ALMA MATER STUDIORUM - UNIVERSITA DI
BoLoGgNA

FACOLTA DI SCIENZE MATEMATICHE FISICHE E
NATURALI
Corso di laurea specialistica in Informatica

Materia di tesi : Ingegneria del Software

Semion: un software che implementa un metodo di
trasformazione configurabile da database relazionali in
linked data

Tesi di laurea di: Relatore:
Andrea Giovanni Nuzzolese Chiar.mo Prof. Paolo Ciancarini
Correlatori:

Dott. Aldo Gangemi
Dott.ssa Valentina Presutti

Sessione 111

Anno Accademico 2008/2009

IT

Contents

Abstract 1
1 Introduction 3
1.1 A concise presentation of the web architecture 4
1.2 The Semantic Web 7
1.2.1 The Resource Description Framework: RDF . . 9

1.2.2 The Ontology Web Language: OWL 12

1.2.3 The RDF query language: SPARQL 14

1.3 Linked Data 16
1.3.1 The problem of data silos 16

1.3.2 Exposing, sharing, and connecting data in the

Web 17
1.4 Motivation and objectives 19
2 Opening the data silos 21

IT1

CONTENTS

2.1 Publishing heterogeneous data sources in RDF Linked
Datao

2.2 Thestateofart
2.2.1 Meta-model driven approaches

2.2.2 Limitations of meta-model driven approaches

Semion: design

3.1 Motivationso
3.1.1 Problems
3.1.2 Goals.
3.1.3 Solutions oL

3.2 The Linguistic MetaModel: LMM

3.3 Software description L.

3.4 Software architecture
3.4.1 Reengineer.

3.4.2 Refactor

Semion: implementation
4.1 Environment and development tools

4.2 'Treating Non-RDF databases as RDF graphs.

4.2.1 RDF customized mapping of non-RDF sources .

CONTENTS

4.2.2 Reengineering: from databases to RDF
4.3 Adding multilinguality to data

4.3.1 SemionRule: Alignment as inference on set of
rules

4.3.2 Refactoring module: concrete implementation

4.4 The graphical tool

5 Semion: evaluation

5.1 Testing Semion on relational databases
5.1.1 Evaluation scenario: WordNet
5.1.2 Testing the reengineering module
5.1.3 Testing the refactoring module

5.2 Testing Semion on other data sources
5.2.1 Evaluation scenario: PGN and LaTex chess
5.2.2 PGN and LaTex chess to RDF

5.2.3 Refactoring the chess dataset

6 Conclusion and future work

A Engineering details

Bibliography

57

85

89

92

VI CONTENTS

Webography 96

Abstract

I1 Web tradizionale € pensato quasi esclusivamente per essere utilizzato
e compreso da esseri umani. Infatti, i documenti che esso contiene non
permettono la rappresentazione dei dati in modo da garantire anche a
delle macchine di poter comprendere e gestire la semantica associata
ai dati stessi.

Il problema e lagato al fatto che nel Web si pubblicano documenti
espressi in un formalismo (HTML [RLHJ99]) che non puo essere com-
preso da un macchina.

I Web Semantico, introdotto da Berners-Lee [BLHLO1], costituisce
un’estensione del Web tradizionale dove i documenti pubblicati sono
associati ad informazioni e dati (metadati) che ne specificano il contesto
semantico in un formato adatto all’interrogazione, all’interpretazione
e, piu in generale, all’elaborazione automatica.

Se da un lato il Web Semantico fornisce tecnologie, come RDF [Bec04]
ed OWL [HMO04], per rappresentare semanticamente i dati in modo che
possano essere compresi da macchine, dall’altro occorre prima trasfor-
mare sorgenti di dati non-RDF preesistenti in RDF.

Berners-Lee [BLO06] ha suggerito un’insieme di buone pratiche che per-
mettono di pubblicare e connettere tra loro nel Semantic Web sorgenti
di dati non semantiche. L’utilizzo di queste buone pratiche costituisce
il Linked Data [BLO6], ossia un grafo semantico, in cui i dati sono
condivisi e connessi fra loro.

In questo lavoro ci si propone di studiare, progettare ed implementare
un tool basato su un metodo che permetta la trasformazione da data-
base relazionali in grafi semantici pubblicabili nel contesto del Linked
Data. Il tool si differenzia da una serie di altri tool esistenti, che per-
mettono lo stesso processo di reingegnerizzazione, perche fornische un

2 Abstract

approccio configurabile dall’'utente. Infatti, mentre gli altri tool tras-
formano il database relazionale direttamente in RDF, usando come
vocabolario RDF Schema [BG04b], Semion, che ¢ il tool studiato ed
implementato, prima traduce il database in triple RDF, non associan-
dogli uno specifica semantica derivante da uno specifico vocabolario,
e successivamente permette all’'utente di rifattorizzare il set di dati
ottenuto ad un serie di possibili ontologie e design pattern. Di conse-
guenza, la semantica associata al set di dati generato dal database,
non ¢ necessariamente quella derivata dal metamodello di RDF (RDF
Schema), ma quella derivata dallo specifico metamodello scelto per la
rifattorizzazione (per esempio LMM [PGGOS8]), che puo essere scelto
in base allo specifico dominio del database stesso.

La trasformazione in triple RDF del database e guidata da un metamo-
dello OWL che e stato implementato per descrivere semanticamente
lo schema e i dati di database relazionali, mentre la rifattorizzazione e
resa possibile da un ragionatore che riceve in input un insieme di regole
di allineamento ad altre ontologie o design pattern definite dall’utente.
Il tool, in futuro, sara esteso per gestire la trasformazione da data
source eterogenei, in quanto il metodo non ¢ limitato esclusivamente
a database relazionali.

Chapter 1

Introduction

This chapter wants to be a short presentation about the traditional
Web, the Semantic Web [BLHLO1] and the Linked Data [BL06] that
are the basic concepts to know in order to fully understand the moti-
vations and the goals that are behind the project related to this thesis.
In chapter 2 it will be given an overview about the state of the art
in Linked Data and about the existent tools that can be related to
Semion, that is the software designed and implemented in this thesis.
Then, in chapter 3 is provided a description of the Semion design in
its two main components that are realized by a reengineer, that trans-
forms non-RDF data sources into RDF, and a refactor module, that
aligns RDF models to other models thought as vocabularies or onto-
logy design patterns.

In chapter 4 it is described the implentation of what was designed in
chapter 3. So it is explained how the reengineer and the refactor mo-
dules were implemented.

Chapter 5 contains the evaluation of the software. This was performed
by transforming three different types of data sources into RDF/OWL,
namely a relational database, PGN [Wikc| files and LaTex [Lam86]
documents with the skak package. The relational database was a
MySQL [WAO02] version of the Princeton WordNet [Mil95], while both
PGN files and LaTex documents contained information about chess
games.

Chapter 6 contains the conclusion and the future work.

4 CHAPTER 1. INTRODUCTION

Finally in appendix A are listed and explained some engineering de-
talis of the software implemented.

1.1 A concise presentation of the web ar-
chitecture

In 1989 Tim Berners-Lee, an independent contractor at the European
Organization for Nuclear Research (CERN) of Genevre in Switzer-
land, wrote a proposal for “a large scale hypertext database with
typed links”. In that document, referencing a previous project cal-
led ENQUIRE, he defined a system designed to help the researchers
to share documents of various projects in order to prevent the so cal-
led loss of information in the “web” of the CERN organization [BL89].

Despite the scarce interest generated by the proposal Berners-Lee car-
ried on the project finding in Robert Cailliau an enthusiastic collabo-
rator and, by the end of 1990, they developed all the necessary tools
for a working Web:

the HyperText Transfer Protocol (HTTP)

the HyperText Markup Language (HTML) [RLHJ99]

the first prototype of Web Browser

the first Web server

The turning point for the World Wide Web was the introduction of the
Mosaic web browser in 1993, a graphical browser developed by a team
at the National Center for Supercomputing Applications (NCSA) at
the University of Illinois at Urbana-Champaign (UTUC), led by Marc
Andreessen.

1.1. A CONCISE PRESENTATION OF THE WEB ARCHITECTURES

_\
Cc-rnputer
conferenung HH
Hyper \‘_r - forexample
Card N
i SN
' __“_‘\
h: | e AEEE LR Hizramhical
" : sygems
r
Y LS e
forexample fc-rexarnple
unlﬁes
__________ F‘I’DPOE|
Linked "t sh" CERNDOC
information describes
descnbes |ndudes
|ndudes
C.E.R.MN
dessribes This .
"Hy pertest! *«————— dacument . divisian
. |
.| I
r\e'iars group rau
|ndudes aroup

descnbes |
wmte I T

= ection

\ [I I
ypermedla Tim
Berners-Lee

Figure 1.1: The scheme of the Berners-Lee’s Proposal
[BL&9|

The figure 1.1 is the first Web schema projected by Berners-Lee in
order to manage on-line documents at CERN.

Passing all the other milestones in the Web history it could be stated
that nowadays the Web is composed by billions of hypertext docu-
ments written in HTML. The great success of the Web is due to the
extreme simplicity of the HTML language that enables almost anyone
to write a document, as it is fully humane-readable and comprehen-
sible. Moreover we cannot ignore that the web is an Internet service
that allows publishing and sharing multimedia contents. HTML is just
the visible part of a more complex and structured architecture. Figure
1.2 shows a modern web-based enterprise application with four layers:

e a client layer which renders web pages

CHAPTER 1. INTRODUCTION

Typical Web

Logical Layers
J y Implementation

—> Browser

> Web Server

Middle
Tier

—T—> Application Server

Database (or

E Legacy Data Store)

Figure 1.2: Architecture for an Enterprise Web-based Application

e a middle tier which includes:

— a Presentation Layer which generates web pages, including
their dynamic content. It interprets web pages submitted
from the client

1.2. THE SEMANTIC WEB 7

— a Business Logic Layer which enforces validations and which
handles interaction with the database

e a data layer which stores data between transactions

It is important to remark that all the information is contained in the
data layer. This can be any possible data source such as a relatio-
nal database, an XML [SMYM™08] module, etc..., so that the user
can access the information after the middle tier has transformed into
a valid content for a Web browser, generally HTML. Of course the
transformation performed by the middle tier and the architecture it-
self are completely transparent to the user so that it seems that the
Web page performs every interaction.

1.2 The Semantic Web

HTML played the main role in making the Web popular thanks to its
simplicity for publishing documents in the net and creating connection
between documents through hyperlinks.

Although HTML’s contribution in the Web growth, it cares only for
structural and presentational (with CSS) aspects, while ignoring com-
pletely the meaning of the data it represents. As a consequence, the
traditional Web of documents is almost completely human-oriented
and much less machine-oriented, because it is not possible to state
anything about the content and data hidden in HTML documents.
For this reason in 1996 Berners-Lee [BLHLO1] introduced the Seman-
tic Web, a dream for the Web in which computers become capable of
analyzing all the data on the Web, the contents, the links, and the
transactions between people and computers.

The Semantic Web brings structure to the meaningful content of Web
pages, creating an environment where software agents roaming from
page to page can readily carry out sophisticated tasks for users. Such
an agent coming to the clinic’s Web page will know not just that the
page has keywords such as “treatment, medicine, physical, therapy”
(as might be encoded in HTML) but also that, for example, Dr. Hart-
man works at this clinic on Mondays, Wednesdays and Fridays and

8 CHAPTER 1. INTRODUCTION

that the script takes a date range in yyyy-mm-dd format and returns
appointment times. The Semantic Web is not a separate Web but an
extension of the current one, in which information is given well-defined
meaning, better enabling computers and people to work in coopera-

tion.

The semantic web comprises the standards XML, XML Schema, RDF,
RDF Schema and OWL that are organized in the Semantic Web Stack,
as shown in figure 1.3, were:

User interface and applications

Trust

Proof

Unifying logic

Ontologies: Rules:
owL RIF/SWRL

Querying:
SPARQL

Taxonomies: RDFS

Aydesboydiun

Data interchange: RDF

Syntax: XML

Identifiers: URI Character set: UNICODE

Figure 1.3: The Semantic Web stack.
[Wikd]

e XML provides an elemental syntax for content structure within
documents, yet associates no semantics with the meaning of the

content contained within;
e XML Schema [WF04] is a language for providing and restric-
ting the structure and content of elements contained within XML

documents;

1.2. THE SEMANTIC WEB 9

e RDF [Bec04] is a simple language for expressing data models,
which refer to objects (“resources”) and their relationships. An
RDF-based model can be represented in XML syntax;

e RDF Schema [BG04b] is a vocabulary for describing properties
and classes of RDF-based resources, with semantics for generalized-
hierarchies of such properties and classes;

e OWL [HMO04] adds more vocabulary for describing properties
and classes: among others, relations between classes (e.g. dis-
jointness), cardinality (e.g. “exactly one”), equality, richer ty-
ping of properties, characteristics of properties (e.g. symmetry),
and enumerated classes;

e SPARQL [PS08] is a protocol and query language for semantic
web data sources.

In the next sections we will give a short description of RDF, OWL and
SPARQL.

1.2.1 The Resource Description Framework: RDF

Although it is often called a “language”, RDF is essentially a data mo-
del. Its basic building block is an object-attribute-value triple, called
a statement. For example, an RDF triple can state that two people, A
and B, both identified by a URI, are related by the fact that A knows
B. Similarly an RDF triple may relate a person C' to a scientific ar-
ticle D in a bibliographic database by stating that C' is the author
of D. Two resources linked in this way can be drawn from different
data sets on the Web, allowing data in one data source to be linked
to that in another, thereby creating a Web of Data. Consequently it
is possible to think of RDF triples that link items in different data
sets as analogous to the hypertext links that tie together the Web of
documents.

The fundamental concepts of RDF are:

10 CHAPTER 1. INTRODUCTION

e Resources can be any kind of things we want to talk about
in our domain. Resources may be authors, books, publishers,
places, people, hotels, rooms, search queries, and so on [AHO0S|.
Every resource has a an URI, an Universal Resource Identifier.

e Properties are a special kind of resources which describe rela-
tions between resources, (e.g. written by, age, title, and so on).
Properties in RDF are also identified by URIs. This idea of using
URISs to identify “things” and the relations between is quite im-
portant. This choice gives us in one stroke a global, worldwide,
unique naming scheme. The use of such a scheme greatly re-
duces the homonym problem that has plagued distributed data
representation until now

e Statements assert the properties of resources. A statement
is an object-attribute-value triple, consisting of a resource, a
property, and a value. Values can either be resources or literals.
Literals are atomic values (strings), the structure of which we do
not discuss further.

RDF is an universal language that lets users to describe resources using
their own vocabularies. RDF does not make assumptions about any
particular application domain, nor does it define the semantics of any
domain. Is it up to the user to do so in RDF Schema (RDFS) [BG04b].
The main concepts of RDFS are classes and properties. A class can
be thought of as a set of elements. Individual objects that belong to
a class are referred to as instances of that class by using the rdf:type
property. An important use of classes is to impose restrictions on what
can be stated in an RDF document using the schema. In programming
languages, typing is used to prevent nonsense from being written (such
as A+1, where A is an array; we lay down that the arguments of +
must be numbers). The same is needed in RDF. After all, we would
like to disallow statements such as:

e Discrete Mathematics is taught by Concrete Mathematics.

e Room 16 is taught by Andrea Nuzzolese.

