/Server Native C program (4)

Example
Our first Client/Server Native C program (5)

telnet localhost 5554

§ A Telnet prompt appears.
§ Invoke help: sms, gsm, network emulations.

> redir add tcp:12345:12345

§ Pipe linking the emulator and the real host machine.
§ A server in the host machine receives the requests from the
emulator as they were from the real loopback.

§ A server in the emulator receives the requests from the host
machin as they were from the emulator loopback.

Definitions
JNI

JNI
The Java Native Interface is a programming framework that
enables Java code running in a Java Virtual Machine (e.g. DVM)
to call, and to be called by, native applications (programs specific
to a hardware and operating system platform) and libraries written
in other languaeges such as C, C++ and assembly.

— en.Wikipedia

Java:

class MyClass {
private native void method();
public void othermethod() {

/* no further ancillary data is provided */
}

}

C:

#include <jni.h>
#include "MyClass.h"

JNIEXPORT void JNICALL Java_MyClass_method(JNIEnv *env, jobject
this) {

jclass class = (*env)->GetObjectClass(env,this);
jmethodID callee = (*env)->GetMethodID(env,class,"othermethod"."

()V");
(*env)->CallVoidMethod(end,obj,callee);
}

Java-to-C examples:
UEventObserver Observes some netlink events at kernel level, and

retrieves some informations (such as usb plug’n’play).
Binder A virtual Kernel Driver that implements IPC features

(do you remember marshalling/unmarshalling?
Bundle Passing around Activities? Intents? Android
Java “Developer Services”?).

The Binder permits also to communicate the other
way around!

Why do we need to talk about the Binder?
˛ PjProject for Android uses standard Android native libraries.
˛ By executing a correctly compiled native binary (pjsua), we

have that logcat claims that:
§ On a rooted emulator, we cannot access to the audio device
(in fact, we have that the emulator don’t emulate any audio).
Ergo the simulator is not useful at all! (Some GoogleMaps
problems in Java too!)

§ On a un-rooted device, a permission error while accessing the
audio library.

§ On a rooted device, a permission error while performing a
double access to the microphone device.

˛ Let’s get down to business!! Donwload the source with
https://dl-ssl.google.com/dl/googlesource/

git-repo/repo

repo init -u https://android.googlesource.com/platform/
manifest

repo sync

Binder’s Anatomy

The Binder is a hierarchically structured Android Structure that is
implemented over the following levels:
Java API interface It calls native methods implemented on the JNI

library level.
JNI the file android_util_Binder.cpp links Java code

and C++ “middleware” interface level.
C++ “middleware” Implements Binder middleware facilities for

C++ apps.
Kernel Driver Implements a driver that answeres to the primitive

ioctl, poll syscalls. This code is part of the
servicemanager itself.

https://dl-ssl.google.com/dl/googlesource/git-repo/repo
https://dl-ssl.google.com/dl/googlesource/git-repo/repo

System startup (1)
app_process Starts the DVM, which initializes the JNI layer.

Zygote Initializes the SystemServer, which registers the Java
services through the Binder.java.

servicemanager The Binder server, aka the Android System
Context Manager.

Android Startup

init

zygote (Android Runtime -> Dalvik)

servicemanager

Kernel
/dev/binder /dev/foo/dev/foo/dev/foo

mediaserver

vold

netd

installd

...

ueventd

surfaceflinger

Zygote

system_server

SystemServer

ActivityManagerService

PackageManagerService

LocationManagerService

VibratorManagerService

...

AudioFlingerMediaPlayerServiceCameraService

SurfaceFlinger

WifiService

System startup (2)

libhardware
_legacy

AudioPolicy
Service AudioFlinger

media_server app_process

ZygoteInit SystemServer Permission
Controller

SystemServer Binder
JNI

AndroidRuntime (DVM)

Kernel
libbinder

/dev/binder

Native Apps

Java App+Framework

JNI/Native

::istantiate()

::onTransact()

publish()

start/join-
ThreadPool()

runtime->start()
startVm()
startReg()

Call Java
ZygoteInit.main()

fork()
SystemServer.main()

init1()

start/join-
ThreadPool()

ServerThread.run()

::transact()

executeTransact()

C++ Services

C++ Services
Definitions

BpBinder Provides a Proxy for the C++ application (and in
particular to an BpXXX implementation) via the
ProcessState and IPCThreadState. It retreives
services references and adds new ones.

