
Searching over Metapositions in Kriegspiel

Andrea Bolognesi1 and Paolo Ciancarini2

1 Dipartimento di Scienze Matematiche e Informatiche “Roberto Magari”,
University of Siena, Italy,
abologne@cs.unibo.it ,

2 Dipartimento di Scienze dell’Informazione, University of Bologna, Italy
cianca@cs.unibo.it,

Abstract. Kriegspiel is a Chess variant similar to wargames, in which
players have to deal with uncertainty. Kriegspiel increases the difficulty
typical of Chess by hiding from each player his opponent’s moves. Al-
though it is a two person game it needs a referee, whose task consists in
accepting the legal moves and rejecting the illegal ones, with respect to
the real situation. Neither player knows the whole history of moves and
each player has to guess the state of the game on the basis of messages
received from the referee. A player’s try may result legal or illegal, and
a legal move may prove to be a capture or a check.
The paper describes the rationale of a program to play basic endgames of
Kriegspiel, where a player has left only the King. These endings have been
theoretically studied with rule-based mechanisms, whereas few researches
exist on a gametree-based approach.
We show how the branch of game tree can be reduced in order to employ
an evaluation function and a search algorithm. Then we deal with game
situations dependent on stochastic element and we show how we resolve
them during the tree visit.

1 Introduction

Kriegspiel is a Chess variant similar to wargames, in which players have to deal
with uncertainty. All Chess rules are valid, but the players are not informed of
their opponent’s moves. Although it is a two person game, it needs a referee,
whose task consists in accepting the legal moves and rejecting the illegal ones,
with respect to the real situation. As the game progresses, each player tries to
guess the position of his opponent’s pieces by trying moves to which the referee
can stay silent, if the move is legal, or he can announce ”illegal move”, if the
move is illegal. Then the player has to make another try. If the move is legal
and it gives check or captures a piece, the referee says ”check” or ”capture”,
respectively. Moreover, in order to speed up the game if a Pawn can capture an
opponent’s piece this is also announced.

For instance, this is a simple game (we omit illegal tries):
1.e4 f6. The referee stays silent (both moves are legal).
2.e5. The referee announces: ”Black has a Pawn try”
2...fe5. The referee says ”Pawn captured on e5”.

3.
�

h5 The referee announces: ”Check on short diagonal”

� � � � �
� � � � �
� � � � �
� � � � � �
� � � � �� � � � �
� 	
 	

 	

�� � � �� �
� � � � � � � �

� �� �� � !"
� # $# $# # $� � � � �
� � � # � �
� � � � �� � � � �
� 	
 	

 	

�� � � �� �
� � � � � � � �

� �� �� � !"
� # $# $# # $� � � � �
� � � # �
� � � � �� � � � �
� � � � �
�� � � �
� � � � � � � �

3. ..g6. The referee stays silent.
4.
�

e2 The referee announces: ”Black has a Pawn try”
4. ..gh5. The referee says ”piece captured on h5”.
5.
�

xh5 The referee announces: ”Checkmate”
The three diagrams (left for White, center for referee, right for Black) shown

after move three are a typical way to display the partial knowledge that players
have about the current state of a Kriegspiel game: a player does not know what
his opponent has done up to his turn to move. Therefore Kriegspiel is considered
a game of imperfect information. Incidentally, we call the leftmost and rightmost
boards reference boards for White and Black, respectively.

The design of a Kriegspiel playing program is an interesting problem, because
we can adapt most techniques already developed for Computer Chess. However,
it remains a problem to adapt to Kriegspiel the game tree search and the evalua-
tion function typical of chess playing programs, because each player is uncertain
about the position of his opponent’s pieces. In theory it would be possible to
build a huge game tree taking into account all possible positions compatible with
past announcements from the referee. In practice this is an impossible task, be-
cause the complete game tree of Kriegspiel is much larger than in the case of
Chess.

In this article we propose a way to reduce the game tree which leads to a
representation through metapositions instead of normal chess positions. In order
to simplify our task, in the next sections we will consider simple endings, ie. Black
having only his King and White having a King and a Rook (in the rook ending

or %�
�

), a King and a Queen (%�
�

), a King and two Bishops (%��
�

),

and a King and a Pawn (% 	
�

).
These endings are simple but all are quite difficult to play under uncer-

tainty about the position of the opponent King. We have developed algorithmic
solutions, which solve a given ending in all positions, however we will have to
distinguish between positions without a stochastic element, that are states where
it is possible to deterministically find the best move to play among the possi-
ble ones, and positions with a stochastic element, that are states from which a
player may reach several equivalent metapositions through different moves. We
will deal with the latter by randomly choosing one of the equivalent moves.

In Section 3 we start describing how we represent uncertainty using metaposi-
tions and we show the adjustments done on the game tree to have a deterministic
search, then we deal with the case of search including moves randomly chosen. In

section 4 we propose the evaluation function for basic endgames and we describe
the search algorithm which use the evaluation function. In this section we deal
with several endings (including %�

�
, %�

�
, %��

�
, % 	

�
) and we show

some examples of games played by the program.