1.2. THE SEMANTIC WEB 11

Once we have classes, we would also like to establish relationships
between them. For example, supposing that we have classes for staff
members, assistant professors, academic staff members, administra-
tive staff members, professors, technical support staff members and
associate professors, we can design our RDFS in order to obtain the
hierarchy as the figure 1.4 shows.

staff
member

technical
support staff
member

academic
staff member

administration
staff member

rofessor associate assistant
P professor professor

Figure 1.4: A hierarchy of classes. [AHOS|

As for classes it was possible to define hierarchical relationships, the
same can be done for properties. For example, “is taught by” is a
subproperty of “involves”. If a course C' is taught by an academic staff
member A, then C also involves A. The converse is not necessarily
true. For example, A may be the convener of the course, or a tutor
who marks student homework but does not teach C. In general, P is
a subproperty of @ if Q(z,y) whenever P(x,y).

12 CHAPTER 1. INTRODUCTION

1.2.2 The Ontology Web Language: OWL

The expressivity of RDF and RDF Schema is deliberately very limi-
ted as RDF is limited to binary ground predicates, and RDF Schema
is limited to subclass and subproperty hierarchies, with domain and
range definitions of these properties. Then, if machines are expected
to perform useful reasoning tasks on these documents, the language
must go beyond the basic semantics of RDF Schema. Thus it is needed
an ontology language that is richer than RDF Schema and may offer
these features [AHOS]:

e Local scope of properties. rdfs:range defines the range of a pro-
perty, say eats, for all classes. Thus in RDF Schema it is not
possible to declare range restrictions that apply to some classes
only. For example, it is not possible to assert that cows eat only
plants, while other animals may eat meat, too.

e Disjointness of classes. Sometimes it is needed to say that classes
are disjoint. For example, male and female are disjoint. But
in RDF Schema only subclass relationships are allowed, (e.g.
female is a subclass of person).

e Boolean combinations of classes. Sometimes it is needed to build
new classes by combining other classes using union, intersection,
and complement. An example is to define the class person to be
the disjoint union of the classes male and female. RDF Schema
does not allow such definitions.

e Cardinality restrictions. Sometimes it is needed to place res-
trictions on how many distinct values a property may or must
take. For example, a person has exactly two parents, or a course
is taught by at least one lecturer. Again, such restrictions are
impossible to express in RDF Schema.

e Special characteristics of properties. Sometimes it is useful to
say that a property is transitive (like “greater than”), unique
(like “is mother of”), or the inverse of another property (like
“eats” and “is eaten by”).

1.2. THE SEMANTIC WEB 13

OWL provides three increasingly expressive sublanguages designed for
use by specific communities of implementers and users. They are:

e OWL Full is meant for users who need maximum expressive-
ness and the syntactic freedom of RDF with no computational
guarantees. For example, in OWL Full a class can be treated
simultaneously as a collection of individuals and as an indivi-
dual in its own right. OWL Full allows an ontology to augment
the meaning of the pre-defined (RDF or OWL) vocabulary. It
is unlikely that any reasoning software will be able to support
complete reasoning for every feature of OWL Full [AHOS].

¢ OWL DL supports those users who want the maximum expres-
siveness while retaining computational completeness (all conclu-
sions are guaranteed to be computable) and decidability (all
computations will finish in finite time). OWL DL includes all
OWL language constructs, but they can be used only under cer-
tain restrictions (for example, while a class may be a subclass
of many classes, a class cannot be an instance of another class).
OWL DL is so named due to its correspondence with description
logics, a field of research that has studied the logics that form
the formal foundation of OWL [AHO0S].

¢ OWL Lite supports those users primarily needing a classifica-
tion hierarchy and simple constraints. For example, while it sup-
ports cardinality constraints, it only permits cardinality values
of 0 or 1. It should be simpler to provide tool support for OWL
Lite than its more expressive relatives, and OWL Lite provides
a quick migration path for thesauri and other taxonomies. OWL
Lite also has a lower formal complexity than OWL DL [AHO0S|.

Further details regarding the language and its abstract and concrete
syntaxes can be found in [HMO04].

14 CHAPTER 1. INTRODUCTION

1.2.3 The RDF query language: SPARQL

RDF models, expressed in the triple format seen in section 1.2.2, form
directed, labeled graphs, that can be used to express information in
the Web.

SPARQL [PS08], whose name is an acronym that stands for SPARQL
Protocol and RDF Query Language, is an RDF query language that
allows to users to write queries in order to retrieve the information
they need from data source expressed as RDF graphs. The results of
SPARQL queries can be result sets or RDF graphs.

For example with the following query

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT 7name 7email
WHERE {

?person a foaf:Person.

?person foaf:name 7name.

?person foaf:mbox 7email.

}

it is possible to retrieve all the pairs of (name, email) of any possible
person in the world from any possible data source expressed in RDF
by using the FOAF [BM] vocabulary.

Most forms of SPARQL queries contain a set of triple patterns called
a basic graph pattern. Triple patterns are like RDF triples except
that each of the subject, predicate and object may be a variable, that
are indicated by a “?” or “§” prefix(?person, Tname and Temail in
the example). A basic graph pattern matches a subgraph of the RDF
data when RDF terms from that subgraph may be substituted for the
variables and the result is an RDF graph equivalent to the subgraph.

SPARQL has two main query forms. The SELECT query form re-
turns variable bindings. The CONSTRUCT query form returns an
RDF graph. The graph is built based on a template which is used
to generate RDF triples based on the results of matching the graph

1.2. THE SEMANTIC WEB 15

pattern of the query.
For example, the following query [PSO8§]

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX org: <http://example.com/ns#>

CONSTRUCT { ?x foaf:name ?name }
WHERE { 7x org:employeeName 7name }

produces the RDF triples below serialized in RDF /XML syntax.

<rdf :RDF
xmlns:rdf="http://wuw.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:foaf="http://xmlns.com/foaf/0.1/">
<rdf:Description>
<foaf :name>Alice</foaf :name>
</rdf:Description>
<rdf:Description>
<foaf :name>Bob</foaf :name>
</rdf :Description>
</rdf :RDF>

Restrictions on the result sets can be realized by the construction of
queries that contain the SPARQL FILTFER construct.

The following query retrieves the set of any title book with its price
assuming that the latter is less than 30.5.

PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX =ns: <http://example.org/ns#>
SELECT 7title 7price
WHERE { ?x ns:price 7price .
FILTER (7price < 30.5)
?x dc:title 7title . }

16 CHAPTER 1. INTRODUCTION

1.3 Linked Data

Though the Semantic Web technologies are sufficiently good to add
semantics to data in the Web, a lot of legacy and non-RDF data
sources have to be transformed into RDF. Linked Data [BL06] is about
using the Web to connect related data that was not previously linked,
or using the Web to lower the barriers to linking data currently linked
using other methods.

1.3.1 The problem of data silos

Currently the Web is almost completely human-oriented and much less
machine-oriented so that building services for accessing and managing
information from different and heterogeneous data sources may be a
quite difficult task. The reason is not in the tiered architecture itself,
but in what it produces. HTML pages generate a Web of documents in
which machines are not really welcome as data are completely hidden
in the documents. Furthermore, the hyperlinks just represent existing
relations among documents but not what kind and who is the subject
and the object of the relations so that they are meaningless for ma-
chines.

The sources of data used for feeding the “traditional” Web are like
“silos” with no links to each other. Each contains different informa-
tion, may be based on different systems and potentially may belong to
different companies, but they may also contain homogeneous informa-
tion and belong to the same company. The issue is that, in both cases,
all the data is really hidden by the HTML layer and no machine-to-
machine communication is made possible.

What has been just described is a strong limitation of the existing
Web as, for instance, it does not allow to any program, or better, to
any agent to retrieve data from silos for querying and reasoning on
data in order to reply to user requests. The final goal is to transform
a Web of documents into a Web of data, in which silos may be also
physically heterogeneous and far, but virtually they are homogeneous

1.3. LINKED DATA 17

and interconnected by machine-comprehensible relations.

1.3.2 Exposing, sharing, and connecting data in
the Web

Traditionally, data published on the Web has been made available as
raw dumps in formats such as CSV [Lam86] or XML [SMYM™0§],
or marked up as HTML tables, sacrificing much of its structure and
semantics. In the conventional hypertext Web, the nature of the rela-
tionship between two linked documents is implicit, as the data format
(e.g. HTML) is not sufficiently expressive to enable individual entities
described in a particular document to be connected by typed links to
related entities. [BHBLO9]

However, in recent years, the Web has evolved from a global infor-
mation space of linked documents to one where both documents and
data are linked. Underpinning this evolution is a set of best practices
for publishing and connecting structured data on the Web known as
Linked Data.

Berners-Lee [BLO06] outlined a set of “rules” for publishing data on the
Web in a way that all published data becomes part of a single global
data space:

Use URIs [BLFMO05] as names for things

Use HTTP URIs so that people can look up those names

When someone looks up a URI, provide useful information, using
the standards (RDF [Bec04], SPARQL [PS08])

Include links to other URIs, so that they can discover more
things

These have become known as the “Linked Data principles”, and pro-
vide a basic recipe for publishing and connecting data using the infra-
structure of the Web while adhering to its architecture and standards.
There is a W3C project named Linking Open Data [W3C] that is the

18 CHAPTER 1. INTRODUCTION

most visible example of adoption and application of the Linked Data
principles. The original and ongoing aim of the project is to bootstrap
the Web of Data by identifying existing data sets that are available
under open licenses, converting these to RDF according to the Linked
Data principles, and publishing them on the Web.

An indication of the range and scale of the Web of Data originating
from the Linking Open Data project is provided in figure 1.5 Each

sci
Plvm nt
N T
e

Guide =
BBC \ /
Prugramm
@
@

k

e
Data Wordhet
’_;/’k' T\

ai

Homolo === - -
Gene /’
~ 1 ‘ |=—F| probom

~
) -) —
“) (e) | compan / .
‘ L \central [\ -
s N\ e Pt | (
\ A = ——_ [Resex — .
| space '\ (semantic /‘ P (curieom) (R ST
- ‘ \ (el = (Cpest) e (et) (e
MySpace) \ St Y ki
wrapper | T4 \ __¢ | \7- wmw % (B ‘ A /,_7\\
$ Y. P4 ‘/\ Py ¥ \ Natioral |
.* z / N1 Y (T N
{ [rewu | — NN
A% . \ N
/ open-) ~ g
| Guides | [
¢
A

As of March 2009

Figure 1.5: Linking Open Data cloud diagram giving an overview of
published data sets and their interlinkage relationships. [BHBLO09]

node in this cloud diagram represents a distinct data set published as
Linked Data, as of March 2009. The arcs in figure 1.5 indicate that
links exist between items in the two connected data sets. Heavier arcs
roughly correspond to a greater number of links between two data sets,
while bidirectional arcs indicate the outward links to the other exist
in each data set.

The technology that is critical to the Web of Data is RDF (Resource
Description Framework). While HTML provides a means to structure
and link documents on the Web, RDF provides a generic, graph-based

1.4. MOTIVATION AND OBJECTIVES 19

data model with which to structure and link data that describes things
in the world.

1.4 Motivation and objectives

The aim of this thesis is to develop a tool for transforming relational
databases into Linked Data that can be extended at supporting other
types of transformations, based on a theoretical framework for data
sources reengineering called “Semion”.

At the state of the art, as it will be exposed in the next chapter, other
existing tools allow the “semantic lifting” (the reengineering from a
non-RDF source to an RDF one). But, if on one hand, they could be
good to obtain RDF datasets from legacy systems, on the other, their
reengineering is driven by the RDF metamodel, namely RDF Schema.
This fact introduces some collateral problems related to the seman-
tics of RDF Schema non well adapted to that one of the data source
schema that has to be lifted.

For this reason the tool, that will be projected, implements a metho-
dology that is based on two main steps:

1. the reengineering to RDF triples following the metamodel deri-
ved by the non-RDF data source (e.g. an RDF vocabulary of a
relational database schema).

2. the refactoring of the dataset obtained in 1. to any possible voca-
bulary or design pattern that better adds the desired semantics
to data.

The semantic lifting of the tool that will be studied differs from that
one of existing tools because the latter add semantics to data auto-
matically and in a single step ignoring domain specific issues and the
quality of the input data source (e.g. a non well projected relational
database), while it first extract pure RDF triples and then, with a
customized and user driven approach, add semantics to data.

The metamodel that is want to be used as the target of the refactoring

20 CHAPTER 1. INTRODUCTION

is the Linguistic Meta-Model (LMM) [PGGO8], that is an OWL-DL
implementation of the Peirce semiotic triangle [Pei31], and that allows
a semiotic-cognitive representation of knowledge. The reason of this
choice has to be found in the fact that LMM is able to support the
representation of different knowledge sources developed according to
different underlying semiotic theories. This is possible because most
knowledge representation schemata, either formal or informal, can be
put into the context of the semiotic triangle.

Though LMM is the target metamodel for refactoring, the tool that
will be analyzed is projected to perform refactoring according to other
metamodel, vocabulary or ontologies in a way that allows the user to
customize and to direct the semantic lifting process.

Chapter 2

Opening the data silos

Linked Data is about using the Web to connect related data that
was not previously linked, or using the Web to lower the barriers to
linking data currently linked using methods of the Semantic Web. In
summary, Linked Data is simply about using the Web to create typed
links between data from different sources.

2.1 Publishing heterogeneous data sources
in RDF Linked Data

The basic tenets of Linked Data are:
e to use the RDF data model to publish structured data on the
Web
e to use RDF links to interlink data from different data sources
Applying both principles leads to the creation of a data commons
on the Web, a space where people and organizations can post and

consume data about anything. This data commons is often called the
Web of Data or Semantic Web.

21

22 CHAPTER 2. OPENING THE DATA SILOS

To publish data on the Web, it is first needed to identify the items of
interest in the domain as resources identified using Uniform Resource
Identifiers (URIs) in a way they could be dereferenced and fetched
through the HTTP protocol. Then it is possible to organize these
resources in triples using RDF statements.

The main benefits of using the RDF data model in a Linked Data
context are that:

e (lients can look up every URI in an RDF graph over the Web
to retrieve additional information.

e Information from different sources merges naturally.

e The data model enables you to set RDF links between data from
different sources.

e The data model allows you to represent information that is ex-
pressed using different schemata in a single model.

e Combined with schema languages such as RDF Schema or OWL,
the data model allows you to use as much or as little structure
as you need, meaning that you can represent tightly structured
data as well as semi-structured data.

RDF links enable Linked Data browsers and crawlers to navigate bet-
ween data sources and to discover additional data. These links can be
added manually or generated with pattern-based algorithms such as it
happens in the RDF Book Mash-up [BCGO7], which for instance uses
the URI http://wwwj. wiwiss. fu-berlin.de /bookmashup /books /0747581088
to identify the book “Harry Potter and the Half-blood Prince”. Ha-
ving the ISBN number in these URIs made it easy for DBpedia to
generate owl:sameAs links between books within DBpedia and the
Book Mash-up.

2.2. THE STATE OF ART 23

2.2 The state of art

There are some tools that make possible to expose and publish non-
RDF legacy data sources into Linked Data. During the translation
process they assume as meta-model and so as vocabulary RDF Schema.

2.2.1 Meta-model driven approaches

Generally, taking the relational databases domain as an example, these
tools translate:

e database tables into RDF resources having rdfs:class as type

e table columns into RDF resources having rdf:property as type

Among the others we can cite:

e D2R Server [BCO7], that is a tool for publishing relational
databases on the Semantic Web. It enables RDF and HTML
browsers to navigate the content of the database, and allows
applications to query the database using the SPARQL query
language. D2R Server uses the D2RQ Mapping Language to map
the content of a relational database to RDF. A D2RQ mapping
specifies how resources are identified and which properties are
used to describe the resources.

e Talis Platform, that provides Linked Data-compliant hosting
for content and RDF data. Data held in the platform is or-
ganized into “stores” which can be individually secured if need
be. Any kind of content can be added to a store along with
arbitrary RDF metadata. The content and metadata becomes
immediately accessible over the Web and discoverable using both
SPARQL and a free text search system with built in ranking of
results according to relevance to the search terms.

