Contents

1 Introduction

2 Kriegspiel

2.1
2.2
2.3

History of Kriegspiel
Rules of Kriegspiel
The challenge of Kriegspiel

3 Requirements & Research

3.1
3.2
3.3
3.4
3.5
3.6

Requirements oo
Symbology
The Piece Token
The Check Token
The King Token
The Zone of Control

4 Design & Implementation

4.1
4.2

4.3

4.4

Program Structure oo
The Communicator Level
4.2.1 The ICCDriver class
4.2.2 The ClientConsole class
The GameController Level
4.3.1 The KriegspielController class
The GameBoard Level
4.4.1 The GameTile Class
4.4.2 TImages & Transparency

1

10
13
14
17
20

5 Tests & Conclusions

5.1 Kriegspiel Tests
51.1 Krieg.

5.2 Conclusions

A The JKrieg Postmortem

B Chess Diagrams

CONTENTS

Chapter 1

Introduction

This paper deals with the game of Kriegspiel, and the development of an
interface, called JKrieg, to play it on a computer. It contains an overview
of what Kriegspiel is, and why it is deeply different from chess; then, it goes
into detailing how the program works, why it works the way it does, and
what tools and techniques were used to make it work that way. This paper
is structured along the metaphorical path taken by its author when he was
presented with the challenge of investigating this topic and creating such an
application.

For the above reasons, the first section is devoted to explaining the core
concepts and rules of Kriegspiel. The aims and requirements for the interface
are then listed, followed by some theoretical results behind the interface itself.
Chapter 4 deals with the design and implementation stages of the project,
examining the structure and making of JKrieg in detail. In Chapter 5, the
attention shifts to the final testing step. Finally, the two appendixes contain
additional material, not strictly related to a single stage of the project: the
former is an abridged postmortem for the JKrieg application, giving some
personal insight on the development process as a whole. The latter describes
the making of the custom chess diagrams featured throughout this paper,
and how they were obtained using the BTEX typesetting language.

The author would like to thank all the people who helped bring this work
to reality.

CHAPTER 1. INTRODUCTION

Chapter 2

Kriegspiel

Kriegspiel is a variant of the game of chess. It mainly differs from orthodox
chess in that players can only see their own pieces, and must refer to a
neutral entity — the umpire, or referee — to acquire additional, but always
incomplete, information. A far more detailed discussion on Kriegspiel is given
in [2].

2.1 History of Kriegspiel

Kriegspiel was invented in the late XIX century in England, by Michael
Henry Temple. Its creator drew inspiration from the highly popular war
games played throughout Europe, and especially in Germany and Prussia
(Kriegspiel means war game in German). These games, variants of which
still enjoy a large number of followers nowadays, were realistic war simula-
tions played on a tabletop environment representing a real battlefield, with
miniature toy soldiers standing for units and regiments of different types, each
with different features and carried weaponry. These games were extremely
popular among high-ranked military officers, generals and even Emperors
themselves, because they were believed to improve and refine one’s tactical
skills.

One of the most widely played war games implemented the so-called "fog
of war”, that is, it prevented a player from seeing enemy units not in visual
contact with any friendly brigade. This was accomplished by playing on

three different tables, one for each player plus one for the umpire. The umpire

6 CHAPTER 2. KRIEGSPIEL

would record every movement and action on his table, notifying players about
enemy sightings and resolving combat out of military experience or numerical
tables.

Temple adapted this concept to the game of chess, creating a variant
that was to be played on three chessboards, and deciding what pieces of
information the umpire should reveal to the players. As with other variants,
and for the very reason that variants are not orthodox, several versions of
Kriegspiel were introduced and played as the game became more and more
widespread. While all versions agreed on that players should never interact
with each other and always refer to the umpire, their differences lay in the
way information is passed from and to the umpire. For example, one version
requires players to declare a sequence of move attempts; the umpire then
executes the first legal move in the list.

In this paper we will make use of the Kriegspiel rules currently being
enforced on the Internet Chess Club. This set of rules was designed to

allow for fast and intuitive gameplay over the Internet.

2.2 Rules of Kriegspiel

Every rule in orthodox chess also applies to Kriegspiel, with two exceptions:
the game will not result in a draw because of a position being repeated three
times, nor will a draw occur due to the lack of captures or pawn actions
for 50 moves in a row. Aside from these exceptions, the major innovation
of Kriegspiel over orthodox chess is that players cannot see their oppo-
nent’s pieces, and they have to make guesses concerning their location.
Given the incomplete-information nature of Kriegspiel, a new entity is
introduced to act as a medium between the players: the umpire, or referee.
Only the umpire has access to complete information, and it performs all
communication with players (players cannot directly interact with each other
in any way). Before each player’s turn, the umpire transmits a message
containing additional information (note that, although the message mainly
concerns the current player, both players actually receive the message). This

information includes:

e Number of pawn tries for the current player. This is defined as the

2.3. THE CHALLENGE OF KRIEGSPIEL

.

Dy
?f/%/
7/%

7

///_

_
_

%%
%/%/ ///%
"y

_

Figure 2.1 Pawn tries.

"number of legal capturing moves using pawns”.

For example, in Fi-

gure 2.1 White has two pawn tries (even if on the same enemy piece),

whereas Black has none (captures are not legal because they would leave

the King in check). Pawn tries include possible en passant captures.

o A capture happened as a result of the last move. The message specifies

where the capture took place and whether the captured piece was a

pawn or another piece (in this case, the actual piece is not revealed).

e The current player’s King is in check. The message also reveals the

check type, which can be "rank”, "file”, "short/long diagonal” (from

the King’s point of view), or "knight”.

In addition, if a player attempts an illegal move, the umpire will notify

that player only that he or she should make another move instead, without

revealing the reason making that move illegal. The opponent will receive no

notification.

2.3 The challenge of Kriegspiel

Under the computer scientist’s point of view, Kriegspiel offers a completely

different challenge than the traditional game of chess. This is true in regard

8 CHAPTER 2. KRIEGSPIEL

to both artificial intelligence algorythms and interfaces. As of now, despite
the game’s growing popularity, neither highly skilled artificial players nor
specific interfaces exist for Kriegspiel.

The main reason behind this lack of working applications is that Kriegspiel,
while borrowing most of its rules from chess (arguably the game to which pro-
grammers and computer scientists have been devoting the highest attention),
is actually an entirely different game requiring completely new techniques.
Artificial players capable of master-level Kriegspiel performance would share
very few similarities with their orthodox chess counterparts: only piece me-
chanics would remain the same. In fact, virtually every artificial chess player
is based upon the concept of the minimax algorhtym, which consists in
creating a tree in which every node represents a move, and associating a
convenience factor to each. Hence, finding the best possible move reduces
to scanning the tree searching alternatively for the best and worst choices
(representing the program and its opponent’s move, respectively). This con-
cept is thoroughly explained in [1]. It is easily seen in [2] that this approach
cannot be applied to Kriegspiel, for the simple reason that a tree of known
moves cannot be constructed.

A similar problem arises when it comes to designing interfaces. By defi-
nition, an interface provides information. But in the case of Kriegspiel, such
information is necessarily incomplete, and the application must provide in-
tuitive means to display probabilistic data, guesses. In addition, as will be
shown in the next chapter, there is a significant amount of additional infor-
mation hidden inside the seemingly barebones messages sent by the umpire.
A capable interface must figure out as much data as possible, as this process
might spell the difference between victory and defeat, all other things being

equal.

Chapter 3

Requirements & Research

This chapter deals with the goals and expectations that JKrieg was to meet.
It describes its planned features in detail, with a particular stress upon pro-
viding an accurate representation for hidden information, without specify-
ing how these features were actually implemented, which is the focus of a
later chapter. Planning out layouts and features proved to be a non-trivial
task, because of the afore-mentioned lack of existing specific interfaces for
Kriegspiel. With no models to follow or criticize, every step was a step in a

new direction, and a pioneering work in some ways.

3.1 Requirements

¢ Asa minimum requirement, the program must provide a fully-functional
Kriegspiel interface for online play on the Internet Chess Club. Be-
cause this service is text-based, it must provide means to send text

commands and receive messages from the server.

e The program must render the virtual chessboard in graphics mode
and in a intuitive fashion. This includes a wise choice of piece

shapes and board colors.
e The program must keep track of elapsed time and disconnections.

e The program must feature intuitive gameplay mechanisms, most no-

tably drag’n’drop to perform moves.

10 CHAPTER 3. REQUIREMENTS & RESEARCH

Piece Check King

white (O &P
Black . e @

Table 3.1 Kriegspiel guess tokens, as implemented in JKrieg.

e The program must provide graphical representation for each and
every message from the umpire. This includes recognizing pawn
tries, captures, checks, and making guesses on the location of enemy
pieces. The program should extract as much information as possible

from the umpire, possibly making use of a new, intuitive symbology.

e The program must offer some kind of help to the player during the

end-game stage, when only a few pieces are left.

e The program must keep a count of captured enemy pieces.