2 Related works

Although it is a fascinating game, played by several hundreds of people every day
on the Internet Chess Club, only a small number of papers have studied some
aspects of Kriegspiel or Kriegspiel-like games. Below we provide some instances
of related work.

Boyce proposed a procedure to solve the %�
�

ending, that we have imple-
mented to be able to evaluate our algorithm [2] . Ferguson analysed the endings

%�
�

([5]) and %��
�

([6]), respectively. Ciancarini, Dalla Libera and

Maran ([4]) described a rule-based program to play the % 	
�

ending according
to some principles of game theory. Sakuta and Iida in ([7]) described a program
to solve Kriegspiel-like problems in Shogi (Japanese Chess). Bud and others
([3]) described an approach to the design of a computer player for a sub-game
of Kriegspiel, called Invisible Chess. Finally, our paper [1] describes a prelimi-

nary research on %�
�

endings in Kriegspiel. The present paper expands and
generalizes that work to other endings.

3 Metapositions

3.1 Game situation without stochastic element

Diagram 1 shows an example of position during a game of %�
�

ending. Sup-
pose it is White turn to move. At the first ply, the game tree whose root is the
position on diagram 1 has a branch of 11 moves, corresponding to the possible
White’s moves, plus the Black’s ones, which are, in 7 cases, 5; in 2 different cases
they are 6, finally, in 2 last cases they are 3. � � � � ��

� � � � �� � � � �
� � � � &
� � � � �� � � � �
� � � � �
�� � � �
� � � � � � � �

Table 1. Example of %�
�

ending position.

Black’s choices compose the information
sets for White, who does not know where
Black has moved his pieces. Thus there are 32
information sets for White, in all 53 nodes; go-
ing on with the tree visit we have to handle a
numerical growth, that is really difficult to be
dealt with brute force. Consider the tree de-
picted in figure 1 reached from the miniature
in diagram 1 with move

�
f8: Black’s possi-

ble moves are
�

h5,
�

h4 or
�

g4. White now
faces two information sets of 2 and 1 elements
respectively. The former includes 21 possible moves3, while the latter includes
19 moves. Thus, the game tree branches out with 2 · 21+ 19 = 61 further nodes.

3 7 for the King and 14 for the Rook

'
f8

Black

WhiteWhite

(
g4

(
h5(

h4

)
x7'
x14

x

)
x7'
x14
y

)
x5'
x14

z

Fig. 1. White has 1 information set with
more than 1 element.

In figure 1 x, y, and z denote the
value of positions computed by an
evaluation function we will deal with
in section 4.

In general, whether there is a in-
formation set with more than an el-
ement, it is not possible to employ a
search algorithm on the game tree to
find a optimal solution. If Black had a
priority over his choices, which lead to
the same information set, White could
perform a tree visit to deduce which
move of Black is the most dangerous.
The problem arises when in the infor-
mation set with more than one ele-
ment we have to deal with alternative positions having the same probability.

A possible solution consists in joining the information sets into a single posi-
tion which describes them all. By collecting those states reached with same like-
lihood we can simultaneously represent them, without the constraint of choosing
one of them. In this way moves with different priorities can be safely represented
without the risk of losing information. Thus, we adopt the notion of metapo-

sition [7], which is a special position denoting a set of positions. Besides the
referee’s board, each player updates his own board, which is annotated with all
the possible opponent’s positions. We recall that we refer to the metaposition
representing the knowledge of a player with the term reference board.

*
f8

Black

WhiteWhite

+
g4∧
+

h4
+

h5

,
x7*
x14

x′ ' min(x, y)

,
x5*
x14

z

Fig. 2. White has 2 information sets
with 1 element.

Now we join those moves made by
Black which lead to the same informa-
tion set, obtaining identical metapo-
sitions with similar uncertainty about
the White’s pieces positions. The ex-
ample in figure 1 is reduced as in fig-
ure 2. Moves

�
g4 ∧

�
h4, which led

to the same information set, lead now
to a unique metaposition.

According to the definition, the
tree in figure 2 represents a game of

perfect information. In the example
above the unification of moves leads
to sub-gametrees whose evaluation is
given by the minimum value of the
original branches as evaluated before
the join. The formula x′ = min(x, y), where x′ is the new evaluation of the
metaposition, requires the calculation of both x and y. Thus, the problem is not
dissimilar from the previous one.

An improvement to the tree visit can be made considering the evaluation
function not only with its recursive role, returning a value for a position at a
particular depth, but also with a static meaning, in order to give a value during
the tree visit and to distinguish the promising one among several branches.

Because of the complexity of a procedure which distinguishes between Black’s
moves that lead to different information sets for White, that is moves that lead
to metapositions or to simple positions, we define the game tree in a simpler but
equivalent way.