BpXXX Is a general name for a C++ Proxy with interface
IXXX, that is partially implemented with a
IMPLEMENT_META_INTERFACE macro.

BnXXX Is a general name for a C++ Stub which is an
abstract class implemented from the actual service. In
a manner of speaking, it’s the object returned from
the TalkWithDriver method and over which the final
RPC is done via some Parcel data.

C++ Services
Registration: A Visual Example

C++ Services
Registration: AudioFlinger Example (1)

The media_server initialization is given as follows:

using namespace android;

int main(int argc, char** argv)
{

sp<ProcessState> proc(ProcessState::self()); //new Service
Server

sp<IServiceManager> sm = defaultServiceManager();//BpBinder
AudioFlinger::instantiate(); // C++ Service Creation
/* ... */
ProcessState::self()->startThreadPool();
IPCThreadState::self()->joinThreadPool(); //Listening IPCs

}

Where ProcessState opens the Binder’s Shared Memory in order
to receive IPC Data (mmap) from the given Binder fd.

C++ Services
Registration: AudioFlinger Example (2)

Where the registration procedes via instantiate as follows:

static status_t publish(bool allowIsolated = false) {
sp<IServiceManager> sm(defaultServiceManager());
return sm->addService(String16(SERVICE::getServiceName())

, new SERVICE(), allowIsolated);
}

In a manner of speaking, the binder driver stores the generated
AudioFlinger class (subclass of a BnAudioFlinger) as its
“pointer”, called handle.

C++ Services
Invocation Example: recordingAllowed() and checkPermission() - (1)

AudioPolicyService AudioFlinger AudioRecord

Wilhelm

libhardware
_legacy

AudioPolicy
ManagerBase

ClientThread RecordHandle

RecordThread libnbaio

libbinder & /dev/binder

Realize

set()

getInput()

getInput() openInput()

openRecord()

checkPermission()

Start

run()

getActiveInput()

recordingAllowed()

C++ Services
Invocation Example: recordingAllowed() and checkPermission() - (2)

§ Why all those messy lines? Because of Google’s spaghetti code!

§ Security issue with C-Structures and dlopen.

C++ Services
Invocation Example: recordingAllowed() and checkPermission() - (3)

In this example, Android firstly retreives the permission service via BpBinder:

sp<IBinder> binder = defaultServiceManager()->checkService(
_permission); /* some other code */

pc = interface_cast<IPermissionController>(binder);

which will call the asInterface method generated via the
IMPLEMENT_META_INTERFACE macro.

android::sp<I##INTERFACE> I##INTERFACE::asInterface(const android
::sp<android::IBinder>& obj) {

android::sp<I##INTERFACE> intr;
if (obj != NULL) {

intr = static_cast<I##INTERFACE*>(
obj->queryLocalInterface(I##INTERFACE::descriptor).get());
if (intr == NULL) intr = new Bp##INTERFACE(obj);

}
return intr;

}

returning a BpPermissionController that calls transact over BpBinder. But
where is BnPermissionController implemented, since there is no C++ class that
extends it?

Java Services
Yet another Java Dirty Trick

Let’s examine now the C++ “middleware” and JNI level that
underly the Java Binder APIs.

Let’s see the Registration and Invocation mechanism.

Java Services
Proxy and Stub Generation (1)

static class PermissionController extends IPermissionController.
Stub {
ActivityManagerService mActivityManagerService;
PermissionController(ActivityManagerService

activityManagerService) {
mActivityManagerService = activityManagerService;

}

public boolean checkPermission(String permission, int pid,
int uid) {
return mActivityManagerService.checkPermission(permission

, pid,
uid) == PackageManager.PERMISSION_GRANTED;

}
}

This is the final method that will be invoked from C++. After a
few passages, we arrive to a ActivityManager class.

Java Services
Proxy and Stub Generation (2)

Proxy And Stubs are automatically generated in Java by Android
Interface Definition Language.
package android.os;

interface IPermissionController {
boolean checkPermission(String permission, int pid, int uid);

}

The Stub.java inside the tarball contains the compilation of the
above example via SDK/platform-tools/aidl

The generated Stub is then extended in the way showed in the
following slide.