3.2 Symbology

The first decision that was taken immediately after reviewing the core re-
quirements, was that, with JKrieg having to somehow display probabilistic
data inside a chessboard, a new notation was in order. The interface must be
able to inform the player that a piece might be there, or it might not. It must
also warn about incoming checks and where they originate from. The ideal
notation had to be simple and originate from a constant, easily recognizable
visual pattern. In the end, the guess tokens in Table 3.1 were chosen, and
called Piece, Check and King token, respectively.

As it is easily seen, guess tokens are all circular in shape. This
not only does set them apart from the regular pieces of chess, none of which
resembles a circle, it also hints at their analogous meaning — probability. Also,
quess tokens appear at various degrees of transparency on the chessboard.
The more opaque the token, the higher chance there is that an enemy piece

actually be in that case.!

!This feature was implemented in JKrieg; however, for printing reasons, transparency

3.2. SYMBOLOGY 11

Figure 3.1 The umpire says: 72 pawn tries.”

e The Piece token, carrying no other distinguishing sign, simply informs
that a generic enemy piece might be hiding there. It is activated in
response to pawn tries and captures: in the former case, all the possible
target cases are highlighted; in the latter, a fully opaque token is put
on the case where the capture takes place, meaning that the presence

of an enemy piece there is now certain.

Let us demonstrate the usage of Piece tokens in regards to pawn tries.
Figure 3.1 depicts what JKrieg would show to the White player, if
the actual piece disposition was the one portrayed in the last chapter
(Figure 2.1). This diagram, as well as the following ones, portray
what JKrieg will have to display to the player, knowing the position of

his or her pieces as well as the latest umpire message.

The tokens appear wherever a pawn capture might take place.

e The Check token warns a player that his or her King is in check, and
the offending piece might be found on the selected case. For example,
in Figure 3.2, the White King finds himself threatened by a Knight.
Later in this chapter, it will be shown that it is sometimes possible to

narrow down the choices and highlight a lower number of cases.

will not be shown in figures throughout this paper.

12

CHAPTER 3. REQUIREMENTS & RESEARCH

o
////% //% v, /%

Y
& % 7y,
LEoE
4 %,

Figure 3.2 The umpire says: ”"Knight Check”

In order to facilitate chess players in using the interface, the Check
token is identified by a '+’ sign, which is universally known as the

symbol for check positions in all literature and game transcriptions.

The King token is the counterpart to the Check token; when a player
puts the enemy King in check, these tokens list the locations where it
might be hiding. As it is described later, placing this kind of token
raises the most problems. Figure 3.3 depicts a possible disposition
for the Black pieces, causing the check in Figure 3.2.

Now that the building blocks for the interface have been introduced
and explained, the following sections of the chapter will be devoted
to showing how they can be used to provide non-trivial, immediate
information to the user. JKrieg supports the following results with a
few small exceptions that will be explicitly pointed out, and the im-
plementation of these theorectical properties took the better part of
the time resources devoted to the project. In fact, the complexity of
the situations originating from the seemingly laconic messages of the
umpire was somewhat underestimated at the beginning of the develop-
ment cycle; while the umpire can only generate a handful of messages
(eight including the five check types, plus the notification of illegal

moves), they can assume different hidden meanings and their combina-

3.3. THE PIECE TOKEN 13

Figure 3.3 Black plays ... Nh7-f6, the umpire says: ”"Knight Check”

tions make for additional interesting cases. This partly explains why
strong artificial players for this discipline have not been programmed

yet.

3.3 The Piece Token

As stated above, this token makes its appearance whenever pawn tries or
enemy captures take place. Pawn tries are vital tools in finding out the
disposition of opponent pieces, which makes pawns extremely precious in
Kriegspiel: they are the only piece able to gather information on their sur-
roundings without attempting to move.

The trick of putting Piece tokens wherever pawn captures might happen
is a trivial, but effective one. It provides immediate information, and the
player can often guess, if not the exact capturing move, at least the most
likely area on the chessboard. This method is partially inaccurate in the
case of en-passant captures, since the location of the captured piece does not
actually coincide with that of the token, but for the purposes of Kriegspiel,
this is rather unimportant.

It would be possible to highlight opponent pawn tries as well. Fach
time the opponent receives a pawn try notification, the program would then

place a token on every legal case which might host the pawn. However, this

14 CHAPTER 3. REQUIREMENTS & RESEARCH

would probably clobber the chessboard with pawn tokens, so it was decided
not to implement this function. JKrieg will still warn a player textually
whenever his or her opponent gets pawn tries.

The other instance of Piece token insertion happens upon opponent cap-
ture. A token with a 100% likelyhood (fully opaque) replaces the captured
piece. This token will then fade out with each subsequent move, representing
the odds of the piece still being on the same case reducing over time. Since
the opponent is aware that the location of the offending piece is now well-
known, he or she will tend to move it again if possible, in order to return it to
the shadows. Because of this tendency, this type of token fades out quickly,
its opacity being halved on every opponent move. When a fixed threshold
is crossed, or a friendly piece "explores” the case, the token is removed from
play.

Pawn tries, or lack thereof, can also interact with the other two tokens to
help narrow down choices. These techniques are described in the following

sections.

3.4 The Check Token

The Check token highlights the possible locations of the piece attacking the
player’s King. Its basic behavior is quite trivial: the program simply stamps
tokens starting from the cases adjacent to the King until a friendly piece or
an edge of the chessboard are met. As it is easily seen, Knight checks work
in a slightly different way, and only compatible empty cases get touched in
this case.

However, if one remembers the rules of chess, there is much more infor-

mation which can be extracted from a check notice.

o If a capture took place on the last move... Here, there are two
basic cases. The former happens when the capturing piece lands into
a case and directly threatens the player’s King. The latter happens
when the capturing piece uncovers another piece behind itself, clearing
its ’line of sight’ towards the player’s King. These two cases seem
to be easily recognizable from one another; it suffices to determine

whether the case in which the capture took place is compatible

3.4. THE CHECK TOKEN

//w
/

?f% |
%;/l/

»

15

Figure 3.4 In both diagrams, the umpire announces a capture in h5. In

the left diagram, the umpire says ”short diagonal check”. In the right
diagram, the umpire says "file check”.

with the check type being revealed by the umpire. In other

words, if the player is told his or her King is under File check and

the capture did not happen in the same file as that of the King, then
that piece has nothing to do with the check. On the other hand, if the

capture actually took place in the right File, then the offending piece

must be responsible for the check, and only the target square must be

lit with the Check token, as exemplified in Figure 3.4.

e If pawn tries are possible, then the attacking piece, and only it,

can be captured. As stated in the rules of chess, there are three ways

a player can react to a check: by moving the King out of enemy range,

by moving a piece to cover the King, or by capturing the offending piece.

This means that, if pawn tries can be performed, the attacking piece

can be the only target. This narrows down the possible locations

to

those that are compatible with the current check type and a possible

target of a pawn try.

Most of the time, only one or two cases will

meet these requirements, and the location of the enemy piece can be

accurately described.

An example of this technique is given in Figure 3.5.

16

CHAPTER 3. REQUIREMENTS & RESEARCH

o

S
o o

»
_

)

Figure 3.5 The umpire says "Rank check, 1 pawn try”

e Asan additional rule, if pawn tries are not possible, the attacking

piece cannot be in a capturing position for any pawn, unless
that pawn is protecting the King from another piece. The
wording of the previous sentence is actually more complicated than the
rule itself: it simply means that, if no pawn tries are announced by the
referee, and the player’s King is in check, in general the attacking piece
cannot be attacked by the player’s pawns wunless that pawn is being
blocked by another piece. Because a picture is worth a thousand words,
Figure 3.6 explains this fact intuitively, showing that, in Kriegspiel,
nearly every rule has its exceptions. The red pawn might be blocked by
the possible presence of a Bishop or a Queen on the King’s diagonal.
On the other hand, the blue pawn has no constraints binding it to its
King, and as such the lack of pawn tries attests that the piece giving

check cannot be found in ¢3.

This particular case has not been implemented in the current release
of JKrieg, as its benefits did not justify the time resources needed for
its coding. It is being explained here to convey the subtlety and com-
plexity of the information that one could elaborate basing themselves

on umpire messages.

3.5. THE KING TOKEN 17

Figure 3.6 The umpire says "File Check”

3.5 The King Token

The King token is complementary to the Check token; while the latter shows
up whenever the player’s King is in check, the former makes its appearance
if the opponent’s King is in check. As mentioned earlier in this chapter,
the King token offered a harder challenge to the interface developer, because
the check notifications sent by the umpire are King-centered, that is, they
describe the type of check basing on the location of the attacked King, which
is, of course, generally unknown to the opponent and their playing interface as
well. This raises a number of problems, most of which occur when diagonals

are involved.

e The first problem consists of determining what allied piece is at-
tacking the opponent’s King. Note that this problem is in many
ways specular to the one pointed out in the last section, when dealing
with captures (Figure 3.4). Only, this time the dilemma does not limit
itself to the 'capture—+check’ combination; it is a constant presence that
the interface has to deal with.

e The basic approach to this issue is analogous to the one adopted in the
last section; that is, the program checks whether the last moved

piece is compatible with the umpire’s information. In other

18

CHAPTER 3. REQUIREMENTS & RESEARCH

////
%/////,//@
555
R
///%

Y

W

.