24 CHAPTER 2. OPENING THE DATA SILOS

e Triplify, that is a small plug-in written in PHP for Web applica-
tions, which reveals the semantic structures encoded in relational
databases by making database content available as RDF, JSON
or Linked Data.

e Virtuoso, that is a middleware and database engine hybrid that
combines the functionality of a traditional RDBMS, ORDBMS,
virtual database, RDF, XML, free-text, web application server
and file server functionality in a single system. Rather than have
dedicated servers for each of the aforementioned functionality
realms, Virtuoso is a “universal server”; it enables a single mul-
tithreaded server process that implements multiple protocols.

2.2.2 Limitations of meta-model driven approaches

In the previous section it was said that the meta model driven ap-
proaches add typing informations to the generated RDF resources ge-
nerally using, as vocabulary, RDF Schema.

For some aspects this assumption could be seen as a pattern choice,
but for others, it introduces some problems in terms of ontology en-
gineering. Consider a database table Purchase that realizes the rela-
tion between the tables Product and Customer. In such meta model
driven approach the table Purchase would be an rdfs:Class, but this
conclusion may be wrong because Purchase is a table that expresses
a relation and it is better translated as an rdf:Property.

Moreover, it would be better to have no type assertions in the data
after the reengineering process towards Linked Data, but just triples
and then modelling these triples in order to align them to some on-
tology design patterns or vocabulary, also reusing knowledge organi-
zation schemata. After the triples are organized using patterns it is
possible to assert that a certain resource is an owl:Class instead of an
rdfs:class, or also an owl:ObjectProperty instead of owl:DataProperty
or owl:Class itself.

In few words, the desirable goal is to add semantics not in a once, but
after having modelling and structured the domain of interest and data
using the good engineering practices of the ontology design patterns.

Chapter 3

Semion: design

In this chapter it will be described the design of the Semion tool. First
they will be analyzed the problems, that drove to design Semion, re-
lated to their solutions. Then it will be introduced to the Linguistic
Meta-Model (LMM) [PGGOS]|, that is a metamodel that enables a
semiotic-cognitive representation of knowledge that is important be-
cause most knowledge representation schemata, either formal or in-
formal, can be put into the context of so-called semiotic triangle of
which LMM is an OWL-DL implementation. Finally, Semion will be
described and designed.

3.1 Motivations

Motivations can be represented as a couple composed by problems,
that currently exist in the Web, and solutions that are proposed in
order to solve problems.

25

26 CHAPTER 3. SEMION: DESIGN

3.1.1 Problems

In section 1.1.2 it was introduced the problem of data silos consis-
ting in a world of data sources hidden behind the Web of documents,
that is, as it was said, a Web from humans to humans and in which
machines are not really welcome. The scenario is even more complex
because these data sources are not homogeneous and adding interope-
rability between them is a very difficult task.

The scheme in figure 3.1 is useful to analyze this scenario. In

N
ll’l'l V’ls
(Y
In."I"’ 5
. N
I‘I’I ‘fl! CTTRA
Web layer
Presentation and
Business Logic
layer
Data layer \
XML)
—
‘ ‘ File System
MySQL PostgreSQL

Figure 3.1: Web of documents: a summary scenario

fact, at the top of the figure there is the Web layer in which it lays
HTML [RLHJ99] documents connected among them through hyper-
links. These documents may contain data retrieved from the data
layer through the presentation and business logic layer that transforms
data into HTML contents. It is easy to realize that no connection and
communication at the data layer is possible because data are hete-
rogeneous in their type (e.g. relational databases, XML [SMYMT08]

3.1. MOTIVATIONS 27

data sources, file systems, etc.) and in their inner architecture (e.g.
MySQL databases, PostgreSQL databases, different DTDs or XML
Schemata [WF04], NTFS file systems, ext3 file systems, etc.).

Only connection at the Web layer are allowed through HTML hyper-
links, but, as said in chapter 1, hyperlinks are just anchor relations
between HTML documents and they do not care about data.

In chapter 2 we introduced Linked Data, a set of best practices for
publishing and connecting structured data on the Web. With Lin-
ked Data the problem of connecting and sharing heterogeneous data
sources is quite solved, because data are translated into RDF/OWL
models that have a formal semantics to describe the data they re-
present and the relations among these data.

With the Linked Data best practices a new problem arise and it
concerns the quality and the design of these RDF/OWL models ob-
tained by the translation of non-RDF data sources. In fact, although
these practices describe how to represent data using the Semantic Web
technologies, they do not care how these data sources have to be trans-
lated into RDF triples. To be more concrete they do not care the
quality of the translation.

3.1.2 Goals

The objective of the thesis is to design and implement a method to
transform heterogeneous data sources into Semantic Web models fol-
lowing the principles of Linked Data.

The method should provide techniques in order to give the possibility
to reuse knowledge organization schemata, formally ontology design
patterns, that ensure high quality RDF data sets, that are the output
of the transformation. Concerning the last feature, it is important to
point out that a good method should be able to transform heteroge-
neous data sources allowing interoperability among them and interope-
rability with already existing Semantic Web applications. Practically,
it is not required simply a transformation, but a transformation that
introduces multilinguality among created and existing data sets.

28 CHAPTER 3. SEMION: DESIGN

3.1.3 Solutions

In order to satisfy the goals, it was designed Semion, a software that
implements the method introduced above, or more formally, a custo-
mized method for transforming relational databases into Linked Data.
Due to complexity and time issues the domain of the transformation
was fixed only to relational databases, but the methodology has to be
intended usable for any structured data source.

The transformation can be seen as a pipeline composed by two main
modules:

e a reengineering module, that translates relational databases into
RDF triples

e a refactoring module, that performs alignments to specific pat-
tern or vocabulary

The second component is very important to the aims of the thesis,
because it provides a method to align datasets to specific ontologies
thought as patterns or vocabulary, among them the Linguistic Meta-
Model (LMM) [PGGO8] has the ability to support the representation
of different knowledge sources, developed according to different sche-
mata, as they were a single one. This is possible because most know-
ledge representation schemata, either formal or informal, can be put
into the context of so-called semiotic triangle [Pei31], illustrated in
chapter 3, of which LMM is an OWL-DL implementation.

3.2 The Linguistic MetaModel: LMM

Following the intuition of the semiotics, in [PGGO08| was developed
the Linguistic Meta-Model (LMM), an OWL-DL ontology, that in its
core component called LMMI1 (figure 3.2) formalizes the distinctions
of the semiotic triangle introduced by Peirce [Pei31]. Figure 3.2 shows
the semiotic triangle implemented by LMM, and it is composed by:

3.2. THE LINGUISTIC METAMODEL: LMM 29

| — Meaning
M interprets : Reference
M isExpressedBy : Expression

interprets

& Expression | & Reference

W denotes : Reference - | isDenatedBy : Expression
M expresses : Meaning |/SDen:

otedBy denotes mm isinterpretedAs : Meaning

Figure 3.2: The semiotic triangle in LMM1
[PGGOS]

e Reference could be populated by any possible individual in

the logical world, being it either a concrete object or any other
social object whose existence is stipulated by a community. In-
dividuals are related by the fact that they co-occur into events.
As shown in figure 3.3, LMM specializes the class of Reference
distinguishing among:

— Physical objects that allows to talk of artifacts in a very ge-
neral sense. The concept is derived from DOLCE [GGM*02]

— Individual references can have members that are individual
references and they are typically Named Entities

— Multiple references can have instances that are collective
individuals, whose members have a superclass in MultiRe-
ference.

— Situations is the circumstantial context where entities and
events occur. This is a very important class, because it can
belong either to the class Reference or the class Meaning.

Meaning is the class of instances of concepts that could be
related to each other by subsumption relations, that organize
them into hierarchies of subclasses (e.g. the dog is an animal),
or by descriptions expressing the possibility for events to occur.
The class Meaning, as shown in figure 3.4, is specialized by:

— Description that, as just said, can be thought can as a
“descriptive context” that uses or defines concepts in order

CHAPTER 3. SEMION: DESIGN

dul:Situation
dul:hasPosteondition : dul:Situation
dul:hasPrecondition : dul:Situation dulPhysicalArtfact
dulincludesAction : dul:Action dul:isDescribedBy : dul:Description
dulincludesAgent : dul:Agent

duliincludesEvent : dul:Event

duliincludesOhbject : dul:Object

duliincludesTime : dul:Timelnterval
dulisPostconditionOf : dulSituation
duliisPreconditionOf : dulSituation \A

duliisSettingFor : dul:Entity Imm1:Reference

dul:satisfies : dul:Description Imml:hasinterpretation : Imml:Meaning

ImmlisDenotedBy : Imml:Expression
Imm2:hasSuperSense :wn20:Super5Sense
Imm2:isinstanceOf : dul:Concept

N

Imm2:IndividualReference Imm2:MultipleReference

Immz2:isinstanceQf : dul:Concept [dul:hasMember : Imm2:ndividualReference

dul:hazsMember

Figure 3.3: Hiearachy of the class Reference
[PGGOS|

to create a view on a “relational context” out of a set of
data or observations.

— Clollection has as main task to give a unique coherent term
to the class Description by means of the main relation isU-
nifiedBy. It can be thought as any container for entities
that share one or more common properties.

— Situation is the realization of a certain description. It is
very important to point out that the this class serves as a
bridge between the class Meaning and the class Reference
passing through the class Description

— Concept can be used in other descriptions by means of the
main relation isConceptUsedIn.

e Expression is the class including any social object produced
by an agent in the context of communicative acts, so they are
natural language terms, symbols in formal languages, icons, and
whatever can be used as a vehicle for communication.

3.2. THE LINGUISTIC METAMODEL: LMM

31

As said for the Reference and Meaning classes also the Expres-

sion one is specialized by (figure 3.5):

— Concept Expression denotes multireferences (cf. lmm2:Multi-
pleReference). A concept expression is a a term that ex-
presses a Meaning, and denotes a MultipleReference, and
examples are “Dog”, “Black box”. Concept expression can
be composed by single or multiple words.

— Name denotes either named entities (cf. lmm2:NamedEntity)
or collective references (cf. lmm2:ExtensionalReference).
A name is a proper noun that denotes an IndividualRe-
ference, be it singular or plural and examples are “John

Zorn” | “Daimler Benz”, “FaceBook” (as a community).

— Contextual Expression denotes either contextual references
(cf. Imm2:ContextualReference, or collective references (cf.

dulSituation
dul-hasPostcondition : dul:Situation
dulthasPrecondition : dul:Situation
dulincludes Action : dul:Action
dulincludesAgent : dul:Agent
dulincludesEvent - dul-Event
dulincludesObject : dul:Object
dulincludesTime : dul Timelnterval

dulisPosteonditionOf : dul Situation

Imm1:Meaning

dulisExpressedBy - Imml:Expression
dul:specializes : ImimL:Meaning

ImmL:isinterpretationOf : Imm1:Reference

dulisPreconditionOf - dul Situation

dul:Description

dulisSettingFor : dul Entity “Shicsatis ey
dul:satisfies - dul-Description 3

dul:satisfies

dul:defines : dul:Concept
dul.definesRole : dul:Role
dul-definesTask : dul:Task
dul:describes : dul:Entity
dul-expands : dul:Description
dulintroduces : dulSocialAgent
duliisConceptualizedBy : dul:Agent
duliisExpandedin : dul Description
duliissatisfiedBy : dul:Situation
dulunifies : dul-Collection
dulusesConcept : dul:Concept

dulisUnifiedsf
Aulunifies

dul-Collection
dul:hashember : dulEntity
dul:hasPart : dulCollection
dul:isCoveredBy : dul:Concept
dulisUnifiedBy : dul-Description
skos isPrimarySubjectOf : dul:SocialObject
skos:isSubjectOf - dulSocialObject

dul:Cancept

duliclassifies - dulEntity
dulcovers : dul:Callection
dul:hasParameter : dul-Parameter
dulhasPart : dul:Cancept

dulisConceptUsedin : dul:Description

%

. 2

i Concipiitilbefinedin - dulDescription
.

/

3| dulisRelatedToConcept : dul:Concept

duldefines dulisSubordinatedTo : dul:Concept

dulisSuperordinatedTo : dul:Concept
Imm2:hasinstance : Imm1Reference
skos broader : skos:Concept
skos:broaderGeneric * skos-Concept
skos hroaderinstantive : skos:Cancept
skos:broaderPartitive : skos:Concept
skos narrower : skos:Concept
skos:narrowerGeneric - skos:Concept
skos narrowerinstantive : skos:Cancept
skos:narrowerPartitive - skos:Concept
skos related : skos:Concept

skos relatedHasPart - skos:Concept
skos relatedPartOf : skos:Cancept
skosM:broadMatch : dul:Concept
skoshtexactiatch : dul:Concept
skosM:majorMatch : dul:Concept
skoshEmappingRelation : dul:Concept
skosM:minorMatch : dul:Concept
skosM:narrowMatch : dul:Concept

dulisConceptExpressedBy - dulinformationObject

Figure 3.4: Hiearachy of the class Meaning

[PGGOS]

32 CHAPTER 3. SEMION: DESIGN

Imm?2:Ex- tensionalReference). A contextual expression is
a a term that denotes a reference via anaphora or deixis and
examples are “the dog over there”, “all my family”, “the
current ACME employees”, “the lion described above”.

3.3 Software description

Semion is projected to be a stand alone modular tool and it is exten-
sible to manage different data sources by providing plug-in packages.
Its core is composed by three main and independent components:

e the Reengineer, that is responsible for the reengineering of the
data from non-RDF and legacy data sources into RDF triples. It
is an independent module, able to run alone. It is important to
say that the reengineering process and the reengineering choises
are kept divided, because the first one is an hardcoded part of

Imm2:ConceptExpression
dul:expresses : Imml:Meaning[1.]
Imm1:denates : ImmlReference

Imm2:hasSyntacticFunction : iol:LinguisticFunction[0..1]

Imml:Expression
dulexpresses : Imml:Meaning[1.]

Imm1:denotes : Imml:Reference
Imm2-isEncodedin :iclLanguage

Imm2:Name Imm2:ContextualExpression
Imml:denotes : lmml:Reference Imm1l:denates ' Imml:Reference

Imm2:hasSyntacticFunction : iol:LinguisticFuncrion[0..1] Imm2:hasSyntacticFunction : iol:LinguisticFunction[0..1]

Figure 3.5: Hiearachy of the class Expression

[PGGOS]

3.4. SOFTWARE ARCHITECTURE 33

the module, while the seconds are the result of user choices and
are represented using RDF/OWL. In the next sections we are
going to explore this subject.

e the Refactor, that is responsible for the alignments from reen-
gineered data sets to the meta models are wanted to use.
Alignments consist in transforming an RDF dataset in a new
RDF dataset, formally they are refactoring. The module is nee-
ded to comply to selected vocabularies, that are meant to be
customizable ontology content patterns or standard ontologies.
These alignments are performed by reasoning on sets of rules
expressed in SWRL [HPSB'04] syntax, that is a Semantic Web
Rule Language based on a combination of the OWL-DL and
OWL Lite sublanguages of the OWL Web Ontology Language
with the Unary/Binary Datalog RuleML [Rul] sublanguages of
the Rule Markup Language.

e the Graphical User Interface (GUI) has the role of suppor-
ting interactions between the software and the users. The intent
is to design a full stand-alone software, a program that runs as a
separate computer process, not an add-on of an existing process
(e.g. not a plug-in). This is the reason why the GUI is built up
using Widgets (“Widget” is short for “window gadget”) that are
basic visual building blocks which, combined in an application,
hold all the data processed by the application and the available
interactions on this data.