Java Services
Proxy and Stub Generation (3)

public static int checkComponentPermission(String permission, int
uid, int owningUid, boolean exported) {

// Root, system server get to do everything.
if (uid == 0 || uid == Process.SYSTEM_UID) {

return PackageManager.PERMISSION_GRANTED;
}
// Isolated processes don’t get any permissions.
if (UserId.isIsolated(uid)) {

return PackageManager.PERMISSION_DENIED;
}
// If there is a uid that owns whatever is being accessed, it

has blanket access to it regardless of the permissions
it requires.

if (owningUid >= 0 && UserId.isSameApp(uid, owningUid)) {
return PackageManager.PERMISSION_GRANTED;

}
return AppGlobals.getPackageManager()

.checkUidPermission(permission, uid);
//...

}

Java Services
Registration at System Startup - Initialization (1)

Native Libraries

libhardware
_legacy

AudioPolicy
Service AudioFlinger wilhelm

libmedia

libnbaio

media_server app_process

ZygoteInit SystemServer Permission
Controller

SystemServer Binder
JNI

AndroidRuntime (DVM)

pjsua

Kernel
libbinder

/dev/binder

Native Apps

Java App+Framework

runtime->start()

startVm()
startReg()

Call Java
ZygoteInit.main()

fork()
SystemServer.main()

init1()
start/join-

ThreadPool()

ServerThread.run()

start/join-
ThreadPool()

::istantiate()

::onTransact()

publish()

::executeTransact()

::transact()

JNI

Native Libraries

libhardware
_legacy

AudioPolicy
Service AudioFlinger wilhelm

libmedia

libnbaio

media_server app_process

ZygoteInit SystemServer Permission
Controller

SystemServer Binder
JNI

AndroidRuntime (DVM)

pjsua

Kernel
libbinder

/dev/binder

Native Apps

Java App+Framework

runtime->start()

startVm()
startReg()

Call Java
ZygoteInit.main()

fork()
SystemServer.main()

init1()
start/join-

ThreadPool()

ServerThread.run()

start/join-
ThreadPool()

::istantiate()

::onTransact()

publish()

::executeTransact()

::transact()

JNI

Java Services
Registration at System Startup - Initialization (2)

Let’s analyze android_util_Binder.cpp. As far as:

BinderJ :> IPermissionController.StubJ :> PermissionControllerJ

the Java binder class Binder calls the native init, and so:

static void android_os_Binder_init(JNIEnv* env, jobject obj)
{

JavaBBinderHolder* jbh = new JavaBBinderHolder();
if (jbh == NULL) {

jniThrowException(env, "java/lang/OutOfMemoryError", NULL
);

return;
}
jbh->incStrong((void*)android_os_Binder_init);
env->SetIntField(obj, gBinderOffsets.mObject, (int)jbh);

}

android_util_Binder.cpp

Java Services
Registration at System Startup - Initialization (3)

The Binder JNI initialization is carried out as follows:

static int int_register_android_os_Binder(JNIEnv* env)
{

jclass clazz=clazz = env->FindClass(kBinderPathName);
// Obtains the reference to the Class "definition"
gBinderOffsets.mClass = (jclass) env->NewGlobalRef(clazz);
gBinderOffsets.mExecTransact

= env->GetMethodID(clazz, "execTransact", "(IIII)Z");
assert(gBinderOffsets.mExecTransact);

gBinderOffsets.mObject
= env->GetFieldID(clazz, "mObject", "I");

/* ... */
}

We have that we memorize the ID of each method and.

Java Services
Registration at System Startup - Initialization (4)

Even Java Needs the native Context Manager to operate and so, at
JNI level:

static jobject android_os_BinderInternal_getContextObject(JNIEnv*
env, jobject clazz)

{
sp<IBinder> b = ProcessState::self()->getContextObject(NULL);
return javaObjectForIBinder(env, b);

}

Where javaObjectForIBinder casts the Binder Proxy into a Java
BinderProxy object, in order to invoke natively the addService

method defined in Binder.java method.

Java Services
Registration at System Startup - Adding Service (1)

ServiceManagerNative.java

public void addService(String name, IBinder service, boolean
allowIsolated) throws RemoteException {
Parcel data = Parcel.obtain();
Parcel reply = Parcel.obtain();
data.writeInterfaceToken(IServiceManager.descriptor);
data.writeString(name);
data.writeStrongBinder(service);
data.writeInt(allowIsolated ? 1 : 0);
mRemote.transact(ADD_SERVICE_TRANSACTION, data, reply, 0);
reply.recycle();
data.recycle();

}

§ Passing a Java object inside the Parcel via a native method.
§ Invoking with mRemote the Binder connection.