Figure 3.7 Following Rd4-a4 ...the umpire says ”"Long diagonal check”.

Which one is guilty, the Bishop or the Queen?

words, if the player moves a Rook and the umpire notifies a long di-
agonal check, then there is no way a Rook could have caused such a
check. There must be another allied piece capable of a long diagonal
check, previously hidden by the Rook.

Unfortunately, what if the Rook was hiding two Bishops on two differ-
ent diagonals? In general, it is not always possible to determine
what piece is causing a check. See Figure 3.7 for a visual exam-
ple. In cases such as this, the interface will have to select all applicable

pieces and consider all the possible choices.

While the previous statement proves that the placement of King to-
kens is significantly more challenging than that of Check tokens, it is
often possible to rule out several location through relatively simple al-
gorithms. First and foremost, any diagonal check can be either short
or long, and if a location belongs to the wrong diagonal, it has to be
discarded. Additionally, if the attacking piece is the one which has just
been moved (or so believes the program), the diagonal along which
it has moved is to be ruled out, since the diagonal was already
under friendly control. It should be noted that this does not apply

if a capture took place after the last move, since the King might

3.5. THE KING TOKEN 19

Dy

 y
.

%/%/%?/%
=

Figure 3.8 In both diagrams, White plays Bfl-d3 and the umpire says

”Long diagonal check”. In the diagram to the right, the umpire also
announces a capture in d3.

be found beyond the captured piece. In this case, only the half diago-
nal between the original position and the new position of the attacking

piece is to be excluded, as shown in Figure 3.8.

A very peculiar case occurs whenever the umpire announces a double
check. This happens if a King is threatened by two pieces at the
same time, and leads to an interesting, and possibly unexpected, result.
Under these circumstances, it is often possible to pin-point the
exact position of the enemy King. The reason is quite simple:
the two sets of King tokens generated by the two pieces (one of which
might actually be the union of two different pieces, because of the
undecidibility shown in Figure 3.7) have to be intersected, which
will usually narrow the choice down to one or two cases at most. For
instance, in Figure 3.9, the umpire announces two ongoing checks at
the same time, thus mercilessly revealing the location of the opponent’s

King.

20 CHAPTER 3. REQUIREMENTS & RESEARCH

2y
%//®%

//%7%
%////%
y
////%

&

Figure 3.9 White plays Rc4-f4 ..., the umpire says "File check, Long
diagonal check”

3.6 The Zone of Control

The guess tokens discussed so far may be a powerful tool in discovering and
presenting more information than meets the eye, but the help they provide is
mainly a short-term one. For example, knowing that the enemy King might
be in a small selection of places across the chessboard is surely useful, but
on the next turn, it will usually be gone, with little or no clues concerning
its new location. Thus, if the tokens do support player tactics, some tool is
still needed to support player strategy, that is, offer suggestions about the

overall arrangement of one’s pieces.

This is especially true during the endgame, when few pieces remain in
play and knowing which areas of the chessboard are supposedly under the
player’s control is even more important, and the knowledge more accurate
due to the lesser number of uncertainties. For these reasons, it was chosen to
implement a system to visually indicate a player’s current Zone of Control,
providing a tool to intuitively spot both strenghts and weaknesses in the

current structure of one’s strategy.

Conceptually speaking, the Zone of Control is a very simple feature to
add; each case on the chessboard can change color according to its status,

and it will turn red if no allied piece is controlling it (keeping in mind that

3.6. THE ZONE OF CONTROL 21

a piece does not control the case it is on). Of course, the term ’control” may
be somewhat misleading, as there is no guarantee that a ’controlled’ place of
chessboard be actually reachable by the player’s pieces — an enemy piece may
be blocking the path. However, red squares do guarantee that the location

is truly unprotected.

A visual example of a Zone of Control display is given in Figure 3.10.
Some relevant information is immediately perceivable by the end user, who
can make use of it to strenghten their defense and decide an attack plan.
For example, not only is the Rook in a8 lacking any form of protection, but
its whole diagonal is seriously underdefended, and should the pawn in d5 be
captured, the player would be facing a potentially very dangerous attack.
The same goes for the f6 pawn, unprotected and in an excellent position
from which to threaten the major pieces of the Black player (especially with
a Knight). Of course, generally the opponent will not be aware of such an
opportunity, but having two undefended pawns out of five is ill-advised in
Kriegspiel, where pawns are much more important than in regular chess, due

to their probing capabilities in the form of pawn tries.

During the endgame, the Zone of Control also helps checkmating the
enemy King. When only the King remains in play (which can be easily
figured, as JKrieg will mantain counters for captured pieces), this method
becomes very accurate, and the red squares inform the user about the possible
hideouts of the runaway monarch, making it easier to track it down once the
first check has been performed and the player begins to have more clues
concerning its starting place. It also helps to prevent the almost defeated
opponent from seeking and obtaining a stalemate, which would turn a victory
into a draw; that is, the King must have at least one escape route (red case)

until the time comes to deliver the killing checkmate blow.

From the above discussion, it is readily seen that the accuracy of the Zone
of Control view improves as the game progresses. This means that its value
is near to worthless during the initial stages of a game, and since JKrieg
could not easily understand the right timing for activating it, it was decided
to let the player manually choose to switch it on and off through a checkbox,

so as to ensure maximum flexibility.

22

CHAPTER 3. REQUIREMENTS & RESEARCH

|

Figure 3.10 An example of Zone of Control display.

Chapter 4

Design & Implementation

This chapter deals with the actual implementation of JKrieg in the Java
programming language, starting with some abstract planning, then to delve
into more specific technical details concerning the final classes. The choice of
Java came extremely natural to the developer, because the object-oriented
paradigm lent itself very well to the problem to be faced, and the wide range
of platform-independent factory classes that interact with the underlying
system, hiding its complexity, would certainly simplify the development pro-
cess. Moreover, Java’s only real drawback, its lack of performance compared
with other programming languages, did not really matter in this particular
project, as visual interfaces do not require much processing power, and the

advantages far outweighed the disadvantages.

4.1 Program Structure

Using Java as a programming language made it natural to implement Krieg as
a modular, layered application. The first step taken during the design stage
was to decide what and how many abstraction levels would be present, and
how they would communicate with each other. Eventually, the three-level
structure depicted in Figure 4.1 was chosen, each layer solving a specific
set of problems, and providing higher level information to the upper floors.
These levels were implemented through the Java concept of ”interface”.

A Java interface can be thought of as a contract, an arbitrary number

of related methods. In order to implement an interface, a class must specify

23

24 CHAPTER 4. DESIGN & IMPLEMENTATION

each and every method declared in the contract - the details of what these
method actually do is left to the implementing class. Under many aspects,
interfaces behave like normal class definitions: for example, it is possible to
have a method requiring an interface as a parameter. The method will then
accept any object whose class implements the requested interface. This way,
interfaces can become powerful tools for the purpose of producing extend-
able, mantainable and clean code: as any number of classes can implement
the same interface, it is possible to code several specific, self-contained appli-
cation behaviors while leaving the rest of the program unaffected by them.
One of the golden rules of programming, according to which a code section
should only be able to see what it strictly needs to perform its function, is

then closer to being satisfied.

————————

i User : GameBoard
User Actions Interface Updates
GameController
Outgoing Moves Incoming Moves
Communicator :: _E_fl(i]ﬁ_)(_);f_lt_ i

Figure 4.1 Structure of JKrieg.

This theory was therefore applied to Krieg, starting from its lowest level.
The basic question here was: ”Where will the program get its data from, and
where will it send data to?”. While Krieg was intended for online play with
the Internet Chess Club, it was clear that a large part of the code would not
need changes in order to make Krieg run under other protocols, or against a
computer player. Therefore, the lowest layer was called Communicator (or
Driver). The Communicator entity is charged with the task of starting games,

and trasmitting information to and from the other endpoint. Of course, how

4.1. PROGRAM STRUCTURE 25

this is performed would vary according to what the other endpoint is: for
example, a Socket will be used in case of a remote server, or some form of
interapplication communication, like shared files, when against an artificial
player.

At this stage of design, the application is able to think in terms of moves
and games - it does not need to know where this information comes from
or goes to. The next important point follows another seemingly naive, but
terribly serious question: ”What game are we playing?”. As the name it-
self states, Krieg was conceived in order to play Kriegspiel; but again, there
are dozens of other chess variants, and of course chess itself; as different as
they can be, they still share the majority of the rules. Rather than limiting
the application to just one game, a new layer was added, called Game-
Controller. Another interface, a Controller handles a different set of rules:
for example, Krieg includes two classes implementing it, OrthodoxChess-
Controller and KriegspielController, whose names are quite self-explanatory.
With relatively little effort, one could code more implementing classes to
support both changes in rules, like Progressive Chess, and changes in piece
appearance itself, like Heraldic Chess (a variant involving piece colors).

A GameController’s primary task is to perform and receive moves. Moves
are generally received from the board, and delivered to the Communicator
for processing. The Controller can execute legality checks, or simply ignore
them altogether and leave the checks to the remote server (which is what
most interfaces actually do in order to ensure maximum versatility).