We define the notion of metamove, which is a move that the black King
can perform and that transforms a metaposition into another one. A metamove
allows White to update his reference board expanding all the possible moves for
Black. The metamove does not include only the moves that lead to the same
information set, but it comprises all the possible moves that Black can play
from that particular metaposition. In some sense, we are transforming a basic
Kriegspiel endgame in a new game where White has to confront several black
Kings. In doing this we loose the property of information sets which claims that
from each node into the set there are the same moves. We introduce the concept
of pseudomove to indicate the moves by White on a metaposition. Pseudomoves
are moves whose legality is not known to White.

The Black’s moves joined for the previous example are
�

h5,
�

h4 and
�

g4.
Figure 3 shows the new game tree with metapositions.

-
f8

II

I

.
h5∧
.

g4∧
.

h4

/
x7

.

-
x14

pseudomoves

S C I S C I

x ≤ y ≤ z x′ ≥ y′ ≤ z′

Fig. 3. The game tree with metaposi-
tions

The set P of pseudomoves has a
cardinality equal to that of the union
of possible legal moves by White for
each position.

|P | = | ∪ (legal moves)| (1)

For the example in figure 3 White al-
ways considers 21 pseudomoves, even
if he is in the case with 19 legal
moves, because he cannot distinguish
between the two situations.

In order to have the new tree
equivalent to the former, we introduce
the information given by the referee.
In fact, what characterizes the pseu-
domoves is the referee’s answer, which
can be silent (S), check (C) or illegal

(I). Thus, the game tree has a branching factor equal to 3 · i, where i is the
number of metapositions.

Starting from diagram depicted in 1, there are 11 moves for White which
lead, after considering Black’s move, to 11 metapositions, as showed in figure

44. If we considered separately moves made by Black for each move by White
we would have obtained 33 information sets and 53 positions in total. If we
consider only metapositions, instead of all possible positions, we obtain just 11
metapositions. Thus, the game tree with the referee’s answers has a branching
factor equal to 3 · 11 = 33 nodes.

8 00010
70002
6 0000
50003
4 0000
30000
2 0000
10000

a b c d e f g h

8
10000

70002
6 0000
5000404
4 00343
30000
2 0000
10000

a b c d e f g h

(×5)

8 0050
70002
6 0000
500004
4 00043
30000
2 0000
10000

a b c d e f g h

8 0005
70002
6 0000
500040
4 00340
30000
2 0000
10000

a b c d e f g h

8 00210
70000
6 0033
5000404
4 0033
30000
2 0000
10000

a b c d e f g h

8 00012
70000
6 0033
5000404
4 0033
30000
2 0000
10000

a b c d e f g h

8 00010
700060
6 0003
5000404
4 0033
30000
2 0000
10000

a b c d e f g h

8 00010
700006
6 0030
5000404
4 0033
30000
2 0000
10000

a b c d e f g h

7
a8 (×5) 7

f8 7
h8 8

f8

8
h8

8
f7

8
h7

︸ ︷︷ ︸

g4
h4 f4 f5

h5

︸ ︷︷ ︸

g4
h4

h5

︸ ︷︷ ︸

f5
f4

g4

︸ ︷︷ ︸

f5
h5

f4 h4 f6
h6

︸ ︷︷ ︸

f5
h5

f4 h4 f6
h6

︸ ︷︷ ︸

f4

h4 f5 h5
h6

︸ ︷︷ ︸

f4

h4 f5 h5
f6

Fig. 4. Example of game tree

In figure 3, metapositions are depicted with a double circle and pseudomoves
are depicted with a dotted line. During the search visit on the game tree, we use
the heuristic that chooses the worse referee’s answer among the three. Thus, in
the previous example the branching becomes equal to 11 nodes. In figure 3 we
indicate with x, x′, y, y′, z, z′ the vote given statically by the evaluation function
to the metapositions reached after playing each pseudomove.

3.2 Game situation with stochastic element

In this section we will deal with game situations where players have to consider
probability. 99999999999999999999999999999999

White

:
b8

:
c8

:
d8

;
b4
;

b5
;

b6
;

c4
;

d4
;

d5
;

d6 <c7
bad bad good

︸ ︷︷ ︸
bad bad bad good

︸ ︷︷ ︸
worst

same likelihood

Fig. 5. Moves have same likelihood

For example a situation with a stochastic
element may happen when players have to
choose between moves that lead to sym-
metric positions and therefore they have
to draw moves by lot.

Suppose we have the position where
%c5,

	
c6 and

�
c7, depicted in figure 5.

In this case, the unification of all Black’s
moves leads to a unique information set,
and White’s pseudomoves can be actually
considered legal.

4 the move
�

a8 from diagram showed in 1 is similar to
�

b8 or
�

c8 or
�

d8
�

e8,
so in figure 4 we depicted only the first one and we indicated the whole number of
moves (×5)

We define an evaluation function which allows us to classify the choices for
White.This function is based on the following rules, in decreasing order of im-
portance.

1. it never risks the capture of the Pawn;
2. it favours the advancing of the Pawn;
3. it pushes the Pawn to the seventh row if the white King is on the seventh

row;
4. it keeps the white King and Pawn adjacent;
5. among those moves that lead the King on the row below the Pawn, it favours

the move which brings the King on the same column of the Pawn.