3.4 Software architecture

The following subsections will explore the requirements of the rengi-
neer and the refactor modules.

34 CHAPTER 3. SEMION: DESIGN

3.4.1 Reengineer

The basic idea about the features that the reengineer must implement
can be given by figure 3.6. In fact, it should simply be able to read
data from any possible data source and then translate them into RDF
data sets.

., 4«

h
s e

Reengineering tool 4 4
N / g

RDF Data Set

Figure 3.6: Scheme of a possible reengineering tool

What is not immediately clear analyzing the figure 3.6 is that the reen-
gineering is not completely hardcoded, because, even if the translation
process from data source contents to RDF data sets is transparent to
users, its definition is not, as it is the user to suggest to the software
what to translate and how to translate it. This is possible using RDF
or OWL models to describe the data source schema, the data schema,
the mapping between the former two and the RDFs that are wanted
as output and, last but not less important, the mapping vocabulary.

Users write their own RDF or OWL model to tell Semion how to
reengineer data sources and they can do that in three different ways:

3.4. SOFTWARE ARCHITECTURE 35

e using the Semion GUI to write reengineering models. It is fully
graphical oriented and integrated in the software;

e using the default models that Semion provide them. It is allowed
to users to start from default models and eventually modify them
within the GUI;

e using external tools for the Semantic Web (e.g. Protégé [KFNMO04],
TopBraid Composer [Top]|, etc.) or common editors to write
reengineering models that will be imported in Semion.

This feature allows a customized reengineering process of high level,
that is crucial if it is wanted to translate non-trivial data sources in
which automated or hardcoded methods could return undesirable out-
puts, or, worst, they could fail. About what it has been just said, it
is possible to consider a database with a non well-projected schema
in which, for example, no foreign keys are identified. As result it is
expected an RDF data set that does not contain useful information
about those entries for which foreign keys would be needed to express
relations with other entries.

As the customization is ensured by RDF or OWL models that describe
the data source they want to reengineer, then in figure 3.7 is shown
the hierarchy and the function of these models.

Starting from the top of the figure, there is:

e L5 that contains the database mapping meta model and is for-
mally the vocabulary of our mapping between non-RDF data
sources to RDF ones.

e L4/L3b that contains the mapping model itself and uses L5 to
describe it (at this layer there are the instances of the vocabulary
we chose). It could possibly be put together with L3 so it is
explained why it has been indicated also as L3b.

e LL3/L3a that contains the data model.

o L2 that is the RDF or OWL representation of the data source
schema (e.g. a database schema).

36 CHAPTER 3. SEMION: DESIGN

Y
LS ﬂ DB mapping meta model
Y
L4/L3b ﬂ DB mapping model
S
L3/L3a ﬂ DB data model
L2 ﬂ DB schema
—
L1 ﬂ DB data
—

Figure 3.7: Hierarchy of models for the database mapping and trans-
lation

e L1 that contains the data of the input data source translated
into and RDF or OWL format.

Considering these layers, the informal architecture in figure 3.6 should
be modified in the one in figure 3.8. It is possible to observe how the
former reengineer tool is now put in a context in which the Graphical
User Interface is the broker of each interaction between users and the
tool. Moreover the core of all the reengineering process are the five
layers just explained.

3.4. SOFTWARE ARCHITECTURE 37

<

™~ 2 (<](2 (<][= ‘
/ L1 L2 L3/.3a L4/L3b L5
‘ Reengineering tool 2

I
n / L o4 o
2 \;“ 2

Figure 3.8: Scheme of a possible reengineering tool

L\

3.4.2 Refactor

Once the starting data source is reengineered into RDF data sets, the
next step is to align these data sets to content patterns or standard
vocabulary. This module should be able not only to perform align-
ments from datasets to content patterns or standard vocabulary but
also from the lattern to any other ontology that is useful to add se-
mantics to data. To this purpose, it is useful to say tha an user may
want to project his refactoring in order to align the dataset to the
LMM meta model, then, the result of the alignment, to the Formal-
Semantics meta model, that contains the vocabulary to express the
formal semantics, and finally grounding the latter in a logic language
that can be expressed by the OWL vocabulary itself.

In figure 4.11 is given the scheme of a possible refactoring tool. As it
is possible to note, the figure is divided into two diagrams:

e in figure 3.9(a) is synthetically shown the refactoring process
about the alignment of an RDF data set, obtained by the reen-
gineering process, to the LMM meta model

e in figure 3.9(b), instead, is shown the process of the alignment

CHAPTER 3. SEMION: DESIGN

&/ 28

RDF data set LMM aligned data sat

E 2 8§
M M
-—b*_.'
.l @ @
E SE]

LMM aligned data set FS aligned data set

(b)

Figure 3.9: Scheme of the refactoring tool.

3.4. SOFTWARE ARCHITECTURE 39

of the data set, that is the output of the previous point, to the
FormalSemantics meta model

The aims involved in the analysis and in the design of the refactoring
module are centred around the will to project a software module with
the following features:

e an high cohesion level of its inner sub-components that ensures
that the latter to work together towards the same goal: refacto-
ring RDF data sets

e a low coupling level with other software components that ensures
a full independent module and the desirable goal of a reusable
software component

e the possibility to customize the refactoring process, in order to
satisfy user requirements. Furthermore, the refactoring choices
must be represented in a formalism that ensures the integration
with existing Semantic Web applications and that is not hard-
coded

The first two point require a thorough knowledge of the code and
of the engineering choices, so they will be clearer after reading the
next chapter. Instead, the third point concerns quite exclusively the
formalism used to represent users choices in the refactoring process.
So the questions are:

1. What should users represent as their own customization choices
regarding the refactoring process?

2. What is the formalism to represent these choices?

The answer to the first question is simple because users should write
rules to represent their refactoring choices. Rules allow both backward-
chaining and forward-chaining reasoning [RN03]. The backward-chaining
is an inference method used in automated theorem provers, proof as-
sistants and other artificial intelligence applications. It is one of the

40 CHAPTER 3. SEMION: DESIGN

two most commonly used methods of reasoning with inference rules
and logical implications. Backward chaining is implemented in logic
programming by SLD resolution. [RNO3]

Backward chaining starts with a list of goals (or a hypothesis) and
works backwards from the consequent to the antecedent to see if there
is data available that will support any of these consequents. An infe-
rence engine using backward chaining would search the inference rules
until it finds one which has a consequent (Then clause) that matches a
desired goal. If the antecedent (If clause) of that rule is not known to
be true, then it is added to the list of goals (in order for one’s goal to
be confirmed one must also provide data that confirms this new rule).
For example, suppose that the goal is to conclude the color of my
pet Fritz, given that he croaks and eats flies, and that the rule base
contains the following four rules:

1. If X croaks and eats flies Then X is a frog
2. If X chirps and sings Then X is a canary
3. If X'is a frog Then X is green

4. If X'is a canary Then X is yellow

This rule base would be searched and the third and fourth rules would
be selected, because their consequents (Then Fritz is green, Then Fritz
is yellow) match the goal (to determine Fritz’s color). It is not yet
known that Fritz is a frog, so both the antecedents (If Fritz is a frog,
If Fritz is a canary) are added to the goal list. The rule base is again
searched and this time the first two rules are selected, because their
consequents (Then X is a frog, Then X is a canary) match the new
goals that were just added to the list. The antecedent (If Fritz croaks
and eats flies) is known to be true and therefore it can be concluded
that Fritz is a frog, and not a canary. The goal of determining Fritz’s
color is now achieved (Fritz is green if he is a frog, and yellow if he
is a canary, but he is a frog since he croaks and eats flies; therefore,
Fritz is green).

3.4. SOFTWARE ARCHITECTURE 41

Contrariwise forward chaining starts with the available data and uses
inference rules to extract more data (from an end user for example)
until a goal is reached. An inference engine using forward chaining
searches the inference rules until it finds one where the antecedent (If
clause) is known to be true. When found it can conclude, or infer, the
consequent (Then clause), resulting in the addition of new information
to its data.

Considering the previous rule base, to satisfy the goal the first rule
would be selected, because its antecedent (If Fritz croaks and eats
flies) matches our data. Now the consequents (Then X is a frog) is
added to the data. The rule base is again searched and this time the
third rule is selected, because its antecedent (If Fritz is a frog) matches
our data that was just confirmed. Now the new consequent (Then Fritz
is green) is added to our data. Nothing more can be inferred from this
information, but we have now accomplished our goal of determining
the color of Fritz.

It seems obvious that different rule bases could be written in different
syntaxes for different reasoners, but it is needed to be far from concrete
reasoners, and, at the same time, it is needed to keep the expressivity
of their rule languages. This introduces the answer to the second ques-
tion. So what it is needed is a rule language that could work accordin
with the Semantic Web principles and it is SWRL [Top)]

The Semantic Web Rule Language (SWRL) is a proposal for a Seman-
tic Web rules-language, combining sublanguages of the OWL Web On-
tology Language (OWL DL and Lite) with those of the Rule Markup
Language (RuleML) [Rul], that is a markup language developed to
express both forward (bottom-up) and backward (top-down) rules in
XML for deduction, rewriting, and further inferential-transformational
tasks.

A possible example is the following rule:

hasParent(?z1,?22) A hasBrother(?x2,7x3) = hasUncle(?x1, 7x3)

This rule say that if an individual x1 has an individual x2 as parent
and z2 has another individual x3 as brother then z1 has x3 as uncle.
The rule in SWRL expressed with an RDF concrete syntax become:

<swrl:Variable rdf:ID="x1"/>

42 CHAPTER 3. SEMION: DESIGN

<swrl:Variable rdf:ID="x2"/>
<swrl:Variable rdf:ID="x3"/>
<ruleml:Imp>
<ruleml:body rdf:parseType="Collection">
<swrl:IndividualPropertyAtom>
<swrl:propertyPredicate rdf:resource="⪚hasParent"/>
<swrl:argumentl rdf:resource="#x1" />
<swrl:argument2 rdf:resource="#x2" />
</swrl:IndividualPropertyAtom>
<swrl:IndividualPropertyAtom>
<swrl:propertyPredicate rdf:resource="⪚hasBrother"/>
<swrl:argumentl rdf:resource="#x2" />
<swrl:argument2 rdf:resource="#x3" />
</swrl:IndividualPropertyAtom>
</ruleml :body>
<ruleml:head rdf:parseType="Collection">
<swrl:IndividualPropertyAtom>
<swrl:propertyPredicate rdf:resource="⪚hasUncle"/>
<swrl:argumentl rdf:resource="#x1" />
<swrl:argument2 rdf:resource="#x3" />
</swrl:IndividualPropertyAtom>
</ruleml:head>
</ruleml: Imp>

Following the just given guide lines it is possible to figure out a refac-
toring tool like that one in figure 3.10.

In the figure are clear the interactions between the user and the gra-
phical interface that is the bridge for the user to the application.
Through the GUI the user write his rules that are parsed and executed
by the reasoner that is part of the refactoring tool.

3.4. SOFTWARE ARCHITECTURE 43

< ._0
«

ﬂ Refactorlng tool
e L "‘* ﬁ& ﬁ&
RDF data set FS aligned data set

Figure 3.10: Scheme of a possible refactoring tool

44

CHAPTER 3. SEMION: DESIGN

Chapter 4

Semion: implementation

As said, Semion is a tool for transforming relational databases into
Linked Data based on a customized method. The next sections will
give an implementation of Semion.

4.1 Environment and development tools

Semion is a tool implemented completely in Java [GJSB05]. Its Gra-
phical User Interface is developed using the Standard Widget Toolkit
(SWT) [Eclb] and JFace [Ecla]. SWT is an open source widget toolkit
for Java designed to provide efficient, portable access to the user-
interface facilities of the operating systems on which it is implemen-
ted. JFace is a Ul toolkit with classes for handling many common UI
programming tasks. JFace is window-system-independent in both its
API and implementation, and is designed to work with SWT without
hiding it. JFace includes the usual Ul toolkit components of image
and font registries, text, dialog, preference and wizard frameworks,
and progress reporting for long running operations. Two interesting
features are actions and viewers. The action mechanism allows user
commands to be defined independently from their exact whereabouts
in the Ul. Viewers are model based adapters for certain SWT widgets,

45

46 CHAPTER 4. SEMION: IMPLEMENTATION

simplifying the presentation of application data structured as lists,
tables or trees.

All components that manage RDF [Bec04] or OWL [HMO04] documents
are implemented with Jena [Sou], that is a Java framework for building
Semantic Web applications. It provides a programmatic environment
for RDF, RDFS [BG04b] and OWL, SPARQL [PS08] and includes a
rule-based inference engine. Jena is open source and grown out of work
with the HP Labs Semantic Web Programme. The Jena Framework
includes:

e A RDF API

Reading and writing RDF in RDF/XML, N3 [BL98] and N-
Triples [BG04a]

An OWL API

In-memory and persistent storage

SPARQL query engine

Alignments are made possible thanks to the Jena reasoner and to
Pellet, that is an open-source Java based OWL DL reasoner based on
the tableaux algorithms [BSO01] developed for expressive Description
Logics. It supports the full expressivity OWL DL including reasoning
about nominals (enumerated classes).

Rules for alignments can be written in the following syntaxes:

e SemionRule

e SWRL [HPSB*04]

The software development environment we used is Eclipse 3.5.1 (Ga-
lileo), that is is written primarily in Java and can be used to develop
applications in Java and, by means of the various plug-ins, in other
languages as well.

4.2. TREATING NON-RDF DATABASES AS RDF GRAPHS 47

4.2 Treating Non-RDF databases as RDF
graphs

The reengineering process and so the transformation from relational
databases into RDF can be divided into the OWL model, that seman-
tically describes the database and the transformation, and the Java
code, that performs the reengineering. In the next two subsections
these features will be explained.

4.2.1 RDF customized mapping of non-RDF sources

As discussed in section 2.2, existing tools for reengineering data from
relational databases (RDB) into RDF follow approaches based on the
direct mapping between RDB and RDFS, for instance a possible trans-
lation schema could be:

e A RDB table maps to a RDFS Class.
e A column name of a RDB table maps to a RDFS Property.
e A RDB table record maps to a RDF node.

e A cell of a RDB table maps to a value.

Though this translation pattern can generally work for mapping RDB
to RDF, it is strongly related to the quality of the RDB.

In fact, assuming a low-quality RDB with few domain semantic rela-
tionships at the level of schema, like Andrea — lives_in — Bologna,
the result of the translation will be an RDF model without or with
a few relations among its resources, but, contrariwise, only or a lot
of literals that do not express so much but the strings or the integers
that they represent.

Also the assumption to map directly RDB to RDFS is a strong limita-
tion as it is wanted to add the semantics to data step by step reusing
existing meta-model and vocabularies that allows an ontology design

48 CHAPTER 4. SEMION: IMPLEMENTATION

patten approach and, where possible, to relate entities extracted into
RDF from the database with that ones from other ontologies making
sense to Linked Data.

To fulfill these problems in this chapter it is wanted to give give a
concrete implementation to the method discussed in chapter 3.