The other interesting feature a GameController owns, is its being able to
exercise control over the gaming board. Apart from changing piece positions
and pictures, which is a rather obvious power, the Controller creates and
mantains (if needed) a Java JPanel. This class is part of the Java Swing
package, described in the "Tools & Techonologies” section. A JPanel basi-
cally groups a set of interface elements of any kind supported by Swing (even
customized), ranging from classical buttons and checkboxes to any flavor of
lists, hierarchic views, progress bars and popup menus. The panel is simply
attached to the gaming board, and the GameController is responsible for re-
acting to events happening inside the panel, and accordingly changing the in-
formation it displays. The idea behind this choice is that the GameController

will use the JPanel to show its specific information to the player. For ex-

26 CHAPTER 4. DESIGN & IMPLEMENTATION

ample, both OrthodoxChessController and KriegspielController include two
Timer components to keep track of elapsed time; in addition, the Kriegspiel
panel provides more information about captured pieces and so on.

On top of a GameController sits the interface itself under the form of a
GameBoard object. This object extends a JFrame, that is, it is a very spe-
cialized window that can be attached to a GameController. A GameBoard is
an essentially passive object, making no decisions on its own and instead rely-
ing on the underlying GameController to perform the needed computations
and update the interface accordingly. When the player attempts to move
a piece on the chessboard, the GameBoard merely sends a message to the
GameController, indicating the move being requested, and then completely
forgets about it. It is the GameController that updates the board if needbe,
whereas the GameBoard object only owns the code that actually draws the

pieces on the window.

4.2 The Communicator Level

The Communicator interface makes up the lowest level in the JKrieg hi-
erarchy. As the name implies, a class implementing this interface is able
to communicate with another entity, called an endpoint. Because of the
wonders of object-oriented programming, the upper levels will not need to
make any assumptions concerning the nature of this endpoint, be it local
or remote, client-server or peer-to-peer structured, human or artificial. De-
pending on the actual endpoint, the communication protocol and techniques
will vary. In this section we will deal with Socket data transmission for play
over the Internet Chess Club, but virtually anything is possible so long as
the Communicator interface is respected, that is, if all the required methods
are implemented.

One of the main aims of the Communicator layer is to consume incoming
move notifications, in turn producing standardized diagrams which can be
consumed by the higher level, de facto hiding the nature of the remote end-
point to the overlying GameController. This is accomplished through the
VirtualBoard class, which was imported from the JChessboard package
and edited to better fit the application’s purposes. A VirtualBoard object

provides an internal, uniform representation of the pieces on a chessbhoard at

4.2. THE COMMUNICATOR LEVEL 27

any given time. It also provides a few additional useful features, like telling
whether a given case is being controlled by a player.

VirtualBoard objects are the medium through which incoming moves are
shipped to the GameController. Instead of just notifying about the move,
the Communicator sends the updated chessboard. The goal here is to ensure
maximum scalability and expandability: there are a few chess variants where
the concept itself of "move” is a very peculiar one. Kriegspiel is one example
of it, as the player technically receives no moves at all, but there are more
situations where this issue shows up. For instance, in Progressive Chess,
the first player performs a move, then the opponent makes two, then three,
and so forth. So long as a few rules are followed (for example, only the
last move in a sequence may give check), any array of moves can be played.
Here, only transmitting the whole chessboard would save the day without
introducing unnecessary complications.

However, VirtualBoard objects alone may not be sufficient to describe
the situation on the gaming board. There might be additional information
that cannot be directly stored within such objects, such as remaning time,
or umpire messages in the case of Kriegspiel. This is why a Communicator
will also construct an instance of the MoveMiscellanea class as a support
to the VirtualBoard itself. This class is structured around the dictionary
paradigm; that is, it stores a vector of tag-value pairs, thus associating a
tag object, which is always a String, to a value object, which can belong
to any class. For example, an acceptable value for the ”White Clock” tag
would be 72:237. It is possible to search the list for a given tag, or retrieve
them in sequence within a for loop.

The most crucial methods that need to be implemented are listed in
Table 4.1.

As it is readily seen, some of these methods are declared as public,
whereas others are protected. Access specifiers are a key feature of most
object-oriented programming languages, as they make it possible to enforce
the mechanics of encapsulation, which is the technique of hiding unnecessary
details from external parts of the program, in order to reduce the occurrence
of potential conflicts between different sections of code and better structure
the software. In particular, methods declared as public may be always

invoked from every location; on the other hand, protected methods may

28 CHAPTER 4. DESIGN & IMPLEMENTATION
Accessor Ret. Type | Name Parameters
public void initCommunication | ()
public void setController (GameController gc)
public boolean | isGameSupported (GameSpecs gamelnfo)
public GamelD | beginGame (GameSpecs gamelnfo)
public void endGame (boolean finished)
public void writeMove (Move attempt)
protected | void doI0OLoop ()
protected | String readMessage ()
protected | void writeMessage (String message)
protected | void parseMessage (String message)

Table 4.1 Listing of the most important methods in the Communicator
interface.

only be called from inside the class which defines them, or any class inheriting
from it (this case could have been prevented by declaring the method as
private).

Thus, a Communicator acts like the proverbial black box, exchanging
information with the upper layers through a very limited selection of public
methods, and performing its inner workings via protected methods. Here
is a brief summary of the purpose of the aforementioned methods in the

Communicator interface.

e initCommunication. This self-explanatory method does all required
initialization setup, instantiating needed classes and filling records and
variables for later use. This method is expected to be invoked prior to

any other action involving the Communicator.

e setController. This method accepts a GameController as its only
parameter, that is, any object belonging to a class implementing the
omonymous interface. The Communicator writes down the information
in a variable; it will be required if the object is to do anything at all with
the data it receives from the remote endpoint. The GameController
is the upper level in the hierarchy, and it will be notified whenever

something happens demanding its attention (which usually coincides

THE COMMUNICATOR LEVEL 29

with a new move taking place).

isGameSupported. This method takes a GameSpecsobject, returning
a boolean. A GameSpecs is merely an information wrapper, contain-
ing the name of the game to be played, and other optional data, such as
desired timing and time increment. The Communicator is supposed to
return true if the chosen game with the chosen options can be played
over the current protocol, false otherwise. For example, Kriegspiel may

be played over the Internet Chess Club, but Heraldic Chess may not.

beginGame. Again, this method accepts a GameSpecs object, and
starts a game following the incoming specifications. It returns a GamelID
object containing more detailed infomation about the new game, or
null if an error occurred. The information within can be compared
with the seven basic tags of the PGN file format.

endGame. This method stops the current game. It requires a boolean
parameter, indicating whether the game has come to a natural end or
is being aborted by the upper levels for some other reason; this detail

is necessary to decide if and which messages to deliver to the endpoint.

writeMove. This method is the key to outgoing communication with
the endpoint, and is expected to be called by the overlying GameCon-
troller. It takes a Move object as a parameter, which obviusly en-
codes the move being attempted. This class was imported by the GNU
JChessboard and seamlessly integrated into JKrieg; basically, it con-
tains the source and destination locations for the moved pieces, with

some further flags reserved for special cases, such as pawn promotions.

doIOLoop. This protected method implements the heart of the in-
put/output operations. It performs all 10 activity undefinitely, which
is why it should never be called by the program main thread. In fact,
the Communicator implementation for the Internet Chess Club also

implements the Runnable interface, as it will be shown.

readMessage. This method reads the next message coming from the

endpoint (hanging the current thread if none is available, though this

30 CHAPTER 4. DESIGN & IMPLEMENTATION

is left to the specific implementation), and then returns it a String

object.

e writeMessage. This method sends a message to the endpoint; of
course, the program must have made sure the message itself makes sense
according to the protocol being used. This method may be synchronous

or asynchronous; the choice is left to the specific implementation.

e parseMessage. This method, ideally called after readMessage, accepts
a String and takes appropriate action, including notifying the attached

GameController if needed.

4.2.1 The ICCDriver class

The ICCDriver class is the Communicator implementation allowing play
over the Internet Chess Club. After a brief overview of the ICC’s history
and features, further details shall be given concerning the inner working of
this class.

The ICC is the oldest of Internet Chess Servers, dating back to the eight-
ies, when a small community of chess players foresaw the dramatic impact
that the Net could have on the game of chess. Today, it is by far the largest
chess community to be found online, often symultaneously hosting over two
thousand players. Its code was completely rewritten in 1992, still mantaining
full backwards compatibility, to improve in efficiency and compensate for the
ever growing number of players. A much more in-depth discussion of the
ICC is given in [3].

Basically, the ICC is a server that allows players to log on and find oppo-
nents to challenge. It supports player rating using the ELO rating system,
which lets a player keep track of his or her performance in time. Aside from
orthodox chess, over twenty variants can be played, and it is also possible
to watch and review other people’s games. On top of that, it offers the full
capabilities of an TRC-like chat system. Most of these features are only avail-
able to registered members who pay a monthly fee, though login as a guest
is allowed, thus letting anyone play an unrated game.