Using these rules as an evaluation function, the move
	

c7 is considered the
worst move, then it is discarded; with

�
b8,

�
c8 or

�
d8, after

	
c7 the Pawn

would risk to be captured. Also the moves %b4, %c4 and %d4 are discarded,
because they move the King away from the Pawn; moves %b5 and %d5 are
better but not really good, because they do not push the Pawn. Finally, moves
%b6 and %d6 are equivalent and best, since they push the Pawn and let the
Pawn stay adjacent to its King.

The equivalence between %b6 and %d6 is inevitable. Figure 6 shows the
symmetries between the two metapositions reached with these moves. Thus it is
not possible to have a numerical value which correctly represents the grade for
a metaposition and which is not correct for the symmetric one. In other words,
in the game tree we would face two different nodes with same evaluation.

� �& �& �� �
� � � & �� � 	� � �
� � � � �
� � � � �
� � � � �
� � � � ��� � � �
� � � � � � � �

� �& �& �� �
� & � � �� � 	� � �
� � � � �
� � � � �
� � � � �
� � � � ��� � � �
� � � � � � � �

Fig. 6. Metapositions reached with %b6 and %d6

During the tree search, we use a random number generator to randomly
assign a bonus with likelihood 1/2. In this case we use the term aleatory meta-

position. We remark that, with an aleatory metaposition, each visit of its game
tree becomes aleatory. A negative consequence of using aleatory metapositions
is that we cannot employ techniques to accelerate the search, such as hash tables
or Zobrist keys, since we would lose the stochastic nature of tree search.

In our example, let %b6 be the move randomly chosen, so White’s reference
board is the one on the left in figure 6. The White’s pseudomoves %a7, %a6
and %a5 are discarded because they move the King away from the Pawn; the
pseudomoves %b5 and %c5 are discarded, since they do not help to advance
the Pawn. If %c7 is illegal, then White chooses the remaining %b7, followed

by
	

c7 if the referee’s answer is silent. Otherwise, if %b7 proves to be illegal,
White plays %c5, owing to the fifth rule, since the Pawn is on the c column.

4 The evaluation function

The evaluation function contains the rules which synthesize the notion of progress
leading the player towards the victory. It is a linear weighted sum of features
like the following

EVAL(m) = w1f1(m) + w2f2(m) + ... + wnfn(m) (2)

where, for a given metaposition m, wn indicates the weight assigned to a
particular subfunction fn. For example, a weight might be w1 = −1 and f1(s)
may indicate the number of black Kings.

The EVAL function is different according to each single ending, but it has
some invariant properties: it avoids playing those moves that lead to stalemate
and it immediately returns the move which gives directly checkmate, if it exists.

In the following sections we briefly describe the search algorithm used for
some basic Kriegspiel endings, then we go into the evaluation of metapositions
in more depth.

4.1 The search algorithm

As we have seen in Section 3.1, we consider that each node of the game tree
consists of a metaposition. For example, suppose that the White reference board
is the one depicted in figure 7 and that it is White turn to move.

8 = = > =
7= = = ?
6 = = = =
5= = = = @
4 = = = @A
3= = = =
2 = = = =
1= = = =

a b c d e f g h

Fig. 7. Rook ending
metaposition

The search algorithm proceeds by generating all
the pseudomoves and, for each metaposition reached,
it creates three new metapositions according to the
three possible answers from the referee. Then it
chooses the one with the smallest value as given by
the evaluation function. In the example we have 21
pseudomoves which lead to 63 metapositions, but af-
ter filtering the information from the referee we obtain
again 21 nodes.

Then, if the search algorithm has reached the de-
sired search depth it simply returns the evaluation for
the best node, that is the max value, otherwise it ap-
plies the metamove on each nodes, it decrements the depth of search and it
recursively calls itself obtaining a value from the subtree.

Finally, it retracts the pseudomove played and adds to the metaposition’s
value the vote which is returned by the recursive call. Then it updates the max
on that particular search depth.

When the algorithm ends visiting the tree, it returns the best pseudomove to
play. Since it may happen that the same candidate pseudomove is proposed in

two different sequential turns to move, bringing to a loop and so not progressing,
the algorithm avoids to choose those pseudomoves, which appear in the history
of recently played moves.

4.2 The rook ending (%�
�

)

The evaluation function for this ending considers n = 6 different features.

1. it avoids jeopardizing the Rook: w1 = −1000 and f1 is a boolean function
which is true if white Rook is under attack;

2. it brings the two Kings closer: w2 = −1 and f2 returns the distance (number
of squares) between the two Kings;

3. it reduces the number of black Kings on the quadrants of the board as seen
from the Rook and it favors having the black Kings grouped together in as
few quadrants as possible: w3 = −1 and f3 = c

∑4

i=1 qi where c ∈ {1, 2, 3, 4}
is a constant which counts the quadrants that contains a black King and qi

counts the number of possible black Kings on ith quadrant;
4. it avoids the black King to go between white Rook and white King: w5 =

−500 and f5 is a boolean function which returns true if the black King is
inside the rectangle formed by white King and white Rook on two opposite
corners;

5. it keeps White pieces close to each other: w5 = +1 and f5 is a boolean
function which returns true if the Rook is adjacent to the King;

6. it pushes the black King toward the corner of the board: w6 = +1 and
f6 =

∑63

i=0 v[i], where v is a numerical 64-element vector, shown in figure 8,
that returns a grade for each squares which possibly holds the black King or
returns 0 otherwise.