Java Services
Registration at System Startup - Adding Service (2)

In the native JNI method there is the following call:

const status_t err = parcel->writeStrongBinder(
ibinderForJavaObject(env, object));

And for instance:

sp<IBinder> ibinderForJavaObject(JNIEnv* env, jobject obj)
{

if (obj == NULL) return NULL;
if (env->IsInstanceOf(obj, gBinderOffsets.mClass)) {

JavaBBinderHolder* jbh = (JavaBBinderHolder*)
env->GetIntField(obj, gBinderOffsets.mObject);

return jbh != NULL ? jbh->get(env, obj) : NULL;
}
//Omissis

}

Java Services
Registration at System Startup - Adding Service (3)

In this case, for a correct execution, true is returned, and hence
the get invocation produces a JavaBBinder object:

b = new JavaBBinder(env, obj);

that is a public BBinder subclass, where the following association
is formed inside the constructor:

mObject = env->NewGlobalRef(object);

where we remember that, during the method calls we have that:

mObject = env->NewGlobalRef(object ” obj ” service)

As far as ibinderForJavaObject returns:

env->GetIntField(obj,gBinderOffsets.mObject);

this means returning service.mObject, and that will be written
inside the Parcel, that is the BBinder object.

Java Services
Registration at System Startup - Adding Service (4)

Now, let’s see the transaction system. Returning to
ServiceManagerNative.java, we could see the following code:
static jboolean android_os_BinderProxy_transact(JNIEnv* env,

jobject obj, jint code, jobject dataObj, jobject replyObj,
jint flags) // throws RemoteException

{
//Error checks or logs are omitted...
Parcel* reply = parcelForJavaObject(env, replyObj);

//Previous Singleton
IBinder* target = (IBinder*)

env->GetIntField(obj, gBinderProxyOffsets.mObject);

status_t err = target->transact(code, *data, reply, flags);
}

Java Services
Java Applications Interaction (New!)

I don’t show how an Android Activity interacts with the Binder in order to obtain a

service, but the previous considerations could explain that picture really well.

Java Services
Invocation Example: checkPermission() - (1)

§ Remember the previous checkPermission() invocation?
§ Which main loop does PermissionController use?
§ How a C++ class could invoke a Java method, in order to call
checkPermission?

Let’s get back to system initialization...

Java Services
Invocation Example: checkPermission() - (2)

extern "C" status_t system_init()
{

// And now start the Android runtime. We have to do this bit
of nastiness because the Android runtime initialization
requires some of the core system services to already be
started. All other servers should just start the Android
runtime at the beginning of their processes’s main(),
before calling the init function.

AndroidRuntime* runtime = AndroidRuntime::getRuntime();
JNIEnv* env = runtime->getJNIEnv();
jclass clazz = env->FindClass("com/android/server/

SystemServer");
ALOGI("System server: starting Android services.\n");
jmethodID methodId = env->GetStaticMethodID(clazz, "init2", "

()V");
env->CallStaticVoidMethod(clazz, methodId);

ProcessState::self()->startThreadPool();
IPCThreadState::self()->joinThreadPool();

}

Java Services
Invocation Example: checkPermission() - (3)

So we have our main loop. That example showed also a way to call
a Java Medhod (init2). Let’s analyze our class hierarchy (C++ and
then Java):

Java Services
Invocation Example: checkPermission() - (4)

//Some check code was omitted
virtual status_t onTransact(uint32_t code, const Parcel& data,

Parcel* reply, uint32_t flags = 0)
{

IPCThreadState* thread_state = IPCThreadState::self();

jboolean res = env->CallBooleanMethod(mObject, gBinderOffsets
.mExecTransact,
code, (int32_t)&data, (int32_t)reply, flags);

jthrowable excep = env->ExceptionOccurred();

// Need to always call through the native implementation of
// SYSPROPS_TRANSACTION.
if (code == SYSPROPS_TRANSACTION) {

BBinder::onTransact(code, data, reply, flags);
}

}

Services
A final review (1)

˛ I showed how application (C++ and Java) could interact
throught Binder.

˛ In particular, I showed how the Wilhelm library depends on
Java based code to security issues.

˛ Hence, why rooting is needed? (Think, does native apps have
capability lists?)