The Internet Chess Club makes use of a human-readable protocol. In

fact, it is perfectly possible to log on and play games via a telnet client

4.2. THE COMMUNICATOR LEVEL 31

without the need for a graphical interface, even though the user experience is
bound to be lacking and incomplete. Of course, the programmers introduced
a mechanism to make data transmission a more program-friendly process;
this is accomplished through the concept of datagram. In order to have
the server send datagrams instead of the usual stream of messages (which
is much harder for a program to parse), the following command has to be

issued.
set level 1!

After the server has been instructed to do so, it will start to format its

messages in a different fashion. The structure of a datagram is as follows.
[command-number player message]

Here, command-number is an opcode representing the incoming message type,
player indicates the username of the player the message come from, and
message contains the actual message text. This way, the program can figure
when a message ends, what it is meant to do, and who sent it in the first
place. There is a number of available opcodes, though JKrieg only handles
a handful of these, simply trashing and ignoring the rest, as they are of
little relevance to the game itself. Table 4.2 shows a selection of command
opcodes implemented in JKrieg, together with their meaning.

The message body contains all the relevant information. When the data-
gram transmits a move (more precisely, a ply or half-move), the body is a
ASCII representation of a chessboard, with letters such as K and P standing
for the various pieces. Uppercase letters represent White pieces, whereas low-
ercase letters are Black pieces. The datagram also contains time information,
showing the clock for both players.

There is a method, produceBoardFromText, that transforms the ASCII-
based chessboard into an equivalent VirtualBoard, ready to be consumed by
the higher levels. This method, as well as other methods in the ICCDriver
class, makes use of a support class, RegexpChecker, which implements a

very simple parser for a subset of regular expressions. The RegexpChecker

1Level 2 datagrams are available on ICC, but their purposes and usage go beyond the
scope of this paper.

32 CHAPTER 4. DESIGN & IMPLEMENTATION

Opcode | Meaning

2 Move. Represents a chessboard update during a game.

19 Disconnection. Opponent has disconnected from the game.
101 Tell. Privately sends a message to a single user.

108 Forfeit. User forfeits due to lack of time.

110 Say. Sends a message to everyone in channel.

121 Issuing. Match request sent to selected opponent.

123 Accepted. User has accepted match request.

207 Draw. Game has ended in a draw.

208 Resign. User resigns and concedes the game.

Table 4.2 A few ICC opcodes, as implemented in JKrieg.

never needs to be instantiated, because all of its methods are declared as
static.

The ICCDriver receives datagrams from the Internet Chess Club via the
Socket class inside the doI0Loop method, required by the interface contract.
The socket returns bytes as they become available from the network connec-
tion, sleeping while the connection is idle (a useful feature of Java, preventing
the program from polling the socket and wasting precious processor cycles).
These bytes are then stored in a temporary buffer until a complete datagram
can be extracted from it. The datagram is delivered to the parseMessage
method, which will take appropriate action and usually invoke the driver’s
GameController.

In addition to Communicator, ICCDriver also implements the Runnable
interface. This basically means that [CCDriver can be run as a separate
thread, and it will just execute the doI0Loop method (which is basically the
typical infinite input/output loop) until the thread itself is killed by the user
quitting the application.

4.2.2 The ClientConsole class

As the Internet Chess Club features a text-based protocol with a very large
number of different commands, and it would have been impossible to provide

a graphical interface for all of these, it was decided to have a console, resem-

4.3. THE GAMECONTROLLER LEVEL 33

bling the shell of a command line operating system, in which the player can
issue commands and receive text feedback, whereas the graphical chessboard
is only launched when games actually begin. The ClientConsole class pro-
vides such functionality. It is basically a JFrame containing a scrolling pane
for incoming messages, and a text box for typing commands.

While seemingly simple, the ClientConsole class was written as a separate
class instead of being incorporated into ICCDriver because of a few trickier
passages involving the Java way of managing application events, specifically
key press events. As a particular behavior was desired, that is, having the
console send a message whenever the Return key is pressed and the command
line has the focus (because executing a command by pressing the Return key
is the expected behavior of any command line environment), it was necessary
to define a custom Keymap event and attach it to the text box component.
This element of complexity suggested that these operations should be shifted
over to a separate class.

This also allowed to make a Client as general-purpose as possible. Its
only constructor takes a ActionListener object as the only parameter. This
represents the object that will be notified whenever the user types a command
and presses the Return key — in JKrieg this object is the ICCDriver itself,
since it also implements the ActionListener interface, but the console can
notify anything conforming to said interface.

It is possible to send data to the console by means of the write com-
mand, which will cause the String parameter to be appended to the current
console text. Again, it should be noted that, although this method will be
invoked from the ICCDriver class (with the output string of datagrams ob-
tained through the open Socket with the ICC server), a ClientConsole has no
associations with it and can be reused by any class which might be interested

in its functionality, including other Communicator implementations.

4.3 The GameController Level

The GameController interface defines the class specification for playing a
particular game or chess variant, no matter how it is being played. It is the
middle level between the graphical chessboard and the lower Communicator,

and it exchanges messages and data with both. It holds nearly absolute power

34 CHAPTER 4. DESIGN & IMPLEMENTATION

over the user interface, and it can replace ample sections of the interface itself
to fit the particular purposes of the type of game being played. In the case of
complex chess variants like Kriegspiel, it is by far the most challenging layer

to program out of the three.

The idea behind this level is that each implementing class should be able
to handle the rules and user interface for exactly one game. For instance,
JKrieg comes with two working GameController implementations, namely
OrthodoxChessController and KriegspielController. When the un-
derlying Communicator receives confirmation that a game has started, it
usually instantiates a controller of the correct class and memorizes it in a
variable, though this is not a required behavior and the creation might occur

elsewhere (for example, in the main function).

The above concept is a very powerful one, and allows to play the same
game over any medium supporting it, so long as the rules are identical.
The only problem with it arises when two systems enforce slightly different
rules, yet actually referring to the same game. Typically, chess variants are
not set in stone; as there is no official authority regulating their usage, and
they are not nearly as old as the game of chess, they often come in sev-
eral flavors that differ from one another in minor, but nonetheless important
ways. As mentioned in Chapter 2, there are half a dozen different rulesets
for playing Kriegspiel, and the one implemented by the KriegspielController
class follows the rules enforced on the Internet Chess Club. This means
that, if another Internet Chess Server decided to add Kriegspiel to their list
of featured games, but conforming to the original ruleset by Michael Henry
Temple, the Kriegspiel Controller class as it is now would not be able to play
it correctly. Another class would have to be written, or, more conveniently,
the existing class would have to be extended to provide support for the dif-
ferent rules, perhaps with an optional parameter in its constructor. Another
approach would involve coding a child class, inheriting basic behaviors from
KriegspielController and specifying different courses of action whenever the

rulesets differ.

With the aforementioned caveat in mind, it is now possible to introduce
the method listing for the GameController interface. This is shown in Table

4.3. It is to be noted that most of these methods are actually simple accessors

4.3. THE GAMECONTROLLER LEVEL 35

Accessor | Ret. Type Name Parameters

public | String getGameName ()

public | GameBoard getBoard ()

public | JPanel createCustomPanel | ()

public | JPanel getCustomPanel ()

public | void setCommunicator (Communicator c)
public | Communicator | getCommunicator ()

public | VirtualBoard | getVirtualBoard ()

public | boolean allowedMove (Move m)

public | void receiveMove (VirtualBoard vb,

MoveMiscellanea mm)

public | boolean doMove (Move m)

Table 4.3 Method listing for the GameController interface.

to important variables, and as such, the implementing class only has to define

a handful of truly essential functions.

o getGameName. This method simply returns the name of the variant
handled by the implementation. It might be used by a tool which lists
all the available games incorporated in the interface, or interrogated by
a Communicator to decide which implementation to instantiate to deal

with a new game notification.

e getBoard. This method returns the GameBoard object associated
with the current game. This class is the focus of a later section and
represents the highest level of the JKrieg user interface, actually dis-

playing chessboard data on the screen.

e createCustomPanel. This method creates, sets up and returns a JPanel
object. JPanels are part of the Java Swing package, and they serve to
group related interface elements in a window. With this method, the
Controller builds an additional panel containing an arbitrary of in-
terface elements pertaining to the game being played. Typically, this
panel will be automatically attached to the overlying GameBoard and
displayed to the right side of the chessboard. The GameController will

36

CHAPTER 4. DESIGN & IMPLEMENTATION

be responsible for updating and mantaining the panels created with
this method.

getCustomPanel. This method just returns the JPanel created with

the aforementioned createCustomPanel function.

setCommunicator. This method sets the Communicator to be used for

outgoing move notifications.

getCommunicator. This method returns the Communicator currently

used for outgoing move notifications.

getVirtualBoard. This method returns the VirtualBoard object
associated with the current game. As mentioned earlier in this chapter,
these object keep the status of piece positions at any given time (as

known to the user).

allowedMove. This method returns false if the move being attempted
by the player is guaranteed to be illegal, true otherwise. It is perfectly
possible to have this method always return true, though some checking
would avoid interrogating the remote endpoint in vain when the move
is clearly illegal (for example, caused by a slipping hand). It should be
noted that, in the case of Kriegspiel, the inherently incomplete nature
of the game makes the problem impossible to solve, and moves declared

as legal by the program may be denied by the server.

receiveMove. The main method in the GameController interface, it
accepts a VirtualBoard object describing the new state of the chess-
board, plus a list of additional information passed via a MoveMis-
cellanea object. The code has to react appropriately and update the
interface, both the graphical board and the attached JPanel.

doMove. This method, usually invoked by the GameBoard that the
user interacts with, orders the program to execute a move. This usu-
ally involves formatting the move itself and sending it down to the

Communicator for actual delivery.