1 1 0 0 0 0 1 1

1 0 0 0 0 0 0 1

0 0 −2 −4 −4 −2 0 0

0 0 −4 −4 −4 −4 0 0

0 0 −4 −4 −4 −4 0 0

0 0 −2 −4 −4 −2 0 0

1 0 0 0 0 0 0 1

1 1 0 0 0 0 1 1

Fig. 8. The simple numerical matrix v[]

8 BC D D D
7D D D D
6 E D D D
5D D D D
4 D D D D
3D D D D
2 D D D D
1D F D D

a b c d e f g h

Fig. 9. Rook ending ex-
ample.

Here we propose some example of games. We con-
sider that the program plays White against a Black
whose strategy consists in centralize himself on the
board. Starting from the metaposition depicted on fig-
ure 9 on the right, where % is on b6 and

�
is on c1,

the game continues as follows:
Considering

�
on b8:

1. %c7 I, %a6;
�

a8
2.
�

c8 #.
Considering

�
on a8:

1. %c7;
�

a7
2.
�

a1 #

Starting from the metaposition depicted on figure 10 on the left, where % is

on d6 and
�

is on d7, the game continues as follows:

Suppose

�
on c8:

1. %c7 I, %c6;

�
b8

2. %c7 I,
�

d6;

�
c8

3. %d7 I, %b6;

�
b8

4.
�

d8 #

Suppose

�
is on b8:

1. %c7 I, %c6;

�
c8

2. %c7 I,
�

d6;

�
b8

3. %d7;

�
b7

4. %c7 I, %c6 I,
�

e6;

�
a7

5. %c7;

�
a8

6. %b6;

�
b8

7.
�

e8 #

Suppose

�
on a8:

1. %c7;

�
a7

2.
�

d5;

�
a6

3. %b6 I, %c6;

�
a7

4.
�

c5;

�
a6

5. %c7;

�
a7

6.
�

a5 #

8 GH GI I I
7I I JI I
6 I K I I
5I I I I
4 I I I I
3I I I I
2 I I I I
1I I I I

a b c d e f g h

8 LM N N N
7M LN N N
6 N N N N
5N ON N N
4 N N N N
3N N N N
2 N N N N
1N P N N

a b c d e f g h

Fig. 10. Rook ending examples.

Starting from the metaposition depicted on figure 10 on the right, where %
is on b5 and

�
is on c1, the game continues as follows:

Suppose

�
on b7:

1. %b6 I,
�

c4;

�
b8

2.
�

c5;

�
b7

3.
�

c4;

�
b8

4.
�

c6;

�
b7

5. %c5;

�
b8

6. %b6;

�
a8

7. %c7;

�
a7

8. %c8;

�
a8

9.
�

a6#

Suppose

�
is on a7:

1. %b6 I,
�

c4;

�
b7

2.
�

c5;

�
b8

3.
�

c4;

�
b7

4.
�

c6;

�
b8

5. %c5;

�
b7

6. %b6I, %b5;

�
b8

7. %b6;

�
a8

8. %c7;

�
a7

9. %c8;

�
a8

10.
�

a6#

Suppose

�
on a8:

1. %b6;

�
b8

2. %c7 I, %a6;

�
a8

3.
�

c8#

Suppose

�
on b8:

1. %b6;

�
a8

2. %c7;

�
a7

3.
�

a1#

Figure 11 shows an histogram which represents the number of moves needed
to win each game, starting from metapositions with greatest uncertainty, that
is from metapositions where each square not controlled by White may contain a
black King. The number of matches won is on the ordinate and the number of
moves needed is on the abscissa. The graph depicts the result of all the possible
28000 matches, which correspond to the 28000 possibilities for the referee’s board
or to the 28000 possible metapositions with greatest uncertainty. We can notice
that the program wins the whole games with 25 moves in the average.

26 2
51 62

29
74 86

17
6 21

1
20

6 26
0

24
2

59
3

40
0 46

6
47

9
66

5
98

4
90

4
10

19
21

18
12

69
12

71
62

8
82

4
90

7
93

0 99
2 10

52
78

0
35

2
93

2
66

7
14

65
52

2
14

3 19
8

20
5

16
8

50
78 91

12
6

55 35 49 58
30 21 16 6 16 5 0 3 5 2 13 10 9 7 26 13 6 11 2 2 0 0 0 0 0 0 21 0

0

500

1000

1500

2000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

x number
of moves

matches
won

Fig. 11. Detailed histogram of %�
�

ending game.