First of all it was projected semionDB.owl, an ontology that is thought
to be the vocabulary to represent relational databases into an RDF
format. It was obtained by specializing two well known content onto-
logy design patterns:

e collectionentity.owl whose intent is to represent domain (not set
theory) membership

e objectrole.owl whose intent is to represent objects and the role
they play

1 SchemaObject
[T ormea ™
Y AR

[Database
[isDatabaseOf : Table

M composes
I isFieldOf : Table
ohjectrole:hasRole : FieldRaole
[l hasS5QLType: string[1.1]
asField

8 hasIDBCDriver : string[1.1]
8 hasIDBCdns : string[1.1]

[hasPassword : string[1..1]

[hasPhysicalName : string[1..1]
[hasUsername : string[1..1]

B isDumped : string

N

| MullableField |
|8 ohjectroleihasRole ; FieldRole (FieldRole)|

(0 NotNullableField
| objectrole:hasRole : FieldRole (PrimaryKeyField, Foré\gnKeyF\a\d]l

tabase(pf
) Table

[belongsToDatabase : Database

[hasField : Field

[hasQuery : Query

[Im ownsFareignKey : ForeignKeyField

MW ownsPrimaryKey : PrimaryKeyField

Figure 4.1: semionDB ontology: SchemaObject classes.

In figure 4.1 there is the diagram that represents for objects that com-
pose the database schema, and they are three disjoint classes:

4.2. TREATING NON-RDF DATABASES AS RDF GRAPHS 49

e Database that contains all the information about the connection
and the database type. Instances of this class are any possible
database.

e Table is the class used to represent database table objects. Ins-
tance of this class are related to that ones of Database by the
property belongsToTable, whose inverse is hasTable.

e [ield is the class used to represent table columns. Instances of
this class are related to that one of Table by the property isFiel-
dOf. The inverse relation is realized by the property hasField.
In relational databases it is common to distinguish between two
disjoint type of Columns that in the ontology are realized by:

— NotNullableField whose instances are those columns that
do not admit null values.

— NullableField whose instances are those columns that may
admit null values.

These three classes are, de facto, the core concepts of database sche-
mata, but they are not enough to express all the information needed
to represent relationships among them and, above all, with data.

In fact, in relational databases a column can not be distinguished from
others only because it may admit null values, but also because it may
play the role of being a primary key and can be used to uniquely iden-
tify a database record. It may als play the role of being a foreign key
and can be used to realize relationships joining on other table columns.

Figure 4.2 explains what it has been just introduced.

Roles and fields are two disjoint concepts, so that a PrimaryKeyField
is not a type of field, but a possible role played by an instance of the
class Field. In our ontology it is clear how only instances of NotNul-
lableFild can play the role of being PrimaryKeyField or ForeignKey-
Field, because not null values are required in relational database to
identify primary and foreign keys.

50 CHAPTER 4. SEMION: IMPLEMENTATION

objectroleRole \) NullableField
objectroleisRole0f : abjectroleObject |- ———— 1 | objectrale:hasRole : FieldRole (FieldRole]|

Field

e e ——___|BW composes

I isFieldOf : Table
__| objectrole:hasRole : FieldRole
Of |mm hasSQLType : string[1.1]

e

FieldRole

[isOwnedBy : Table
objectroletisRole0f : Field

- D NothullableField
‘ objectrole:hasRole : FieldRole (PrimaryKeyField, ForeignKeyField]‘

ol b Rertr e ISR leOF [1.1]

‘ PrimaryKeyField

b
| objectrole:isRoleOf : NotNullableField[L..1] 4

i

1
| ForeignKeyField
[joinsOnField : [1.1]

objectroleiisRoleQf : NotMullableField[1..1]]

Figure 4.2: semionDB ontology: Roles of Fields.

It is possible to associate queries to tables, in order to fetch data in
the database, thanks to the property hasQuery that allows to relate
instances of the class Table to instances of the class Query.
Any individual of the class Query should be associated to:

e a literal that is the concrete SQL [IBM] query used to fetch data
by property hasSQLQuery

e a Table by the property isQueryOf, that is the inverse of has-
Query

e an individual of the class ResultSet, that is a collection of indivi-
duals of the class Record, that maps a physical database record

An individual of the class Record is both a member of a ResultSet and
a collection of values, so it has instances of the class Value as members.
This relations are shown in figure 4.3.

A value in this vocabulary for relational databases is a single cell in a
database table and is associated to a specific column of the table. As
individuals of the class Field, that represents physical table columns,
can play roles such as being primary or foreign keys in a table schema,
also values can play the same roles but in the data schema of the

4.2. TREATING NON-RDF DATABASES AS RDF GRAPHS

[collectionentity:Collection |
‘ collectionertity:hastember : owl:Thing |

objectrole: Object

objectrolethaskale ; objectralz:Role 7
£ i

o1

Table
M belongsToDatabase : Database
I hasField : Field
I hasQuery : Query
(I ownsForeignkey : ForeignkeyField
[ownsPrimaryKey : PrimaryKeyField|
Fecueryor
Lpastguary
Query
B hasResultset | Resultset (Resultset)
I isCueryOF : Table (Table)

[hasSQLQuUery : string

fsResultseror

Record

4 collectionentity:hasMamber : Valus

collectionentity:istemberOf : ResultSet

Halue 7 sluifentivy isMemberof
collectionentity isMember OF : Recard |,

| isComposedBy : Fisld (Field) “Collectionentity:hastember

(o istValueOf : Record
abjectraleihashole : ValueRole

I refers : Fisld

B hasContent © string

\‘-,‘-aEReS\JIY.SEL
Resultset

collectionentity:hasMember : Record)
[isResulkSetOf : Query (Query)

:hasMember

collectionentity:isMembsrOf

Figure 4.3: semionDB ontology: Tables, Queries, ResultSets, Records

and Values schema.

tables.

So if we have a column in a table that is a primary key,

the value of a specific table record associated to that column must
necessary be a primary key, also remembering that only not nullable
cells are admitted to be primary or foreign keys. Figure 4.4 shows

what it has been just said.

Vale
collectionentity isMemberdF : Record
[isCormposedBy : Field (Field)

[isvalusOF : Record
objectralethasRole : ValusRole

[vefers : Field

B hasContent : string

abjectrale:Rale |
| ohjectrale:isRoleOF : objectrole:Object]

GbjetatersRalzOf

ahjectrolehasRals ValueRols

Shictrole:isRolsOF ; Value)
</

ForeignkeyValue
Tl joinsOnField : [1..1]
obiectrole:isRoleCf : Yaluel1. 1]

Nathulvalue

Hulivalue
[isComposedBy | Field (NulableField, Field)

e iEmicComposedDy : NotNUlableField (Field)

objectrolesisRoleOf : objectroleiObject{1. 1],

objectroleiisRoleF : objectrole:Object[0..0]

objedtibiErisRalecf [1..1]

) PrimaryKeyValue
[ohjectroleisRoleGF : Mathiulvalus1,.1]f

Figure 4.4: semionDB ontology: Roles played by Values.

52 CHAPTER 4. SEMION: IMPLEMENTATION

4.2.2 Reengineering: from databases to RDF

In section 4.3.1 were introduced the five layers stack for mapping and
translating non-RDF and legacy data sources into RDF. Now it is gi-
ven an implementation of that method that uses that stack to drive
the Semantic Lifting of relational databases.

Spending other few words about the five layers stack, the users suggest
to the reengineer their customization choices passing as parameter
RDF/OWL files that lay in:

e [5 that is the vocabulary of the mapping model

e [/ that is the concrete mapping model for the data source se-
lected

L3 that contains the vocabulary both for schema and for data

L2 that is the concrete schema of the data source

L1 is the translation of the non-RDF data into RDF following
the vocabulary of data given in [3

In figure 4.5 there is the UML [Pre04] class diagram of the reenginee-
ring module that is the core of the Semantic Lifting.

The class SemionSchemaGenerator is the director of the reenginee-
ring. Its inputs are a connection to a data source, that is represented
in figure 4.5 by the interface ConnectionSettings, that is implemented
by the class ConnectionSettingsImpl in order to manage connections
to relational database via JDBC [FEBO03|, and an RDF /OWL descrip-
tion of the mapping between the physical data source (i.e. a relational
database) and the vocabulary for representing the schema of the da-
tabase described in section 4.2.1.

With connection information and the mapping description it is pos-
sible to translate the physical schema of a specific database in RDF/OWL
and then extract its content.

4.2. TREATING NON-RDF DATABASES AS RDF GRAPHS 53

2 TahleRelations

=, fhTableName: String
£, pkTable: String

setFhCalumins()
etFkColumins()
getPkColumns()
F pelongsToDstabease: Property setPkColumns(
 Dataase: Resource o Tablefelations()
oF existsin: Praperty

< Fiel: Resource

' FieldRole: Resource

F ForeignkeyField: Resource

oF ForeigniteyValue: Resource

o hasCortent: Property

F hasFisid: Property

F hazIDBCONS: Property

oF hasDBCDriver: Property

o hashiame: Froperty

= DBS

cooae

9 ConnectionSettingsimpl

F hasPassword Praperty 5 SemionSchemaGenerator

F hasPattern: Property o, databazetlame: String
F hasPhysicallame: Praperty o SemionSchemaGenersior() < password: String

< hasuery. Property A semionschemaGenerstor) <5 porthiumber: String
o hassGLGuery: Property PR © estractContent() <, selectiethort. String
F hasSGLType: Property 2 getschema() o, serverbame: String
F hasllsername: Property @ main() <y Ul String

< isDumped: Froperty O numberOfDistinctF oreignieys() @ userMame: String

F isFieldDf: Property O numberOTDistinctPriarykeys()

. & ConnectionSettingslimpl)
o isOwnedBy: Property © savebodel) F ConnectionSettingsimpl;)

F isGueryot: Praperty O yetlDECDriver()
o JoinsOnFisict Property

" NAMESPACE: Resource

< s string shccessy
o Nothullvaiue: Resource

o NothlullsbleFiei: Resourcs

" Mullvalue: Resource

 MulableField: Resource

oF ownsForeigniey: Property

o ownsFrimarykey: Property

<Call, Impports

F PrimaryKeyField Resource —— sinterfaces
F (& ObjectRole ionS etti
< PrimaryKeyValue: Resource 4
F setting
o Guery: Resource
o Record Resource + hasfole: Property , databaseblame: Siring
F ResullSet: Resource " isRolzOf. Property o, [DBCDriver: String
 SchemaOhject, Resource ¥ NAMESPACE: Resource <, passwort: String -
F Table: Resource WS String 5, porthumber: Siring =
F Walug: Resource Objecl: Resource , selectMethod. String
F valugRole: Resource Rdle: Resource o, serverblame: String

o, url String
o oetModel() @ getURI) '

<, userhlame: String
@ getURI)

Figure 4.5: Class Diagram of the reengineer.

To avoid the standard interpretation and extraction of the database
physical schema, it is also possible to pass the latter as an input and
allowing the reengineer to extract only data.

In order to perform the semantic lifting of relational databases, it
was said that a mapping is needed. This is an RDF document that
contains informations about the mapping between Java JDBC objects
and classes and properties defined in the ontology semionDB. When
the SemionSchemaGenerator starts the computation the are two pos-
sibilities:

1. extract both schema and data from the relational database

2. extract just data passing the schema as input

o4 CHAPTER 4. SEMION: IMPLEMENTATION

In both cases, as the object of the reengineering are relational data-
bases, the SemionSchemaGenerator needs to know how to represent
a JDBC object in the semionDB ontology, so now it is clear the role
of the mapping in the architecture.
The two methods of the class SemionSchemaGenerator, that are in-
volved in the Semantic Lifting are:

o cxtractSchema for the translation in RDF of the database schema

o cxtractContent for the translation in RDF of the database content

The class TableRelations is used by SemionSchemaGenerator in order
to collect relations among the tables of the database expressed as fo-
reign keys. It is used only for utility reasons during the reengineering
process.

At the end of the computation the result is an object that is an instance
of the class SemionModel that implements the Jena Model interface,
that represents RDF models as Java objects. Methods are provided for
creating resources, properties and literals and the Statements which
link them, for adding statements to and removing them from a model,
for querying a model and set operations for combining models.

4.3 Adding multilinguality to data

Once a database is translated into RDF it is possible to proceed to
the refactoring of its resources in order to align reengineered datasets
to defined content patterns or standard ontologies.

The approach followed for aligning datasets is based on reasoning on
sets of rules that the user submits as input to the refactoring module of
Semion. Though the refactoring method is thought to align datasets
to LMM, Semion is implemented to manage alignments to any other
ontology and from any ontology. That allows Semion to use as input
already aligned datasets, and, more generally, to combine ontologies
during the refactoring.

4.3. ADDING MULTILINGUALITY TO DATA 55

For instance, the approach that is followed in the first evaluation, re-
garding relational databases in chapter 5, is based on three alignments:

1. the alignment of the reengineered dataset to LMM

2. the alignment of the refactored LMM dataset to the ontology
FormalSemantics.owl

3. the alignment of the refactored FormalSemantics.owl dataset to
the logic of OWL

The module is opened to accept any ontology for the alignment. The
reason is to be found in the fact that an user can perform the ra-
factoring by choosing what he considers the best content pattern or
ontology for adding semantics to dataset that he has.

4.3.1 SemionRule: Alignment as inference on set
of rules

In Semion the refactoring is thought to be performed as reasoning on
sets of alignment rules expressed in SWRL syntax. If, on one hand,
SWRL rules ensure portability, being both expressed with an OWL
vocabulary and not bind to any specific reasoner, on the other they
may result complex to write for an user. For this reason it was defined
in Semion a human-friendly language to represent rules, that before
performing the alignments, is interpreted and translated to SWRL and
then used as an input for the Pellet reasoning.

Below it is described the syntax for the rule language that was defined:

Now it is possible to write a rule that is able to infer that any individual
of the class Tuble of the semionDB ontology is an LMM Meaning:

myRules:CMRule [semionDB:Table(?x) -> LMM_L1(7x)]

where:

96 CHAPTER 4. SEMION: IMPLEMENTATION

axiom ::= r-name [rule]
rule ::= antecedent — consequent
antecedent ::= atom

| atom . antecedent
consequent ::= atom

| atom . consequent

atom ::= description(i-object)
| dataRange(d-object)
| individualvaluedPropertyID(i-object, i-object)
| datavaluedPropertyID(i-object, i-object)
| same(i-object, i-object)
| dif ferent(i-object, i-object)

i-object ::= i-variable | individualID
d-object ::= d-variable | dataLiteral
i-variable ::= 7 URIreference
d-variable ::= 7 URlIreference)
r-name = URlIreference

Figure 4.6: The SemionRule language.

e myRules is the namespace in which rules are defined
o (C'MRule is the name chosen for the rule

e 71 is a variable

The CMRule is translated by the refactoring module of Semion in the
following SWRL rule

<swrl:Variable rdf:ID="x"/>
<swrl:Imp rdf:about="http://www.myRules.org#CMRule">
<swrl:body rdf:parseType="Collection">
<swrl:ClassAtom>

<swrl:classPredicate
rdf :resource="http://andriry.altervista.org/dbs.owl#Table"/>
<swrl:argumentl rdf:resource="http://www.myRules.org#x"/>
</swrl:ClassAtom>

4.3. ADDING MULTILINGUALITY TO DATA 57

</swrl:body>
<swrl:head rdf:parseType="Collection">
<swrl:ClassAtom>
<swrl:classPredicate
rdf:resource="http://www.ontologydesignpatterns.org/ont/
lmm/LMM_L1.owl#Meaning"/>
<swrl:argumentl rdf:resource="http://www.myRules.org#x"/>
</swrl:ClassAtom>
</swrl:head>
</swrl:Imp>

4.3.2 Refactoring module: concrete implementa-
tion

As explained in the previous section, the refactoring of RDF datasets
is realized by reasoning on sets of rules written lithe in SWRL syntax
or in in SemionRule syntax.