˛ Why we should root our devices to do what we want?

Services
A final review (2)

A proposed architecture by other researchers.

Services
A final review (3)

A final high-level overview.

Yet Another Android Hotchpotch
AudioRecorder... Remember?

AudioPolicyService AudioFlinger AudioRecord

Wilhelm

libhardware
_legacy

AudioPolicy
ManagerBase

ClientThread RecordHandle

RecordThread libnbaio

libbinder & /dev/binder

Realize

set()

getInput()

getInput() openInput()

openRecord()

checkPermission()

Start

run()

getActiveInput()

recordingAllowed()

Yet Another Android Hotchpotch
AudioPolicyManagerBase

I obtained an error about having multiple devices running
altogether.
// refuse 2 active AudioRecord clients at the same time
if (getActiveInput() != 0) {

ALOGW("startInput() input %% failed: other input already
started", input);

return INVALID_OPERATION;
}

§ Is it a bogus limitation?? Then I removed that control...
§ ...And another error occurred while starting the second audio
recorder: the logcat told me that no data was read from the
second...

§ But the first one was reading the microphone data!

Android AOSP compilation
Libraries needed for the compilation process

sudo apt-get install git-core gnupg flex bison gperf build-
essential \

zip curl libc6-dev libncurses5-dev:i386 x11proto-core-dev \
libx11-dev:i386 libreadline6-dev:i386 libgl1-mesa-glx:i386 \
libgl1-mesa-dev g++-multilib mingw32 openjdk-6-jdk tofrodos \
python-markdown libxml2-utils xsltproc zlib1g-dev:i386

sudo ln -s /usr/lib/i386-linux-gnu/mesa/libGL.so.1 /usr/lib/i386-
linux-gnu/libGL.so

sudo apt-get install xmlto doxygen

Android AOSP compilation and Flashing
Java reconfiguration and compilation

Java Reconfiguration:

sudo update-alternatives --install /usr/bin/java java /usr/lib/
jvm/jdk1.6.0_33/bin/java 1

sudo update-alternatives --install /usr/bin/javac javac /usr/lib/
jvm/jdk1.6.0_33/bin/javac 1

sudo update-alternatives --install /usr/bin/javaws javaws /usr/
lib/jvm/jdk1.6.0_33/bin/javaws 1

sudo update-alternatives --config java
sudo update-alternatives --config javac
sudo update-alternatives --config javaws

Compile:

make clobber
. build/envsetup.sh
make

Now take a meal, go outside, take a trip...

Android AOSP compilation and Flashing
Flashing

Be sure you have a 3.2.x Linux Kernel... Inside the AOSP path
(aosp):

fastboot oem unlock
export PATH=aosp/out/host/linux-x86/bin/:aosp/
export ANDROID_PRODUCT_OUT=aosp/out/target/product/maguro
cd aosp/out/target/product/maguro
fastboot -w flashall

Backup all your data via terminal first!!

Yet Another Android Hotchpotch
getInput()

Why to analyze this problem? I want to execute two pjsua

instances on the same node.

AudioPolicyService::getInput()
ë mpAudioPolicy->get_input()

ë lap->apm->getInput() [audio_policy_hal.cpp] (ovvero
AudioPolicyManagerBase)

ë AudioPolicyManagerBase::getInput()
ë mpClientInterface->openInput() [AudioPolicyManagerBase.

cpp]
ë AudioPolicyCompatClient::openInput()

ë mServiceOps->open_input_on_module() [
AudioPolicyCompatClient.cpp]

ë aps_open_input_on_module() [AudioPolicyService.cpp]
ë AudioFlinger::openInput()

ë mRecordThreads.add(id,new RecordThread(this,...))

Yet Another Android Hotchpotch
openRecord()

˛ The system checks for an existant RecordThreads: yes! It has
been created before.

˛ By registerPid_l, a Client object is created in order to
acheive an ashmem through MemoryDealer, initializated only
after a following step.

˛ A ClientRecordThread is created, in order to send to Wilhelm
data with a callback.

Yet Another Android Hotchpotch
The final Hotchpotch

That’s all for Android...
...but do not think that it’s over yet!

We’ve seen that:
˛ Android Native libraries create a permission

control-middleware.
˛ Android (4.1) doesn’t support resource sharing.
˛ Problems with Android FileSystem system permission

(statically cabled inside the AOSP).
˛ Now, time for some PjMedia issues...