4.3 The queen ending (%�
�

)

The evaluation function is similar to the one described in section 4.2 but we have
to consider the Queen instead of the Rook.

� �& � %�
��

� & �� � � �
� �& & �� �&
� � �� �� �& �� �� � �& �&
� � Q � �� �� � �& �&
�� �� �� �& �
� � � � � � � �

Table 2. The Queen cannot
move.

In some initial experiments we noticed a prob-
lem in metapositions with the Queen far from
the King and with more than one black King
between them. This problem was caused by
the choice of bringing the Queen closer to the
King. For example, diagram 2 shows a meta-
position where the white Queen cannot move
without risking to be captured. Thus we intro-
duced three more features with respect to the
evaluation function in section 4.2. The first

feature aims to avoid this problem and the other two intend to speed up the
game by exploiting the power of Queen. So n = 9 and in the initial six rules the
function is the same as in the Rook case5, while in the last three:

7. it avoids metapositions where Queen risks to be captured: w7 = −100 and
f7 is a boolean function that returns true if Queen is under attack;

8. it penalizes those metapositions with a big number of black Kings: w8 = −1
and f8 is equal to the number of black Kings on White’s reference board;

9. it reduces the number of black Kings on the areas traced by the Queen’s
diagonals: w9 = −1 and f9 = evalRhombArea(S) where

evalRhombArea(S) = c · (a0 + a1 + a2 + a3) (3)

5 Notice that rule 7 differs only in weight from rule 1 used for rook ending; these rules
could be combined into a single rule, but for the moment we keep them separated
in order to maintain strategies for different endings divided.

and c ∈ {1, 2, 3, 4} is a constant which counts the areas that possibly contains
a black King and ai (i = 0, ..., 3) counts the number of possible black Kings
on ith area.

8 RSRTRSRT
7

TRS SRTR
6 RTRTRTRS
5

SRT TRSR
4

T U T T
3

SRT TRSR
2 RTRT TRS
1

TRS V TR
a b c d e f g h

8

T T T T
7

T T T T
6

T T T T
5

T T T T
4

T U T T
3

T T T T
2

T T T T
1

T T V T
a b c d e f g h

a0

a1

a2

a3

Fig. 12. Graphic description of evalRhom-
bArea()

Figure 12 shows a graphic
description of evalRhombArea()
function. For the miniature on the
left the function returns 4 · (12 +
12 + 3 + 6) = 132.

Now we show some examples of
games played by the program. From
a starting metapositions where

�
is

on d7, % on c7, and
�

on a6,
�

on
a7,

�
on a8, the program correctly

plays the move
�

a4#.
From a starting metapositions where

�
is on h7, % is on d7, and

�
on a7,�

on a8,
�

on b8, the game goes in accordance with the initial positions of
Black as follows:

Suppose

�
on a8: Suppose

�
on a7: Suppose

�
on b8:

%c7;

�
a7 %c7;

�
a6 %c7 I, %c6;

�
c8

%b6 I,

�
d3;

�
a8 %b6 I,

�
d3+;

�
a5

�
h6;

�
d8�

a6#

�
b3;

�
a6 %c7 I,

�
f8#�

a4#

Figure 13 shows an histogram analogous to the one for the rook ending. It
represents the number of moves needed to win each game, starting from metapo-
sitions with greatest uncertainty. The number of matches won is on the ordinate
and the number of moves needed is on the abscissa.

72
33

77 94
13

8
14

7 19
6

31
7

44
6

61
2

72
8 74

6 79
3

10
43

12
04 12

35
13

50
14

69
11

37
10

75
10

90
66

9
72

8 76
2

59
1

65
5

40
4

34
5

19
5

15
4 19

3
12

5
90

56 54 39
72

35 20 37
5 3 0 1 2 0 0 4 0

0

200

400

600

800

1000

1200

1400

1600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

x number
of moves

matches
won

Fig. 13. Detailed histogram of %�
�

ending game.

4.4 The ending with two Bishops (%��
�

)

In this ending we have to deal with two White pieces besides the King. The
evaluation function exploits the same subfunctions previously analyzed, but it
assigns different weights.

1. it avoids jeopardizing the Bishop: w1 = −1000 and f1 is a boolean function
which is true if white Bishop is under attack;

2. it brings the two Kings closer: w2 = −1 and f2 returns the distance (number
of squares) between the two Kings;

3. it avoids the black King to ”pass through” the border controlled by the
Bishops: w3 = −500 and f3 is a boolean function which returns true if the
black King is inside the rectangle formed by King and Bishop row or King
and Bishop column;

4. it keeps close the white Bishops: w4 = +2 and f4 is a boolean function which
returns true if the Bishops are adjacent to each other;

5. it pushes the black King toward the corner of the board: w5 = +1 and
f5 =

∑63

i=0 b[i], where b is a numerical 64-element vector, shown in figure 14,
that returns a grade for each squares which possibly holds the black King or
returns 0 otherwise.