4.3. THE GAMECONTROLLER LEVEL 37

4.3.1 The KriegspielController class

The KriegspielController class is one of the two GameController imple-
mentations bundled with JKrieg, the other being OrthodoxChessCon-
troller. The latter, as the name suggests, allows to play regular games of
chess, but it is little more than a simple move wrapper, and because of this
it was chosen not to document it here in the present paper. KriegspielCon-
troller, on the other hand, is a complex class, easily the largest and trickiest
file in the JKrieg directory. Kriegspiel is not a difficult game to program per
se; in fact, the Controller coded to handle orthodox chess would have been
able to play games of Kriegspiel as well, and with only minor changes. Of
course, this would have been accomplished by simply copying and pasting
the umpire’s messages from the lower Communicator level into a textbox or
a similar interface element — which is how many existing programs allow to
play Kriegspiel at the time of this writing. But the aims for JKrieg were
much higher than this; the application was to help the player by integrating
his or her knowledge and the incoming messages in a seamless way, hence

the theoretical work developed and discussed throughout Chapter 3.

The KriegspielController class witnesses to the potential flexibility
of the three-layer architecture chosen for JKrieg. It literally shapes up the
overlying generic visual chessboard through a very limited set of methods,
and yet the changes are self-contained within a single class. Of course, the
whole JKrieg package was created with Kriegspiel in mind, since this was the
original goal for this application; however, the only places where Kriegspiel
is mentioned are here and in the ICCDriver class, wherein the program
formats incoming umpire messages into a MoveMiscellanea object so that

they can be understood by the present class.
The first problem that was faced during the development of this class

involved creating an internal representation format for information of prob-
abilistic nature. In other words, it was necessary to encode the entities
introduced in Chapter 3 as guess tokens into the class. This implied that a
matrix of values, corresponding to the 64 cases on the chessboard, should be
created and mantained by the program. These values keep track of which
tokens are where, and their relative intensity (as JKrieg makes use of

transparency to convey the probability of a guess being correct). Thus, in

38 CHAPTER 4. DESIGN & IMPLEMENTATION

addition to the VirtualBoard the controller is expected to mantain, the class
also makes use of additional support variables which are updated as move
notifications are received by the Communicator below, and in turn the actual
chessboard will be ordered to update what is shown to the user.

It follows from the reasons above that the receiveMove method is where
most of the action takes place. The method has to take a VirtualBoard and
a MoveMiscellanea object in order to respect the interface contract, though
the former is a completely superfluous parameter, as it will only contain the
allied pieces (or show that one is missing if a capture has happened, which
could be learnt from the umpire messages as well). The actual source of infor-
mation is the MoveMiscellanea, storing incoming messages in a well-known
protocol. Of course, in order to provide Kriegspiel functionality (at least
with the author’s implementation of it), the Communicator has to encode
the information as KriegspielController expects it to be, that is, using the
same tags and associating values correctly. However, as each game is based
on a very limited set of rules, the protocols are invariably very simple to code
and keep uniform.

Table 4.4 shows all the legal tags that the KriegspielController class
understands. Passing different tags will not cause errors, but they will be
ignored by the program.

These tags summarize all the information needed to correctly play the
Kriegspiel ruleset as enforced on the ICC. As it is easily seen, there are two
redundant tags, Check and Double Check; their function is to allow the
program to perform common routines, independent of the actual check type,
or warn about the presence of two simultaneous checks, which changes the
mode the algorithm works in.

What the receiveMove method does is scan the MoveMiscellanea for the
various tags by using a very simple for cycle, reacting to each entry in the
dictionary as they are parsed. The knowledge base and guesses are updated
accordingly, and finally the VirtualBoard status is changed to reflect the new
computations. Of course, this is easier said than done, and the class itself
features over 1,200 lines of code. Out of these, the receiveMove method,
which dispatches the various tags to the appropriate places and deals with
particular cases such as illegal moves, is about 160 lines long. It should be

noted that over 60% of the code making up the class is devoted to handling

4.4. THE GAMEBOARD LEVEL 39

Tag Value

”White Clock” A String such as 70:32”

”Black Clock” A String such as 70:32”

»Outcome” A String (7107, 701 or "1/2-1/2)
?Pawn Tries” An Integer object (number of tries)

”Piece Captured” Ignored (location is known)

?Pawn Captured” Ignored (location is known)

”Check” [gnored (must be sent with a check type tag)
”Double Check” [gnored (must be sent with check type tags)
”Rank check” Ignored

”File check” Ignored

”Long diagonal check” | Ignored

”Short diagonal check” | Ignored

”Knight check” Ignored

Table 4.4 Listing of the MoveMiscellanea tags understood by
KriegspielController.

checks (that is, the Check and King tokens), as these are by far the most
complex situations.

Each check type is treated separately through four methods, respec-
tively called handleRankCheck, handleFileCheck, handleDiagonalCheck
and handleKnightCheck, each tackling a different type. Inside these meth-
ods, after an introductory part of variable initialization, the code is split up
into two sections by an if statement, separating the opponent’s checks from
the player’s. This is performed here because there is a notable number of
shared calculations between the two cases, and this choice avoids hundreds

of lines of redundant code.

4.4 The GameBoard Level

The GameBoard class, which extends the standard JFrame class coming
with the Swing package, provides the actual graphical representation of a
chessboard with which the user can interact. Unlike the underlying levels,

consisting of interfaces, GameBoard is a full-fledged class; this choice was

40 CHAPTER 4. DESIGN & IMPLEMENTATION

motivated by the fact that the GameBoard is not meant to be replaced by
different implementations. In fact, one of the primary aims of an interface is
provide the user with a consistent, familiar visual pattern, thus suggesting
that the same basic chessboard should be used, no matter what the Controller
or the Communicator objects are. However, it is still possible to take ad-
vantage of Java’s inheritance mechanism, and generate a specific child class,
should it be necessary to the application.

When it came to deciding what the board would look like, a tradi-
tional, conservative approach was chosen, involving a classic two-dimensional
grid. The user would expect the interface to adhere to a consolidated stan-
dard like drag'n’drop, a feature fully supported by Swing objects (see [5]).
While drag’n’drop would have been possible with a three-dimensional board,
such a solution would have proven both harder technically and potentially
less usable and intuitive, especially to handicap bringers. Finally, a three-
dimensional view may make sense in regard to orthodox chess, but variants
like Kriegspiel like 2D images more, because transparency and special effects
can be effectively used to provide more complete information.

Table 4.5 lists the more significant methods making up this class, ex-

cluding accessors.

e GameBoard. This is the only constructor specified for the class. It
accepts a number of parameters, including GameSpecs and GamelD
indicating information concerning the new game (mostly used for set-
ting the window title to show the players’ names and the game number,
if applicable). It also requires a GameController implementation to be
passed to it, so that move notifications can be delivered to it. During
the initialization stage, the GameController is also asked to build and
return its custom panel, so that it can be attached to the window and
displayed to the right side of the chessboard. The remaining parame-
ters are useful to let the program know if the player is using the Black
pieces (in that case, the board will not activate drag’n’drop interaction

until the next move).

e updateBoard. This method tells the object to update the status of all
the tiles on the board, according to an internal VirtualBoard object,

typically immediately after changing it through a setBoard call.

4.4. THE GAMEBOARD LEVEL 41

e setBoard. This method is usually invoked by the GameController to
change the internal representation of the chessboard after a new move
has been received by the Communicator. This does not immediately
alter the display to reflect the changes; the updateBoard has to be
called for this to happen.

o getTile. This method is little more than an accessor, returning a
GameTile object corresponding to the rank and file coordinates that
it takes as input. This method was added to the class because it is
sometimes necessary for the Controller to perform direct, custom action
upon a specific tile of the chessboard. For example, the Zone of Control
feature discussed in Section 3.6 requires the GameController to invoke

a method to set the color of a GameTile to red.

e handleMove. This method reacts to a drag’n’drop operation from the
user. Its implementation first asks the GameController for legality of
the attempted move, and in the case of an affirmative response (which
may also mean that the answer is unknown), it dispatches the move to

the GameController itself by invoking its doMove method.

In addition, the GameBoard overrides a method of its parent class JFrame,
processWindowEvent. This method reacts to different windows event, such
as the open window being activated or deactivated (when the user clicks on
another window, for example), resized or closed. The new implementation
invokes the overriden method, but adds a supplemental behavior: if the user
closes the window, it warns the lower levels that, if a game is in progress, it
should be aborted. This way the remote endpoint will be warned that the
user has left the game, and the player will be able to start a new game if

they so desire.