Wave

N.B.:
SampleRate ” ClockRate

Wave
The problem...

Error:

21:19:09.101 conference.c !WARNING: EXCEEDING. bufcount = 0,
bufcap = 429, tmpsize=438, spf=219

21:19:09.102 conference.c bufcount = 219, bufcap = 429,
tmpsize=438, spf=219

21:19:09.102 conference.c WARNING: EXCEEDING. bufcount = 219,
bufcap = 429, tmpsize=438, spf=219

21:19:09.102 conference.c bufcount = 438, bufcap = 429,
tmpsize=438, spf=219

assertion "cport->rx_buf_count <= cport->rx_buf_cap" failed: file
"../src/pjmedia/conference.c", line 1513, function "
read_port"

§ What is a resampling buffer?
§ bufcount vs. bufcap

Wave
...and some accounting (1)

ByteRate “ SampleRate ¨BlockAlign

BlockAlign “ bps{8 ¨NumChannels

From pjmedia:

spfc “ µptimec ¨ SampleRatec ¨ chac ¨ 10´6

“ ptimec ¨ SampleRatec ¨ chac ¨ 10´3

ptimeι “
spfι
chaι

103

clockι
ι P tc , pu

where c is for conference port, and p is for the incoming/outcoming
audio port.

2 ¨ bufcap “ tmpsize “ 2 ¨ spfc ¨

Wave
...and some accounting (2)

bufcap “ clockp ¨

„

103
ˆ

spfp
chap ¨ clockp

`
spfc

chac ¨ clockc

˙

¨ 10´3

“

ˆ

spfp
chap

`
spfc ¨ clockp

chac ¨ clockc

˙

As far as:
bufcap “ clockp ¨ buff_ptime ¨ 10´3

if (port_ptime > conf_ptime) {
buff_ptime = port_ptime;
if (port_ptime % conf_ptime)

buff_ptime += conf_ptime;
} else {
buff_ptime = conf_ptime;
if (port_ptime % conf_ptime)

buff_ptime += port_ptime;
}

buff_ptime ă maxtptimep, ptimecu `mintptimep, ptimecu “
ř

ι ptimeι

Wave
...and some accounting (2)

And hence:

bufcap « spfc ` sfpc
1

crate
1{crate “ clockp{clockc

Supposed that a Wave file could have max. 2 audio channels, and
that in pjmedia they state that:

if (conf_port->channel_count > conf->channel_count)
conf_port->rx_buf_cap *= conf_port->channel_count;

else
conf_port->rx_buf_cap *= conf->channel_count;

bufcap « 2 ¨ pspfc ` sfpc
1

crate
q ď 4 ¨ spfc

Insights

§ From my Bachelor Thesis, of course [Italian]:
http://amslaurea.unibo.it/4441/1/bergami_

giacomo_tesi.pdf

§ You could find some more informations on C++-Binder:
http://blogimg.chinaunix.net/blog/upfile2/
081203105044.pdf

§ Some free infos about the JNI are given in: http://www.
soi.city.ac.uk/~kloukin/IN2P3/material/jni.pdf

§ Some more informations about the Java JNI service
registration [Chinese]:
http://book.51cto.com/art/201208/353342.htm,
http:
//blog.csdn.net/tjy1985/article/details/7408698

http://amslaurea.unibo.it/4441/1/bergami_giacomo_tesi.pdf
http://amslaurea.unibo.it/4441/1/bergami_giacomo_tesi.pdf
http://blogimg.chinaunix.net/blog/upfile2/081203105044.pdf
http://blogimg.chinaunix.net/blog/upfile2/081203105044.pdf
http://www.soi.city.ac.uk/~kloukin/IN2P3/material/jni.pdf
http://www.soi.city.ac.uk/~kloukin/IN2P3/material/jni.pdf
http://book.51cto.com/art/201208/353342.htm
http://blog.csdn.net/tjy1985/article/details/7408698
http://blog.csdn.net/tjy1985/article/details/7408698

-

	My Thesis work
	How Android is (really) made

	Impact Therapy
	Native Applications
	Example: Our first Client/Server.

	JNI
	Binder's Anatomy & System Startup
	C++ Services
	Java Services
	A final review

	AudioFlinger
	Yet Another Android Hotchpotch (1)
	Android AOSP Compilation
	Yet Another Android Hotchpotch (2)

	PjMedia Issue: Codecs