We are now interested in how Semion performs the translation from
SWRL to SemionRule and vice versa and the reasoning.

Figure 4.7 shows the UML class diagram of the refactoring module.

The class SemionRefactorer is responsible of the coordination of the
whole computation of the module.

Translations from SemionRule to SWRL are performed by a Semion-
Refactorer object, allocating an instance of the class SemionRulePar-
ser, that implements the interface ISWRLRule and whose translation
task is executed by the method parse, that is declared by ISWRLRule
and implemented by SemionRuleParser. On the other hand, transla-
tions from SWRL to SemionRule are performed by a SemionRefactorer
object, allocating an instance of the class SWRLToSemionRule, that
is also an implementation of the interface ISWRLRule and also in this
case, the method involved in the translation is parse.

It is important to point out that both the input and the output of
the method parse is a Java Object. The reason of this choice is to be
found in the two different ways of translation:

o8 CHAPTER 4. SEMION: IMPLEMENTATION

i~ SemionRefactorer

£ SemionRefactorer()
EtRulELIRIC)
pertormReasoning()
setRuleLRI)

0.1 J/ - semionRulEParser

= SemionRuleParser

girterfaces £ SemionRuleParser()
ISWRLRule = parsel)
parse()
parse()
F'\ l *ACCESSS
(= SWRL

argument1: Property

A argumert2: Propert

= SWRLToSemionRule d et
Atom: Resource

AtomList: Resource

F SWRLToSemionRuler)
B —— body: Property

arsel
s o Euiliin: Resource
tranlsteRule())

EBuilinAtom: Resource
tranlateSetOfRules()

Classilom: Resource
classPredicate: Property
DataRangeltom: Resource
DatavaluedPropertyAtom: Resource
DifferentindividualsAtom: Resource
head: Property

Imp: Resource
IndividualProperty Atom: Resource
MAMESPACE: Resource

NS String

nil: Resource

propertyPredicate: Property
SamelndividualAtom: Resource
Wariahle: Resource

etlRIO)

Figure 4.7: Class Diagram of the refactoring module.

e from a Jena Model to a Java String when the system is running
a translation from SWRL to SemionRule

e from a Java String to a Jena Model when the system is running
a translation from SemionRule to SWRL

It is not a problem, because an instance of the class SemionRefactorer
does not know so much about the concrete implementations of the
ISWRLRule interface, but it knows that it should aspect a String or
Model depending on the direction of the translation as just mentioned.

The class SWRL of the module provides static methods in order to
directly access the OWL classes and properties of the SWRL ontology
described in http://www.w3.org/2003/11 /swrl.

4.4. THE GRAPHICAL TOOL 29

The translation from SWRL to SemionRule is important only for rea-
sons concerning human readability and it has not any affect on the
reasoning.

In fact, the reasoning is provided by the refactoring module of Semion
passing to Pellet SWRL rules through the Jena interface. Pellet has
an implementation of a direct tableau algorithm [BS01] for a DL-safe
rules extension to OWL-DL. This implementation allows one to load
and reason with DL-safe rules encoded in SWRL and includes support
for some SWRL built-ins.

4.4 The graphical tool

The graphical tool interacts with the other modules as the software was
designed following the ModelViewController (MVC) [Wikb] pattern.
This pattern allows to represent the reengineering and the refactoring
components as the models (see figure 4.8), that elaborate the data
upon which the application operates. The view renders the model
into a form suitable for interaction, a user interface element. The
controller receives input and initiates a response by making calls on
model objects.

Model
* Encapsulates application state
= Hespondsifo stale queries
= Exposes application

e I
Controller.
* Defines application behavior
» ReqUests updates from models = Maps user actions to
» Sends user gestures fo controfler 41 1 1 1 1 | model updates

« Allows controller 1o sefect view User Gestures sselectsviewforresponise
+ One for each functionality

View Selection
* Henders the models

mmmmml Method Invocations
BB B> Events

Figure 4.8: The Model-View-Controller pattern.

It is implemented using the Java Standard Widget Toolkit (SWT) [Eclb],
that is is an open source widget toolkit for Java designed to provide

60 CHAPTER 4. SEMION: IMPLEMENTATION

efficient, portable access to the user-interface facilities of the opera-
ting systems on which it is implemented, and JFace [Ecla], that is a
window-system-independent in both its API and implementation, and
is designed to work with SW'T without hiding it. JFace includes the
usual Ul toolkit components of image and font registries, text, dialog,
preference and wizard frameworks, and progress reporting for long
running operations. Two of its more interesting features are actions
and viewers. The action mechanism allows user commands to be de-
fined independently from their exact whereabouts in the UI. Viewers
are model based adapters for certain SWT widgets, simplifying the
presentation of application data structured as lists, tables or trees.

As it is possible to see in figure 4.9, the core of the graphical tool is
the class Semion, that contains the main method and allows the built
and the visualization of the user interface.

The user interface is composed by two principal area, as shown in
figure 4.10:

e the Project Explorer on the left, that allows to browse through
the various Semion Projects and also to add new and to manage
existing ones.

e the Tab Folder on the right, that allows to the users to customize
or simple to view the RDF representation of a relational database
and to align the latter to LMM or to any ontology design pattern
or vocabulary.

The Project Explorer is realized implementing a JFace TreeViewer,
that is designed to be instantiated with a pre-existing SW'T Tree
control and configured with a domain-specific content provider (i.e.
the class MappingTreeContentProvider in figure 4.10), that allows to
associate to tree items Java objects, and with a domain-specific label
provider (i.e. the class Mapping TreeLabelProvider in figure 4.10), that
provide labels and images to be displayed as tree items.

The Semion projects are physically stored into an user defined works-
pace and accessed through an RDF document that describes the works-
pace itself.

The class Workspace is used to manage the RDF that semantically

61

THE GRAPHICAL TOOL

4.4.

Cipafuey o)
CusIpyoEEy
s deh
QTR T
OuspysEE
(lazndsip

0002000

1apiaol puajuonaal | buiddey &

(lsusiEas0Wwal O
DapadoigRoges) ©

Osiabppanep O
O L opeuuily o

WSCE | A U0MISE D38 U Y
qeuawubiy &)

e

(Juns
(azisa

(e
Oindueuy=6

Ol ol

abewab o

Dasodsip O

Ciapopryaiepdn o Qisusisnppe ©

Qspopsaedsionas O (uapinodEreTaei Buddey o
Dispowatedsopiases O

Owsloiguonuesesowss O 1apiaoidlageaar) Buiddeg <
(ypegaaedsuongel O
spadedsyiongan o
Oiepopeoedsionyel o
(noaliguonuasiah o
Diclewpiswufy o JAG000EE o
(= o
(noaliguonuasppe 0

(NUsWUBIy A0 JABDIIORPE D e
(osioigo | eweyoSenosERdERE O
(noainigo uswubipyppe o
0EdEN DA UOIWISE 2381 D)
saedsyionn &)
s ‘Mo
spodips,
arn=f Oiri=f o
Cawergafi - o Daweriad O

[IuEYEEa LISub)y ABO[oUc %\“

[apop@ad Laonoseeg uQ

L=}
L=l

Ll
(=]

[pmuonuEs kel

OsjaBppaaep
Ol oasedeea o

|SPOWUOIISS, [SROMUOILSS o

I

WaEYHE | O INE U0IUSS" DS 100)
qejDaseqeleq &;

Bus Ygdaoedsyiomn o
efewl BuS-aigeseH safew o

e "podwys

ulEUoIWasg &)

%

W

OspEbpiEigess O
(OISR RREY]
OsiEfppasiesn ©
(eysodwoneEan ©
(e Loanopulg, O

wayEe |2 INE UOIIES 23 uD'Y
qe | MOPUI 5

Y

Osplphasigeus ©

Osefplasie sy ©
CElabppsenEsp O
Daysodwonampan ©

(uadome DuoEs \uﬁs_a\v
WAy |2 M UOIWEE 23S AUy

uadgge | Juoluasg T

qe | DMmOpuLan| &
EECNE e

sl ©
Ciswensh o
Cwsyssisseneed 0
[Iiayasa | asegeps Ee]

Buls awepyasiod G
FLS UpedEpomoISwUEnE Yo

Bus aeioad G
Fuugs wepued Yo

Bulgs aweppasiod o
[T e —

e potWp

Qs o

Daweriel ©
Crusysed ooufuddey o
(wsyss. yooyBudtey 0

l

Ousipuosey ©

SpONEE.Y ING LOMISS DT IS)

1881 nyAbojmug

apopEaIy NG UoNuES" 23S! U)
apoNeal]adInoseleq &)

apopEa.Y INE UOIUES" 2381 JUT)
wayjaal] aseqeieq <

apop@a.y NG UonES Djs1 Ua°)
waya@espooyburddey <

BULES I e

Buns awel o
BULS Yiedispow %o
=F= 15 MRIBILD Yo

I

y

Quaipuosey o
(ziedEl O

apopEa4y NG UoNUES O AuD°]
apoNaal]] £
ey EE

I

QuaippyzEe o
(apopzslL £

Bus yedEpow o

apopEas] NG UoIEs D1S1 AUa')
apoNaal] &

Class Diagram of the graphical tool.

Figure 4.9

IMPLEMENTATION

SEMION

CHAPTER 4.

62

T,om«dm [] T_Eu a0unos WU MBLAIBAD 4

[0

w

" IaWwo)sno

pl3onpoad

e jonpoad

E 03 uo suor

aRRy

212]2Q

40100 []

13W0YSND = 1Nl "D siapio o 12algo”Auys 7]

1onpoud @ 1Nl rdTsiepao o Jawoysna [

=@ & NI Pl s4aplo 0 Jonpoud [}

Jonpoud @ =@ 1Nl "TrDTsiapio o siapio[]

8]qe) U0 sulof CUtaod “ld adiL BLEN E BWEN
suwnjod ajqe| 53)1qe) aseqele(]

b A3AL agp[bsAwrwoo 13ALIADEArseY

s1anpoad/ gy LasoyeD0)/ /bsuwiaqpl suaoaarsey

— Jo0u aweuwlasnsey

i oBLD PIOMSSELSEY

1 as|E} padwnast

= BMEA faiadoag

sBuimnes uonaauuoy

HPWALPSTWX/ LOOZ /840" gm mamm, /21y psx

#M0/10/Z00Z/BI0"Em mmm [1diy W0
diy ELWEYIS9P
HPWAYDS-JPA; L0/ 000Z/ 540" gm mmm, 7 xdijy sypd

#)PA"UOLLWAS /1] JUD 015! Qe

#mo sqp/eonsieadsiss) Sioestalae upue s s idiy

14N aoedsawey X1yaid

saxyald asedsawey

usywun
aUBLUENY =
gaotwt ()
ea0ud fF|
S80IN0S E1EQ Sk
siaweysnasionpold I
SuBLUENY =
S80IN0S E1EQ Sk
eAoud 15

2 gaowl (1 uSpvWW]

Jadoydx3 spoaloud =

24

uolw=s [

Semion Graphical User Interface.

Figure 4.10

4.4. THE GRAPHICAL TOOL 63

describes the Semion workspace.

To perform actions on projects it is available a pop-up menu for the
Project Explorer, as shown in figure 4.11(a). In the specific case it is
possible to see how to add an new database in a Semion project:

e in the first (figure 4.11(b)) step it is required to choose between
an empty database or to extract it with the reengineering wizard.
The first choice means that it will be the user to add tables,
columns and relations manually, while the second one means
that the database will be automatically lifted into an RDF form,
thanks to the reengineering module described in section 4.2

e if the user chooses the first option, the database with the name
selected will be added to the project (notice: untill the user does
not add tables and columns the database is empty), while if the
user choses the second option a new page is shown in order to
fill the form with the information that the reengineer requires to
perform a semantic lifting (figure 4.11(c))

All the tree items of the Project Explorer extend the abstract class
TreeNode (see the class diagram in figure 4.9, that implements the
interface ITreeNode, and they are:

o MappingRootTreeltem: is the root node for each project

e DataSourceTreeNode: is the father node for the tree items that
represents data sources

e DatabaseTreeltem: is the item to display relational databases in
the tree viewer

e OntologyAlignmentTreeltem: is the item to display aligned on-
tologies

Both DatabaseTreeltem and OntologyAlignmentTreeltem if opened cli-
cking on the “Open” entry in the pop-up menu or with a double click
of the mouse, allows to analyze the structure of the RDF translation
of the database and of the alignment in the tab folder in the right (see

CHAPTER 4. SEMION: IMPLEMENTATION

New b (&) Project

Open P 4% Data Source >[rﬂ Relational Database
Open As v Alignment

% Import
& Export
Refactor 3

Copy
Paste

Delete

% @&

i (= [E

New Database

Add a new Database to the mapping

Add a Database () Add a new database

@ Add a new wizard database

< Back Next > Finish

Project name: Data sources e

DB resource name: waornet

DB type MySQL -

Host: localhost

Port: 1433

Database: waordnet

Username: root

Password: -

Map namespace URL http://andriry.altervista.org/wordnet.rdf

Next > [Einish i [Cancel
()

Figure 4.11: Creation of a new database in a Semion project.

4.4. THE GRAPHICAL TOOL 65

figure 4.10).

In particular when the tree item DatabaseTreeltem is opened a tab
item with the same name and the same icon is displayed in the tab
folder and it allows to add, modify or delete resources from an RDF
model of a database. It is composed by three sub-tab items:

e Overview, that organizes all the resources of the RDF model
in a tabular way, so that in the top are listed in a table all the
namespaces and their relative prefixes, then there is a table that
displays all the connection settings to the physical database and
in the bottom of the window there are two tables that lists all the
database table and the columns associated to the selected table
respectively. In the columns table is provided all the information
relative to the role of the column in the database, so it is possible
to know if it is a primary or a foreing key and on wich columns
of another table it joins.

e Source Code, that displays the source code of the RDF mo-
del in three possible syntaxes, that are RDF /XML, RDF/XML-
ABBREV and N3.

e SPARQL, that provides a SPARQL endpoint in order to query
the RDF model of the database.

When the tree item OntologyAlignmentTreeltem is opened, another
tab item, always with the same name and the same icon, is displayed
in the tab folder and it allows to perform alignments. Alignments,
as already said, are obtained infering on sets of SWRL rules. In the
alignment tab item there is a table (see figure 4.12) that lists all the
inference rules defined for that model. This set is customized both
through a wizard editor, that accepts rules in SemionRule syntax, and
through the drag and drop of a tree item from “RDF DataSet” tree
in the right into the target ontology in the left (the two trees in the
bottom of the figure 4.12)

When the user completes the refactoring he can proceed with another
alignment to another ontology (i.e. FormalSemantics.owl) or exports
the inferred ontology so he can publish it as Linked Data.

IMPLEMENTATION

SEMION

CHAPTER 4.