4.4.1 The GameTile Class

A GameTile object represents a single cell of the chessboard. This class
inherits basic behaviors from the Swing JComponent class, thus making
a GameTile conceptually on par with any other interface element, such as

checkboxes, text fields or buttons. Every object contains all the information

42 CHAPTER 4. DESIGN & IMPLEMENTATION

Accessor | Ret. Type Name Parameters

public | GameBoard | GameBoard (GameController gc,

GamelD id, GameSpecs specs,
String plName, boolean interact,
boolean white)

public | void updateBoard | ()

public | void setBoard (VirtualBoard vb)

public | GameTile getTile (int file, int rank)

public | boolean handleMove | (int fromRank, int fromFile,

int toRank, int toFile)

Table 4.5 Listing of the most important methods in the GameBoard class.

it needs to operate in stand-alone mode, including square color, pieces, and
special images. The main advantage of this method is that drag’n’drop nearly
came to Krieg for free, as the behavior is embedded into JComponents. As
an added benefit, a small twist in the two "for” loops that arrange their
placement is everything the program needs to swap the board when the
user plays the black pieces (the Components are just placed at different
coordinates).

The most noteworthy feature of a GameTile consists of supporting seam-
less drag’n’drop from other GameTiles. This was accomplished by hav-
ing the class implement a number of interfaces, namely DragGestureLis-
tener, DragSourcelistener, DropTargetListener and Transferable.
The main reason for having to implement four interfaces lies in the fact
that a GameTile can be both a source and a target of a drag'n’drop action,
since pieces are dragged across the whole chessboard.

The main method in the DragGestureListener interface is dragGesture-
Recognized. This method is invoked with a DragGestureEvent object as
a parameter. The implementation has to call the startDrag method on that
object if it deems the drag operation legal; in that case, it has to specify the
cursor icon and drag’n’drop avatar image for the current drag. The latter is
a simply the image of the piece being moved, whereas the cursor icon will not
change. This being said, the method makes sure that the piece being dragged

belongs to the player and it is the player’s turn to move before authorizing

4.4. THE GAMEBOARD LEVEL 43

the drag. startDrag also requires that the information to be exchanged via
the drag be passed as a Transferable parameter. This is why GameTile also
implements the Transferable interface, and it passes a reference to itself as
drag information.

Conforming to the Transferable interface means that the object can re-
lease its information in a well-defined set of data flavors. Examples of
data flavors include plain text, RTF formatted text, HTML, or user-defined
formats. In this case, GameTile only supports a single data flavor, "Tile”.
A Transferable transmits the information it contains through the getTran-
sferData method, which takes the desired data flavor as a parameter and
returns the data in the specified flavor as an Object, if applicable. For ex-
ample, a GameTile, when asked to transfer its data in the "Tile” flavor, will
return a Point object containing its coordinates on the chessboard.

The DragSourcelistener interface requires the class to define five meth-
ods. Although GameTile implements them as dummy functions that really
do nothing, these serve as placeholders, should one wish to incorporate ad-
ditional visual feedback to the drag — for example, by highlighting a legal
target square when the dragged piece passes over it.

The DropTargetlistener represents the other side of the drag, that is,
the drop. The most important method here is drop. The implementation
first checks if the dragged item is applicable (that is, dragging text onto
a chessboard will not yield any result) by making sure that the incoming
Transferable supports the "Tile” data flavor. Then, it asks it to transfer its
"Tile” data, and decodes the Point object, obtaining the coordinates of the
location from which the drag originated. Since the GameTile knows its own
location on the chessboard, the program now knows both source and target
of the attempted move, and the GameBoard can invoke the handleMove
method and have the Controller deal with it.

4.4.2 Images & Transparency

Custom imaging is another integrated feature of the GameTile class, and,
while specifically designed for Kriegspiel, it is potentially utilizable by sev-
eral other variants. Basically, the GameBoard loads picture data at startup,

but it is possible to specify different images to be displayed on the GameTile

44 CHAPTER 4. DESIGN & IMPLEMENTATION

through the addCustomImage method. This method comes in two flavors: a
simpler one that only takes an Image object and centers it in the compo-
nent’s area, and a more complex one that also requires a char parameter
representing the desired transparency for the image.

Transparency is achieved through the FilteredImageSource class, which
allows a programmer to create filters affecting an Image object. There are
various types of filters, and the transparency filter needed for this method
(which achieved guess token transparency in Kriegspiel, thus associating
opacity to probability) belongs to the simplest type; that is, where each
filtered pixel only depends on the corresponding source pixel.

This being said, the ImageTransparencyFilter class, extending the
more general RGBImageFilter class, was coded to solve the problem. The
class implements a constructor, taking the desired transparency rate as pa-
rameter, as well as a single method, £ilterRGB. Given two coordinates and
the color value of the source pixel, expressed as an int, this method is ex-
pected to return the filtered value. Changing transparency translates to
nothing more than changing the pixel’s alpha value to the desired quantity,

expressed in 255ths.

Chapter 5

Tests & Conclusions

The program was developed in such a way as to allow the programmer to
perform test runs as soon as possible. Actually, the first test took place a few
days after the writing of the first line of code: since the development process
started with the coding of the Communicator layer and its ICCDriver imple-
mentation, the first tests were executed under the text-based console bundled
with this class, and this process discovered a number of communication bugs

having to do with the intricacies of the Internet Chess Club protocol.

At a later stage, it was possible to employ the graphical interface itself
to play test games. The OrthodoxChessController class, while little more
than a dummy class for playing regular chess, was nonetheless an important
tool in that it allowed to make sure that the general implant of the program
and the visual interface was correct, before descending into the complexity
of the specific Kriegspiel features. Here, the main testing tool constisted of
either running two copies of the program on the same machine, and play a
game between them, or running a copy of JKrieg together with a different
interface, in order to find possible issues deriving from having two programs
interact with each other, even though with the ICC server in the middle. This
being said, the above stage did not reveal excessively troublesome bugs and
errors to correct, although the ICC human-readable protocol for representing

a chessboard required a good deal of effort to translate correctly.

45

46 CHAPTER 5. TESTS & CONCLUSIONS
5.1 Kriegspiel Tests

Testing the functionality of the KriegspielController class, however, raised
many more hidden problems. The first tests of this series still involved self-
playing using two running copies of the program, and brought out a number
of bugs, such as misinterpretation of some special cases, wrongly initialized
variables, and divisions by zero when attempting to calculate correct opacity
for some guess tokens. These problems were solved separately, but a fact
that was not realized until later in the development process was that the
testing procedure itself was flawed. In other words, playing simulated
games against the programmer himself only checked the correctness of those
features that the programmer thought about checking. The tests focused
on the same game patterns, trying to reproduce a number of situations, but
failing to capture them all.

The mistake manifested itself in all of its seriousness when the second

series of tests utilized an artificial Kriegspiel player residing on the Internet

Chess Club, Krieg.

5.1.1 Krieg

Krieg is a computer player of Kriegspiel over the Internet Chess Club. It was
mentioned in Chapter 2 that, because information is incomplete in Kriegspiel,
in constrast with the most powerful Al agents liking complete information
in order to use brute-force algorhythms and compute as many moves as
possible, there are not very strong artificial Kriegspiel players. However,
Krieg is strong enough, and it becomes much stronger, to the point of utter
invincibility, as time constraints get tighter (for example, 3-minute games
without increment).

Of course, there is more to Krieg than meets the eye. To put it simply,
Krieg cheats. Being a registered user of the Internet Chess Club, the program
has access to a number of restricted features, including watching rated games
as a spectator. The trick is as simple as it is effective: during the game, Krieg
also registers itself as a watcher of its own game, and therefore can see the
complete information that only the umpire is normally entitled to know. This

means that Krieg knows where its opponent’s pieces are located and, in fact,

5.2. CONCLUSIONS 47

Krieg is just another chess program with a module on top of it that converts
Kriegspiel into regular chess. Just another chess program, and a weak one as
well, since a human player can beat it anyway when time is less of a problem.

No matter its strenght or weakness, Krieg is a very useful testing tools. It
was by playing with it that the developer found out that the theory behind
the guess tokens was missing a few crucial points. A mistake had been
committed earlier in the development that would be paid for dearly later on.
For one, the programmer had so far been following the wrong assumption that
if both a capture and a check happen at the same time, then the capturing
piece is the one causing the check. As shown in Figure 3.4 on page 15, this
is dramatically wrong, as it fails to take into account 'discovery checks’, but
the programmer stuck to it until Krieg proved it wrong in a real-world game.

This also proved that a more thorough theoretical work should have been
carried out at the beginning of the design step. What is now shown in
Chapter 3 is the result of a first effort, then corrected and integrated with

the new information drawn from the testing stage on the field.

5.2 Conclusions

JKrieg was the developer’s first attempt at creating a serious, real-world
application following a set of external specifications, and as such resulted
in a mixture of success and failure. Most of the mistakes could have been
easily avoided and derived from his lack of experience and proper software
engineering theory. However, despite the problems of a troubled creative pro-
cess, JKrieg is a working application that meets its requirements, and even
more importantly, it can be upgraded and extended to provide further func-
tionality. For one, the Kriegspiel controller could be enhanced to reveal even
more information than it currently shows; right now, all the calculations are
performed basing on the last chessboard status only. But it would certainly
be possible to improve the effectiveness of JKrieg by taking into account
the previous states, so as to rule out possible piece positions.