0 −10 −50 −100 −100 −50 −10 0

−10 −10 −40 −40 −40 −40 −10 −10

−50 −40 −40 −40 −40 −40 −40 −50

−100 −40 −40 −50 −50 −40 −40 −100

−100 −40 −40 −50 −50 −40 −40 −100

−50 −40 −40 −40 −40 −40 −40 −50

−10 −10 −40 −40 −40 −40 −10 −10

0 −10 −50 −100 −100 −50 −10 0

Fig. 14. The numerical matrix b[]

6. it keeps white King on the Bishop’s row or column: w6 = +1and f6 is a
boolean function which returns true if the King and the Bishop are on the
same row or column;

7. it penalizes the metapositions where the Bishop risks to be captured: w7 =
−100 and f7 is a boolean function that returns true if Bishops are under
attack;

8. it penalizes those metapositions with a big number of black Kings: w8 = −1
and f8 is equal to the number of black Kings on White’s reference board;

9. it reduces the number of black Kings on the areas traced by the Bishop’s
diagonals: f9 = evalRhombArea(m), described with equation 3, and
if evalRhombArea(m) < −600 w9 = −4;
otherwise w9 = 1

6

10. it prefers some particular positioning (we will refer to with the term key

Bishops’ positions) for the white King and Bishops, highlighted in figure 15;

for example %c7,
�

c4 and
�

c5. Therefore w10 = +30 and f10 is a boolean
function which is true if the Bishops and the King are arranged in one of the
key positions.

Now we propose some examples of endings in order to show the behavior of
program with two Bishops.

8 W W W W
7W X WYW
6 X Z[WYW
5W Z W[W
4 W[W Z W
3WYW[Z X
2 WYW X W
1W W W W

a b c d e f g h

8\W W W W
7] X W W
6 W W W W
5W W W W
4 W[W W W
3W W W W
2 W W W W
1W W W W

a b c d e f g h

8\W W W W
7W X W W
6 W W W W
5W Z W W
4 W[W W W
3W W W W
2 W W W W
1W W W W

a b c d e f g h

8\W W W W
7W X W W
6 W W W W
5W Z[W W
4 W W W W
3W W W W
2 W W W W
1W W W W

a b c d e f g h

Fig. 15. Key Bishops’ positions

Starting from the metaposition depicted on figure 16 on the left, where
�

is
on c4 and

�
is on h8 and % is on c7, the game continues as follows:

Suppose

�
on a8:

1. %b6;

�
b8 2.

�
e6;

�
a8

3.
�

f6;

�
b8 4.

�
e5+;

�
a8

5.
�

d5#.

Suppose

�
is on a7:

1. %b6 I,
�

d4+;

�
a8 2.

�
d5#.

Starting from the second metaposition depicted on figure 16 from the left,
where

�
is on c4 and

�
is on d6 and % is on c7, the game continues as follows:

Suppose

�
on a8:

1.
�

b4;

�
a7 2. %b6 I,

�
c5+;

�
a8

3.
�

d5#;

Suppose

�
on a7:

1.
�

b4;

�
a8 2. %b6;

�
b8

3.
�

e6;

�
a8 4.

�
e7;

�
b8

5.
�

d6+;

�
a8 6.

�
d5#.

8

_̂ _ _ `
7a b _ _
6

_ _ _ _
5

_ _ _ _
4

c _ _
3

_ _ _ _
2

_ _ _ _
1

_ _ _ _
a b c d e f g h

8

_̂ _ _ _
7a b _ _
6

_ ` _ _
5

_ _ _ _
4

c _ _
3

_ _ _ _
2

_ _ _ _
1

_ _ _ _
a b c d e f g h

8

̂c _ _
7a _ _ _
6

_ _ _ _
5

d ` _
4

_ _ _ _
3

_ _ _ _
2

_ _ _ _
1

_ _ _ _
a b c d e f g h

8 â _ _ _
7a _ _ _
6

_̂d_c_ _
5

_ _ _ _
4

` _ _ _
3

_ _ _ _
2

_ _ _ _
1

_ _ _ _
a b c d e f g h

Fig. 16. Bishops ending examples.

Starting from the third metaposition depicted on figure 10 from the left,

where
�

is on c8 and
�

is on e5 and % is on b5, the game continues as follows:

Suppose

�
on a8:

1. %c6;

�
a7 2. %c7;

�
a8

3. %c6;

�
a7 4. %c7;

�
a8

5.
�

f6;

�
a7 6. %b6 I,

�
d4+;

�
a8

7.
�

b7#.

Suppose

�
is on a7:

1. %c6;

�
a8 2. %c7;

�
a7

3. %c6;

�
a8 4. %c7;

�
a7

5.
�

f6;

�
a8 6. %b6;

�
b8

7.
�

e6;

�
a8 8.

�
e7;

�
b8

9.
�

d6+;

�
a8 10.

�
d5#.

Starting from the metaposition depicted on figure 10 on the right, where
�

is on b4 and
�

is on e6 and % is on c6, the game continues as follows:

Suppose

�
on b8:

1. %b6;

�
a8

2. %c7;

�
a7

3.
�

b4;

�
a8

4.
�

e7;

�
a7

5.
�

d5+;

�
a8

6.
�

d5#.