66

1da0U0D UoNEILYISSED @
ploday:sgp @
185)Ns3ySqP @
uopoe0d:AnuauRI0 @
aseqeIeqisqp @
S1qEL:SqP @
PIBI4EIGENNN SO @
P13 4310ENNNION:SP @
maLsisap @
1alqorWways:sqp @
12PoW 3185e18(
19SE1EQ 40

[0}

Anuzuonewnong @
fayend:ing @
wady:ng @
uadvienos:Ing @
uonaNo:INg @
1algouogeuuou;:ng @
20e1: N0 @
uoEenis:INg @
Suueaw: 1T wWw1 @
walggernos:ng @
1alqoeasiyd:ng @
palgoning @
WwaA3:INa @
1ensqy:INg @
sisouSelq:ng @
8INg @
Ayoaesany ssep ww

saladold . sasse])

aeea | wa | v

30UBIB)EY: LTTWW <- (¥)piooay:sqp Zan
Sujueaw: 1T Ww1 <- (x7)a1geL:sqp [E]
3Ny FWTH
s3|my
gaoiwit 7 uBfvwun
2

usywun
Quawudyy & »
aaotwt
ea0ud (1]
58005 E1BQ S
siawoysnosianpoid 5 »
eaoud T -

Jadoydx3 spoaloud =

24
uolw=s i

ts in the Semion Graphical User Interface.

ignmen

Al

Figure 4.12

Chapter 5

Semion: evaluation

Semion was tested both on reengineering relational databases and
PGN and LaTex file containing information about chess games. The
first test is described in section 1 and the second in section 2. While,
relational databases were the declared case study, PGN and LaTex
were chosen to test the capability of Semion to be easily extended in
order to manage the reengineering from other kind of data sources.

5.1 Testing Semion on relational databases

In order to make an exhaustive and non trivial test of the Semion tool
and its components we focused our attention on a large database in
which the alignment to LMM and then to a vocabulary that expresses
the formal semantics (i.e. FormalSemantics) makes much sense.

5.1.1 Evaluation scenario: WordNet

The chosen database is WordNet [Mil95] in its MySQL [WAO02] version.
WordNet is a lexical database for the English language. It groups

67

68 CHAPTER 5. SEMION: EVALUATION

English words into sets of synonyms called synsets, provides short,
general definitions, and records the various semantic relations between
these synonym sets. The purpose is twofold:

e to produce a combination of dictionary and thesaurus that is
more intuitively usable

e to support automatic text analysis and artificial intelligence ap-
plications.

WordNet was created and is being maintained at the Cognitive Science
Laboratory of Princeton University under the direction of psychology
professor George A. Miller.

WordNet distinguishes between nouns, verbs, adjectives and adverbs
because they follow different grammatical rules. Every synset contains
a group of synonymous words or collocations (a collocation is a se-
quence of words that go together to form a specific meaning, such as
”car pool”); different senses of a word are in different synsets. The
meaning of the synsets is further clarified with short defining glosses
(Definitions and/or example sentences).

Most synsets are connected to other synsets via a number of semantic
relations. These relations vary based on the type of word, and include:

e Nouns

— hypernyms: Y is a hypernym of X if every X is a (kind of)
Y (canine is a hypernym of dog)

— hyponyms: Y is a hyponym of X if every Y is a (kind of)
X (dog is a hyponym of canine)
— coordinate terms: Y is a coordinate term of X if X and Y

share a hypernym (wolf is a coordinate term of dog, and
dog is a coordinate term of wolf)

— holonym: Y is a holonym of X if X is a part of Y (building
is a holonym of window)

— meronym: Y is a meronym of X if Y is a part of X (window
is a meronym of building)

5.1. TESTING SEMION ON RELATIONAL DATABASES 69

e Verbs

— hypernym: the verb Y is a hypernym of the verb X if the
activity X is a (kind of) Y (to perceive is an hypernym of
to listen)

— troponym: the verb Y is a troponym of the verb X if the
activity Y is doing X in some manner (to lisp is a troponym
of to talk)

— entailment: the verb Y is entailed by X if by doing X you
must be doing Y (to sleep is entailed by to snore)
e Adjectives

— related nouns
— similar to

— participle of verb
e Adverbs

— root adjectives

While semantic relations apply to all members of a synset because
they share a meaning but are all mutually synonyms, words can also be
connected to other words through lexical relations, including antonyms
(opposites of each other) which are derivationally related, as well.

A W3C working draft for the RDF/OWL representation of WordNet
already exists [vAGS06]. It was developed performing the conversion
by using a Prolog program written in SWI-Prolog. Our aim is to use a
different methodology that expresses the conversion as an RDF/OWL
itself that contains SWRL rules and does not hide the details into a
specific programming language such as Prolog.

5.1.2 Testing the reengineering module

The reengineering of the WordNet MySQL database was performed
with the Semion graphical tool and the database wizard extractor

70 CHAPTER 5. SEMION: EVALUATION

provided by the user interface of the tool.
The input database was composed by 19 tables, 647,843 total records
and 62MB of memory size. The exact record and memory size distri-
bution can be seen in figure 5.1

Each table was translated into an RDF resource and it was reen-

Table Record(s) Size
wn_antonym 7,993 787,9 EiB
wn_attr_adj_noun 1,238 55,9 HiB
wn_cause 218 12,3 EiB
wn_class_member a,429 378,0 EiB
wn_derived 47, 888 4,1 MiB
wn_entails 403 20,4 KiB
wn_gloss 115,424 25,0 MiB
wn_hypernym 34,842 2,9 MiB
wn_hyponym 94,842 3,5 MiB
wn_mbr_meronym 12,208 546,1 KiB
wn_participle 124 15,5 EiB
wn_part_meronym 2,638 363,8 KiB
wn_pertainym 7,920 776,4 KiB
wn_see_also 3,294 319,6 EiB
wn_similar 2z,198 1,0 MiB
wn_subst_meronym 787 36,5 EiB
wn_synset 203,147 20,1 MiB
wn_verb_frame 21,345 1,6 MiB
wn_verb_group 1,748 72,8 EiB

19 table(s) 647,843 62,9 MiB

Figure 5.1: WordNet MySQL tables.

gineered into an instance of the semionDB:Table class. The URIs
identifying new created semionDB:Table instances, followed the pat-

tern:
baseU RI# < table_name >

where:

e baseU RI# identifies the namespace chosen for the dataset (i.e.
in our case it was http://andriry.altervista.org/tesiSpecialistica/wn.rdf#)

o < table-name > has to be substituted by the name of the phy-
sical database table (e.g. wn_synset, wn_gloss, etc. . .)

5.1. TESTING SEMION ON RELATIONAL DATABASES 71

Each column was translated into an RDF resource and, according to
its nullable SQL option, it was reengineerd into:

e a semionDB:NotNullableField, if the physical column table did
not admit null value in the database

e a semionDB:NullableField, if the physical column table admitted
null value in the database

The pattern used for column URI generation was the following:
baseU RI# < table_name > _ < column_name >

where:

e baseU RI# identifies the namespace chosen for the dataset as
before

o < table_name > _ < column_name > identifies the semionDB:Field
(both semionDB:NotNullableField and semionDB:NullableField
are subclasses of its) and where

— < table_name > has to be substituted by the name of the
physical database table in which the column exists

— < column_name > has to be substituted by the name of
the physical table column

During the generation of the column RDF resources, semionDB:hasField
and semionDB:isFieldOf object properties were automatically added
to table resources and column resources respectively. The existence
in the database tables of primary and foreign keys was reflected in
the RDF dataset by the creation of semionDB:PrimaryKeyField and
semionDB:ForeignKeyField class instances related to semionDB:Not
NullableField by the object property objectrole:isRoleOf.

Data were extracted defining the SQL queries as literals in semionDB:Query
resources related to semionDB:Table resources. In this evaluation test

72 CHAPTER 5. SEMION: EVALUATION

queries were projected in order to obtain a single database dump, so
that to each table was associated a query of the form “SELECT *
FROM <table_name>". In other situations could be better to project
queries oriented to paginate or to filter result sets only to needed data.
The execution of the queries produced:

e 19 instances of the semionDB:ResultSet class related to semionDB:
Query instances by the object property semionDB:hasResultSet

e 647,843 instances of the semionDB:Record class related to
semionDB:ResultSet instances by the object property collectio-
nentity:isMemberOf

e 2.264,506 instances of both the semionDB:NullValue and the
semionDDB:
NotNullValue classes related to semionDB:ResultSet instances
by the object property collectionentity:isMemberOf

e 752,623 relations between synset value resources and value re-
sources identified in other table instances. This relations are rea-
lized by foreign key resources related to semionDB:NotNullValue
instances that maps physical table cells of the WordNet database
that contained a foreign key. In table 5.1 to each table resource
is associated the number of foreign key resource that joins on
synset resources.

All the results in table 5.1 and all the other given results in this sec-
tion are obtained as output of SPARQL queries on the RDF dataset
generated from the reengineering process.

Dumping the whole WordNet MySQL relational database into an RDF
dataset required approximately 480 seconds.

The reengineerd dataset was published at
http: /wwww.ontologydesignpatterns.org/ont/WNet /wnet.rdf.

5.1. TESTING SEMION ON RELATIONAL DATABASES 73

Table 5.1: Foreign keys joining on synsets

Table URI # of foreign keys individuals
wn:wn_antonym 15986
wn:wn_attr_adj_noun 2592
Wn:wn_cause 436
wn:wn_class_member 16858
wn:wn_derived 85976
wn:wn_entails 818
wn:wn_gloss 115424
wn:wn_hypernym 189684
wn:wn_hyponym 189684
wn:wn_mbr_meronym 24410
wn:wn_participle 248
wn:wn_part_meronym 17272
wn:wn_pertainym 15840
wn:wn_see_also 6588
wn:wn_similar 44392
wn:wn_subst_meronym 1574
wn:wn_verb_frame 21345
wn:wn_verb_group 3496

5.1.3 Testing the refactoring module

After having reengineered the WordNet database into an RDF dataset
a series of alignment tests were profiled. The tests were planned in way
to obtain a pipeline in which the output of the previous test session
was the input of the next, namely:

1. from the WordNet RDF dataset to LMM
2. from LMM to FormalSemantics

3. from FormalSemantics to OWL vocabulary

As the Semion refactoring module works on alignments based on the
Pellet reasoning on set of rules in SWRL syntax, for each one of the

74 CHAPTER 5. SEMION: EVALUATION

three previous points were defined rules using the Semion user interface
and the SemionRule language in order to prove the efficiency of the
translation from SemionRule to SWRL performed by the software.

Below are listed some topic rules defined for alignment in point 1:

1. same(wn:wn_synset, ?z)

—

dul:Collection(?z)

2. semionDB:hasQuery(wn:wn_synset, ?x) .
semionDB:hasResultSet(?z, ?y) .
collectionentity:hasMember(?y, ?z) .
semionDB:Record(?z) .

N
dul:Concept(?z) .
dul:covers(?z, ?z)

3. semionDB:Record(?z) .
collectionentity:hasMember(?z, ?w) .
collectionentity:hasMember(?z, t) .
semionDB:NotNullValue(?w) .
semionDB:NotNullValue(?t) .
semionDB:refers(?w, wn:wn_part_meronym_synset_idl) .
semionDB:refers(?t, wn:wn_part_meronym_synset_id2) .
objectrole:hasRole(?w, ?k) .
objectrole:hasRole(?t, ?7j) .
semionDB:joinsOnField(?k, ?p) .
semionDB:joinsOnField(?j, ?q) .
collectionentity:isMemberOf(?p, ?z) .
collectionentity:-isMemberOf(?q, ?y) .
.
dul:isPartOf(?z, ?y) .
dul:covers(?z, wn:wn_part_meronym)

4. semionDB:Record(?z) .
collectionentity:-hasMember(?z, ?w) .

collectionentity:-hasMember(?z, ?t) .
semionDB:NotNullValue(?w) .

5.1. TESTING SEMION ON RELATIONAL DATABASES 75

semionDB:NotNullValue(?t) .
semionDB:refers(?w, wn:wn_gloss_synset_id) .
semionDB:refers(?t, wn:wn_part_gloss) .
objectrole:hasRole(?w, k) .
semionDB:joinsOnField(?k, ?p) .
collectionentity:isMemberOf(?p, ?x) .

.

LMM_L1:Expression(?t) .
LMM_L1:expresses(?t, ?z) .

dul:Relation(?z)

The rule (1) allowed to infer that the instance wn:wn_synset that iden-
tified a semionDB:Table was a also an instance of dul:Collection. This
pattern was adopted for most of the instances of the semionDB:Table
in the WordNet RDF dataset because a dul:Collection can be thought
as any container for entities that share one or more common proper-
ties.

The rule (2) let the system to infer that any semionDB:Record is a
dul:Concept and covers the dul:Collection identified by the specific se-
mionDB:Table, which the record is related to through an instance of
the semionDB:Query, that, in the dataset, represents the SQL query
executed to generate the considered semionDB:Record.

The rule (3) was used to infer meronym relationships between synsets
as relationships dul:zsPartOf in LMM. To find instances satisfying this
rule, it was needed to look for all semionDB: Value instances members
of some semionDB:Record (interpreted as a dul:Relation, that had
a reference with wn:wn_part_meronym_synset_id2 and wn:wn_part_me
ronym_synset_id1 fields instances in table wn:wn_part_meronym.

In rule (4) values of the column wn:wn_part_gloss (7t) was inferred as
LMM_L1:

Ezxpression individuals, that express a particular meaning defined by
the synset record (7x) indetified by wn:wn_gloss_synset_id(7w). Re-
cords of the gloss table (7z) are interpreted as dul:Relation individuals.

Then, the output of this refactoring was aligned to the ontology For-
malSemantics. Below are listed some main rules defined:

1. LMM_L1:Meaning(?z) — dul:Set(?x)

76 CHAPTER 5. SEMION: EVALUATION

2. LMM_L1:Reference(?z) — FormalSemantics:SetElement(?z)

3. dul:Relation(?x) — FormalSemantics.owl:Relation(?x)

4. dul:Concept(?x) — FormalSemantics.owl:Class(?z)
All these rules are immediately clear and they do not need any further
explanation but they infer, for any individual declared on the left side
of the arrow, the type suggested on the right side.
Finally there was the alignment of the resulting ontology to a logic
language expressed by the OWL vocabulary and some main rules were:

o FormalSemantics:Relation — owl:ObjectProperty

e FormalSemantics:Class — owl:Class

e FormalSemantics:Set — owl:Class
The last aligned ontology was the final output of the test. All the
inferences performed by the Pellet reasoner needed approximately 900

seconds.

The refactored ontology was published at
hitp: /wwww.ontologydesignpatterns.org/ont/WNet /wnet-ref.owl.

5.2 Testing Semion on other data sources

It was said that Semion is a tool for transforming relational databases
into Linked Data and this capability was tested on the WornNet da-
tabase in its MySQL version.

However, Semion and the transforming methodology it implements is
thought, in potentia, to manage any kind of data source.

5.2. TESTING SEMION ON OTHER DATA SOURCES 7

5.2.1 Evaluation scenario: PGN and LaTex chess

Semion was also tested for transforming into Linked Data non-relational
databases consisting in PGN (Portable Game Notation) [Wikc| reposi-

tories and in LaTex [Lam86] documents, both containing information
about chess games.

PGN files and chess LaTex documents store information about games
using two different syntaxes, but they organize this information in a
similar way. For example the code in figure 5.2 is expressed in PGN:

[Event "F/S Return Match"]

[Site "Belgrade, Serbia Yugoslavial|JUG"]
[Date "1992.11.04"]

[Round "29"]

[White "Fischer, Robert J."]

[Black "Spassky, Boris V."]

[Result "1/2-1/2"]

1. ed eb 2. Nf3 Nc6 3. Bbb {This opening is called the Ruy

Lopez.} 3... a64. Ba4 Nf6 5. 0-0 Be7 6. Rel b5 7. Bb3 d6

8. ¢3 0-0 9. h3 Nb8 10. d4 Nbd7 11. c4 c6 12. cxbb axbb

13. Ne3 Bb7 14. Bgb b4 15. Nbl h6 16. Bh4 c5 17. dxeb Nxed

18. Bxe7 Qxe7 19. exd6 Qf6 20. Nbd2 Nxd6 21. Nc4 Nxcé

22. Bxc4 Nb6 23. Neb Rae8 24. Bxf7+ Rxf7 25. Nxf7 Rxel+

26. (xel Kxf7 27. (e3 Qgb 28. Qxgb hxgb 29. b3 Keb

30. a3 Kd6 31. axb4 cxb4 32. Rab Ndb 33. £3 BcB 34. Kf2 BfS
35. Ra7 g6 36. Ra6+ Kcb 37. Kel Nf4 38. g3 Nxh3 39. Kd2 Kbb
40. Rd6 Kcb 41. Rab Nf2 42. g4 Bd3 43. Re6 1/2-1/2

Figure 5.2: A PGN file.