Another area of enhancement might lie in how the probability of guess
tokens is actually computed. As it stands right now, all King and Check
tokens are always displayed with the same transparency level, which is not

always realistic. Algorithms could be devised to recognize and promote more

48 CHAPTER 5. TESTS & CONCLUSIONS

likely areas, and demote places that are less easily reachable by enemy pieces.

Appendix A

The JKrieg Postmortem

Introduction

This appendix contains the postmortem document for the JKrieg applica-
tion. A postmortem is an article describing the overall development process
of a software for future reference and information, as well as to summarize
the lessons learnt by the developers during the various stages of the work.
It is usually followed by a brief data sheet containing vital details about the
project, the developing team, the platforms it works on and notable tech-
nologies employed.

Normally, the introduction part of a postmortem describes the infant
stages of the life of a project — when and why it was designed, its intended
target and most relevant competitors, how the developer team was assembled
and what hierarchies and structures were used to coordinate the work. JKrieg
is not a commercial project but an academic one and was born on the effort
of a single developer from April to October 2003. Its aim was to create the

first truly specific Kriegspiel user interface, for play on the Internet Chess
Club.

What went right

The choice of the Java programming language was most certainly the best
decision made during the development process. Not only did Java provide the
object-oriented environment that allowed JKrieg to be portable, encapsulated
and extensible, it also offered a number of vital functions "out of the box”

through the Swing package and other fundamental classes included in the

49

50 APPENDIX A. THE JKRIEG POSTMORTEM

basic release. Features such as drag'n’drop, transparency, sockets, timers
and textboxes nearly came for free and required only minor customization
work to adjust them to fit the application’s needs. In the long run, this
saved a lot of work and made it possible to satisfy the software requirements
within the expected deadline. The three-layer architecture also made the
task simpler and allowed the developer to handle problems separately, thus
minimizing the complexity of a program spanning over about 30 classes and
7,000 lines of code.

The idea of using tokens to help a player better visualize information on
the chessboard was a successful one. These entities are intuitive enough to
be useful, and yet not intrusive enough to be a distraction to the player.
One of the most important merits of this system is that the player does
not have to shift his or her eyes from the chessboard to take a look at the
incoming messages from the umpire; this way, the attention span (which can
be shortened and weakened by such simple actions as scrolling a window
on the screen) is better preserved and this may result in the player being
more attentive and concentrated, especially during fast-paced games on the

Internet.

What went wrong

The theoretical work about guess tokens (described in Chapter 3) was per-
formed at different stages of the development cycle, and this proved to be
the single most significant pitfall. As the intricacies of the situations possi-
bly deriving from the tokens were not entirely considered during the design
stage, the complexity of the resulting system was severely underestimated
until later in the implementation stage, when the first series of tests reported
the presence of conceptual flaws in the algorythms that placed the tokens on
the screen. These algorhythms sometimes made mistakes basing on wrong
(and even naively so) assumptions, This basically forced the developer to
rewrite a few sections of code from scratch, wasting valuable time resources,
and only the encapsulation praised in the section above allowed to save the
day and limit the losses down to an acceptable degree.

This was a harsh lesson learnt from the project, and stressed the absolute

importance of a thorough, even paranoid design stage, as the cost of cor-

51

recting a mistake increases exponentially with every step down the path of

development.

Data Sheet

Project name JKrieg

Timeline April to October 2003, or 3 months-man

License GNU Public License

Platforms Any platform running the Java2 Virtual Machine (1.3.1 or later)
Project size 27 class files, 7487 lines of code, approx. 250,000 characters

Technologies Java 2, most importantly the Swing graphics package

JKrieg File Listing

ClientConsole. java
Communicator. java
GameBoard. java
GameController. java
GameHistory. java

GamelID. java

GameMove. java
GameSpecs.java

GameTile. java
GameTileRowIndicator. java
HistoryPanel. java
ICCDriver. java

ICCGameID. java
ICCLoginDialog. java
ImageTransparencyFilter.java
Krieg.java
KriegspielController. java
LoginDelegate. java

Move. java

52 APPENDIX A.

MoveMiscellanea. java
OrthodoxChessController. java
PGNViewerController. java
PiecePosition. java
RegexpChecker. java
SoundManager. java
TimerComponent. java

VirtualBoard. java

THE JKRIEG POSTMORTEM

Appendix B

Chess Diagrams

This paper was written in the ETEX typesetting language, and the chess
diagrams featured throughout it were obtained by utilizing a custom com-
bination of two specialist packages, chess and skak. These packages allow
to easily create diagrams from several well-known notations, and even keep
track of the progress of a game, move by move, making it possible to print
the current state of the chessboard at any given time. All in all, they are
excellent choices for typesetting chess games, with skak, the younger pack-
age of the two, offering a wider range of options and a more intuitive set of

functions and macros.

However, the chess diagrams employed in this paper were much more
challenging to make than a standard game diagram, for obvious reasons such
as the presence of non-existant symbols like the Guess Tokens and a plethora
of more or less strange additions, including colored pieces, arrows and letters.
Producing diagrams with such a level of customization would have been
nearly impossible, if not for the inherent power of the TEX language. In fact,
in order to accomplish these results, the author had to tamper around with
macro files and find more than a few tricky solutions to seemingly unsolvable
problems.

The key concept behind the diagrams is that each tile of the chessboard
grid is just another glyph of a font. In other words, the White King on a
black field is not any different from the letter ’a’ in the rest of this docu-
ment; it just belongs to another, specialist font. This font is, obviously, a

monospace one, that is, all glyphs are equally wide, so that they can be

53

54 APPENDIX B. CHESS DIAGRAMS

perfectly aligned in columns. Looking at it this way, the following chessboard:

was obtained by means of the following command:

\myshowboard
{rmblkans}
{opopopop}
{020Z0Z0zZ}
{202020Z0}
{020Z0Z0zZ}
{202020Z0}
{POPOPOPO}
{SNAQJBMR}

where myshowboard is a user-defined macro which changes the font to the
skak one and performs other tasks such as drawing borders around the chess-
board. Fach character is mapped to the corresponding image just like in any
other font, White pieces being uppercase, and different letter being used to
separate white fields from black fields (for example, the White King on a
white field is represented by the letter K, and by the letter J when it is on a
black field).

However, this alone does not explain how it is possible to heavily cus-
tomize a board by adding characters not included in the font definition. This
is accomplished through the use of an incredibly versatile BTEX command,

the picture environment. An environment is basically a group of statements

35

framed by a pair of begin and end commands, and the picture environment
is used to produce pictures of any size, starting from elementary building
blocks: characters, lines, circles, and so on. The best thing about pictures
produced this way is that they can be put nearly anywhere on a page, even
in a line of text (for example, they can be used to draw a new character
accent not existing in the standard release); which means that they can even
replace an arbitrary number of squares on the chessboard. This technique,
as well as several others, is introduced and detailedly exposed in [4].

Thus, what was done was to insert custom-made pictures in place of skak
characters whenever something unusual had to be displayed. For instance,
six macros were created to display the three guess tokens on both white and
black backgrounds, and invoked whenever the need arose. The integration
with the rest of the chessboard is seamless so long as the picture is declared
as having the same size as the other characters (that is, 20x20 points). The
Piece token is a mere circle, the Check token is the Piece one with a '+’ char
in Roman font in the middle, and King token adds a 15-point version of the
King glyph from the skak font, so that it can fit in the circle.

Adding color was perhaps the hardest, and yet most intriguing under-
taking. While glyphs can be easily colored via the textcolor command
(remembering that boards are nothing more than text displayed using an
uncommon font), drawing the red background of Figure 3.10 on page 22
proved to be an uphill battle, as the command of choice for this operation,
colorbox is affected by a documented bug, making the colored box a few
points too large (a problem which has to do with the package 'patching’ a
driver born to work in black & white mode), which is unacceptable in a case
such as this, where size is of the utmost importance, and the overgrown box
would surpass the required 20 points, thus laying waste to the overall setup.

The solution was quick and in a way lacked elegance, but it got the job
done with the required accuracy and a single line of code. The multiput
command, when used inside the picture environment, allows to repeat an-
other shape over and over a given number of times, each time translating it
by a fixed amount of space. This being said, it sufficed to use this command
to clone a single, vertical red line running from bottom to top, and have it
repeated enough times to fill up the area. It should be noted that, in a larger

paper with more occurrences of this pattern, it would be possible to store

56 APPENDIX B. CHESS DIAGRAMS

this command in a save box so as to prevent it from being processed each

time.

Bibliography

[1] Paolo Ciancarini. I Giocatori Artificiali. Mursia, 1992.

[2] Paolo Ciancarini. La Scacchiera Invisibile: Introduzione al Kriegspiel. To

be published, 2003.

[3] Marco Collareda. Scacchi e computer. programmi, algoritmi, interfacce

grafiche e internet chess server, 2002.
[4] Antoni Diller. BTEX Line By Line. John Wiley & Sons, 1993.

[5] Sun Microsystem Inc. Java Look and Feel Design Guidelines. Avail-
able for download at http://java.sun.com/products/jlf/ed2/book/, sec-
ond edition, 2001.

57