Suppose

�
is on a8:

1. %b6;

�
b8

2. %c7 I,
�

d6+;

�
a8

3.
�

d5#.

Suppose

�
is on a7:

1. %b6 I,
�

c4;

�
a8

2. %c7;

�
a7

3.
�

c5+;

�
a8

4.
�

d5#.

Suppose

�
is on a6:

1. %b6 I,
�

c4+;

�
a7

2. %c7;

�
a8

3.
�

e7;

�
a7

4.
�

c5+;

�
a8

5.
�

d5#.

Figure 17 shows an histogram analogous to the one for the rook ending. It
represents the number of moves needed to win each game, starting from meta-
positions with greatest uncertainty. We can notice that for the %��

�
ending

the game is won in a bigger number of moves than those required to win for the
%�

�
or the the %�

�
ending. Sometimes the program wins with more than

80 moves.

1 0 1 0 1
3 4 3

10
5 6

11
14

22
25

31
48

34
44

77
65

70
78

89
47

55
38

54
70

59
28

32
39

31
38

43 44
42 41

28
45

21
35

21
19

14
21

5
18

13 12
7

11 11 10 9
7 7

9
6

11
8

10
4

6
4 4

7
5 6 6 5 4

1 2
6

2 3 2 3
6

3
1 1

3
1

3
1

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88

x number
of moves

matches
won

Fig. 17. Detailed histogram of %��
�

ending game.

4.5 The pawn ending (% 	
�

)

The evaluation function for the % 	
�

ending takes the discussion in 3.2 as
starting point. It considers n = 5 different features.

1. it brings the Pawn adjacent to the King: w1 = −1 and f1 calculates the
distance between King and Pawn;

2. it pushes the Pawn: w2 = +1 and f2 = 2 · (Pawn′srow);
3. it let the King above the Pawn: w3 = +1 and f3 = (King′srow)−(Pawn′srow);
4. If (Pawn′s row == seventh row)

if (Pawn′s row) > (King′s row) w4 = −1000;
otherwise w4 = +100

5. If (Pawn′s row == sixth row)

if (King is on the right of the Pawn) w5 = +5 + rand();
if (King is on the left of the Pawn) w5 = +5 + rand();

The fifth condition implements the stochastic choice and forbids the use of
hash techniques.

0

20

43
3

25
0

30
5

23 26

4 12 0 0 0 0

0

50

100

150

200

250

300

350

400

450

500

0<
x<

5

5<
x<

10

10
<x

<1
5

15
<x

<2
0

20
<x

<2
5

25
<x

<3
0

30
<x

<3
5

35
<x

<4
0

40
<x

<4
5

45
<x

<5
0

50
<x

<5
5

55
<x

<6
0

60
<x

<6
5

x number
of moves

matches

Fig. 18. Histogram of % 	
�

ending game.

In order to imple-
ment a 1/2 likelihood,
it uses a random num-
ber generator indicated
here with the function
rand(). Figure 18 shows
an histogram which rep-
resents the number of
moves needed to win each
game, starting from ran-
dom metapositions.

5 Conclusions

In our knowledge this is the first time that an evaluation function including a
notion of progress has been defined for Kriegspiel. We have devoted special care
to implement progress inside such an evaluation function. We have tested such
a function on some simple endings, with good results except for the KBN vs K
case. Future work will lead us to adapt the program to more complex endings,
where both players have a larger number of pieces on the board. Our aim consists
in writing a complete program for the whole game of Kriegspiel.

References

1. A. Bolognesi and P. Ciancarini. Computer Programming of Kriegspiel Endings: the
case of KR vs K. In J. van den Herik, H. Iida, and E. Heinz, editors, Advances in
Computer Games 10, pages 325–342. Kluwer, 2003.

2. J. Boyce. A Kriegspiel Endgame. In D. Klarner, editor, The Mathematical Gardner,
pages 28–36. Prindle, Weber & Smith, 1981.

3. A. Bud, D. Albrecht, A. Nicholson, and I. Zukerman. Information-theoretic Advisors
in Invisible Chess. In Proc. Artificial Intelligence and Statistics 2001 (AISTATS
2001), pages 157–162, Florida, USA, 2001. Morgan Kaufman Publishers.

4. P. Ciancarini, F. Dalla Libera, and F. Maran. Decision Making under Uncertainty:
A Rational Approach to Kriegspiel. In J. van den Herik and J. Uiterwijk, editors,
Advances in Computer Chess 8, pages 277–298. University of Limburg, Maastricht,
The Netherlands, 1997.

5. T. Ferguson. Mate with Bishop and Knight in Kriegspiel. Theoretical Computer
Science, 96:389–403, 1992.

6. T. Ferguson. Mate with two Bishops in Kriegspiel. Technical report, UCLA, 1995.
7. M. Sakuta and H. Iida. Solving Kriegspiel-like Problems: Exploiting a Transposition

Table. ICCA Journal, 23(4):218–229, 2000.