While the LaTex syntax for chess games is in figure 5.3:

In both formats, the chess moves are given in algebraic chess notation,
in which each square of the chessboard is identified with a unique pair
of a letter and a number. The vertical files are labeled a through
h, from White’s left (i.e. the queenside) to his right. Similarly, the
horizontal ranks are numbered from 1 to 8, starting from White’s home
rank. Each square of the board, then, is uniquely identified by its file
letter and rank number. The white king, for example, starts the game

78 CHAPTER 5. SEMION: EVALUATION

\title{{\bf Kasparov Karpov 5}\\
Chess World Championship\\
NewYork-Lion 1990}

\section{Game 1:\\ New York, Oct 8, 1990}
{\sc Karpov-Kasparov}

{\sc King’s Indian Defense (E81/14)}
\newgame

\move d2d4 g8f6
\move c2c4d g7g6
\move blc3 f8g7
\move e2ed d7d6
\ply f2f3

|5 Nf3| - games 3,5,7.
Some months ago Kasparov has lost a game as Black
in this variant against Gulko.

\ply e8g8

\move cle3 c7c6

Figure 5.3: A LaTex document with skak macros.

on square el. The black knight on b8 can move to a6 and c6. Chess
notations are a way to determine any unique point on the board.
Again, in the two code are stored informtaion regarding the event (i.e.
[Event "F/S Return Match”] in PGN and in LaTex), the site, the
date, the white player, the black player and so on.

5.2.2 PGN and LaTex chess to RDF

PGN and LaTex chess represent chess games and moves in a similar
way, even if they are expressed in two different syntaxes and are used
for two different purposes (the first one to record chess games and the

5.2. TESTING SEMION ON OTHER DATA SOURCES 79

second one also to present them in electronic document like PDF).
The reason of the similarity between the two notations is to be found
in their aim to map chess games, with event, site, players, moves and
comments. So the structure of a chess game is, in a certain way, the
schema of the two formats thought as data sources and on this schema
it was constructed the OWL-DL vocabulary that is used by Semion
to represent chess games extracted from PGN or LaTex sources. The
figure 5.4 shows the diagram of the vocabulary.

The class zc:Game represents the concept of a chess game and is re-
lated to the Round attribute in PGN files and to the first part in
the sections of chess LaTex documents (e.g. \section{Game 2:...}).
Both PGN and LaTex associate a game to an event, so individuals of
zc:Game are member of xc:Championship individuals, that map any
kind of chess event.

Again, both formats associate a player to white or black chess pieces
and this is reflected in the OWL vocabulary specializing the agent
role pattern [GP]. In fact, individuals of the class Person (subclass
of agentorole:Agent) can be related by zs:playAs (sub property of 0b-
jectrole:hasRole) or to individuals of WhitePlayer or to individuals of
BlackPlayer (sublcasses of objectrole:Role).

The information about the date in which a match occurs, is repre-
sented as an instances of the class timeinterval: Timeinterval from the
time interval content pattern [Preb].

In a game, the moves are represented as instances of the class
zc:ChessMovelnGame that is formally a particular move (individual of
the class zc:ChessMove) occuring in a specic game. So a xzc:ChessMove
individual is any possible move of a chess piece in the chessboard. The
knowledge representation schema for moves is obtained by specializing
the ontology design pattern called object role [Prea].

What it is needed now is the description of the mapping between Java
objects, obtained by parsing PGN or LaTex document, and the OWL
vocabulary. The mapping vocabulary will be not analyzed because it
is very trivial as it is just a collection of triples asserting <Java object>
map:mapsTo <xc vocabulary class>.

The Semion reengineering module was tested both on a PGN file and
on a LaTex documents and the resutls were two RDF datasets expres-
sed by using the vocabulary that has just been described.

SEMION: EVALUATION

CHAPTER 5.

80

Bupgsex @)

aunydenyox

WEUOTSEY:N
OSSIY DI | J0IUSLULLO DS [

JUILUILLIO TN

IO

|3aYyIuaLWIWo

IyIUSLLILLIO D

A0
3y

[T T]BuuIs : uonelopsEYDX I FEepETES

= ageigx @ |

SAOJAISSIYTI0K 1 400] 510k [
SAOJAISSIYTI0N § JOLU0I451Dx

s0gpieogssayox @

paojssay Do : J020314510% |

[T0] : 33eaueIs RARIU[sRY BAIRIUIRLIG
[T"0] : 21eQPUI|RARIU[ELY: 2AIRIUIRLUY
JJE(]|EAIRIUSEL:[EAIRUIRLLIY

JLEO)DN | O BAIRIURLUIL] 510X)

_ 2031¢553Y 30K

ILIBDIN | JOIA0|NSSIYDSI0X I
(U150 4PIROGSSIYDIDK) UDIPSO JPIBOGSSIYT0X 0] SEL:x [l

Illl.ll.v Buugs : uonenioUngseLy:x)|

3031 55IY 0K 1 3331 g5eLyx [

(U150 4PIROgSSIYi0X) UDINSO JPIBOGSSIYDI0X | LWoI4sey:ox |-
SWEOURAD|ASSIY DX § 3|oysey:a|oiinalgo

JUSLILLIOTIX | SA0ARIYAIRYYIUR WO)SeY:x [l
JUSLILLIOTIX § 3A0JAIR|JIRYYIUR WO SEY: D [l

oy T

BAISIUIBLLI

|BAIRURE

o s

H0RA0SSYDS510X]
14BNy A ¢ IR AR Ry SEL X)
|eAda3URLI | SeL0xX)

(Auyiox) Ao Aposey: WY
FWEOURADIASSIY DN | 2A0A 554 D5ey0X]
12£e|goB|giK | 13AE| 2R gsey:oX I

JLEDIK

JUSLULLIOTIIX § JUSLILIO)SELIX .TJI[IIIIi

(RA0JSSIY D) IA0|NSSIYDIDX 1 Jo3joysiE|oipalgo

Iwen:x : Joiade|dyoe)gstox)

SWBOURAC|ASSIY 0K

ILIBDIN | IUBSELIDX !_

12Ae|gqae|goK @

diysuoidweyyox

3wenx : yosake|JaUysox
uosiagiox : Agpade)dsiox M
2he|gRuymx @

Diagram of the OWL vocabulary for chess games.

Figure 5.4

5.2. TESTING SEMION ON OTHER DATA SOURCES 81

The chess dataset was published at
http: /wwww.ontologydesignpatterns.org/ont/chess/chess.rdf.

5.2.3 Refactoring the chess dataset

After having tranlated the PGN and the chess LaTex original sources,
it was tested the refactoring module on the resulting datasets.

To this purpose they were planned two different refactoring approaches
in order to align the dataset to:

e LMM, FormalSemantics and OWL as it was explained in sec-
tion 5.1.3

e DBpedia and GeoNames that give to Semion a real Linked Data
case study.

The alignment to LMM organizes the dataset in a semiotic-cognitive
way, as it was explained that the LMM core is an OWL implemen-
tation of the semiotic triangle of Peirce [Pei31]. As Semion performs
alignments reasoning on sets of rules expressed in SemionRule, that is
the syntax to succinctly represent SWRL [HPSB104] rules defined in
section 4.6, they were defined rules like the following:

1. zc:ChessMove(?z) — LMM_L1:Meaning(?x)
This rule infers that any individuals of the class xzc:ChessMove,
that represents any possible move in the chessboard of any pos-
sible chess piece, is also an individual of the class LMM_L1:Meaning,
that represents concepts in the semiotic triangle (see figure 3.2).

2. zc:ChessMovelnGame(?x) — LMM_L1:Reference(?z)
This rule infers that any individuals of the class zc:ChessMovelnGame,
that represents the specific move in a game, is a LMM_L1:Reference,
that represents concrete objects in the semiotic triangle.

3. we:Comment(?r) — LMM_L1:Ezpression(?x)
This rule infers that any individuals of the class zc:Comment,

82

CHAPTER 5. SEMION: EVALUATION

that represents the comment related to a specific move in a
game, is a LMM_L1:Fxpression, that represents natural language
terms, symbols in formal languages, icons, and whatever can be
used as a vehicle for communication.

. zc:ChessMove(?z) .

zc:ChessMovelnGame(?y) .

objectrole:hasRole(?z, ?y)

— LMM_L1:interprets(?z, ?y)

This rule infers that the property objectRole:hasRole occurring
between two individuals of the classes xs:ChessMove and
xs:ChessMovelnGame as to be intended as LMM_L1:interprets,
that is the property that relates concepts to concrete ojbects.

. zc:ChessMovelnGame(?x) .

zc:Comment(?y) .

ze:hasComment(?z, ?y)

— LMM_L1:denotes(?y, ?z)

This rule infers that the property zc:hasComment, that asso-
ciates a comment to a specific move in a game, has to be intended
as a denotation between an expression and a concrete object.

The refactoring rules defined to align the dataset to FormalSemantics,
in order to express the dataset itself in the language that describes
the formal semantics, and to OWL, that formally describes a logic
language, were the same chosen for the previous test with relational
databases.

The second refactoring test involved existent Linked Data source that
can be seen in the bouble diagram in figure 1.5 and they are DBpedia
and GeoNames.

For this reason rules like the following were written:

1. ze:Clity(?x) .

same(?z, games:NewYork)

— same(?z, geonames:5128581)

that infers that the individual games:New York of the class xc:City
in our dataset is the same individual in geonames:5128581 that
is the resource associated to the city of New York.

5.2. TESTING SEMION ON OTHER DATA SOURCES 83

2. zc:Person(?z) .
same(?z, games:Kasarov)
— same(?z, dbpedia:Kasparov)
that infers that the person Kasparov in our dataset is the same
Kasparov in DBpedia.

3. ze:Game(?x) — rdfs:seeAlso(?x, dbpedia:Chess-match)
that allows a refrence to the DBpedia resource that contains
information about chess matchs from individuals of zc:Chess.

4. same(xzc: WhiteBishop, ?x) — rdfs:seeAlso(?x, dbpedia: Bishop_(chess))

that, as before, allows a reference to the DBpedia resource that
contains information about the bishop chess piece from the in-
dividul zc: WhiteBishop in the dataset.

When published in the Linked Data, the dataset is available to be
queried via SPARQL and an user or an agent can request informa-
tion, not only limited about specific games and moves, but also about
the place in which the event took place (e.g. the city of New York
in GeoNames) or detailed information about the two players of the
game (e.g. Kasparov and Karpov in DBpedia) or, again, information
regarding chess pieces (e.g. the bishop in DBpedia).

Considering a particular scenario in which other datasets containing
information about any domain regarding chess, such as chess World
Championships, famous chess players or chess tactics, were published
in the Linked Data, it could be possible and simple with Semion to
connect all this datasets as they were a whole knowledge base.

The refactored ontology was published at
http: /wwww.ontologydesignpatterns.org/ont/chess/chess-ref.owl.

84

CHAPTER 5. SEMION: EVALUATION

Chapter 6

Conclusion and future work

In this thesis work it was studied, designed and implemented a cus-
tomized method for transforming relational databases into Linked
Data [BHBL09].

Though the subject chosen as case study was relational databases, this
method has to be intended applicable to any kind of structured data
source. In fact, it bases the reengineering process on the description
of the data source schema as an RDF/OWL model made following a
well defined vocabulary.

This feature is not completely new, but it was suggested from some
tools like D2R [BCO7] that uses a mapping driven approach in transla-
ting relational databases into RDF',| in which the whole reengineering
is driven by the definition, in formal terms of a declarative language
(D2RQ for the D2R tool), of the mapping between the physical data
source and RDF. But this approach limits the description only on the
mapping, while we are interested also about the schema of the data.
Furthermore these existing mapping driven approach tools makes a
lot of assumption on the RDF dataset that can be good for general
and theoretical situations, but may fail in many real cases in which
databases are not well projected. In fact they general work mapping:

e a database table to a RDFS Class

e a column name of a database table to a RDF property

85

86 CHAPTER 6. CONCLUSION AND FUTURE WORK

e a database table record to a RDF node

e a cell of a RDB table to a value

As introduced this approach may be not completely useful as for most
of the existing databases. Many entities, that can be potentially RDF'S
Class, are not in the form of table records but some implicit forms,
e.g. as for a table describing information about persons, it includes a
column called “birth place” which describes the city where the person
was born and each value in this column is a name of some city and it
should refer to a concerned record within the table Location, but it is
only a data with type “varchar”. Now if we apply the general map-
ping, we obtain that a person, represented by an RDF resource, has
some relation that says where he was born in some city, but this city
is only a literal and not another resource that semantically identifies
the city.

In terms of Linked Data this is a crucial point, as if we have a lot of
datasets in the Web of Data but they are not connected each other,
in some way we fail our objective.

For this reason in Semion the reengineering is driven by a mapping
that says to the software what is a physical object of the database in
the domain specific vocabulary we defined during this work, namely
semionDB.owl. As result a database table will be an instance of the
class Table of this vocabulary, a column will be a Field and a record
a Record and no further assumption is made in terms of RDF Schema
or OWL.

Publishing a dataset that uses as vocabulary the representation of the
database schema is really the aim we want to reach, because behind
tables, columns and records are hidden a lot of possible concepts that
they do not necessary mean just “table”, “column” or “record”. To
solve this problem it was studied a methodology in order to align reen-
gineered datasets to any possible Linked Data vocabulary (e.g. SKOS,
FOAF) or to any possible ontology design pattern. In this field was
analyzed the alignment to LMM [PGGOS8], a Linguistic Meta-Model
that provides a semiotic-cognitive representation of linguistic know-
ledge and grounds it in a formal semantics. The most important fea-
ture of LMM is its ability to support the representation of different
knowledge sources developed according to different underlying semio-
tic theories. This is possible because most knowledge representation

87

schemata, either formal or informal, can be put into the context of so-
called semiotic triangle [Pei31], that is used to discuss the differences
between objects, concepts and symbols.

Of course LMM is only a possible alignment choice and one may want
to align an already LMM aligned dataset to another ontology in order
to reorganize LMM itself within another vocabulary.

The most important thing in the method we defined is that as much
as possible anything is customized.

The final result of the thesis work is Semion a graphical tool composed
by two main independent modules:

e the reengineering module for relational databases translation
into RDF datasets

e the refactoring module for ontology alignment

The project has not to be considered accomplished, but ongoing work
because Semion wants to be a tool able to manage heterogeneous data
sources and not only relational databases. The aim is to project and
implement a tool that is helpful to translate into Linked Data any
kind of legacy content source and following this way it is part of the
Interactive Knowledge Stack (IKS) project [IP], that is an Integrating
Project part-funded by the European Commission. It started in Ja-
nuary 2009 and will provide an open source technology platform for
semantically enhanced content management systems.

Another issue that will be analyzed is the possibility to use the Rule
Interchange Format (RIF) [dB07] instead of SWRL [HPSB*04], that is
currently used, to represent alignment rules in the refactoring module.
At the state of the art RIF is a W3C working draft and is a format for
interchanging rules over the Web. Rules that are exchanged using RIF
may refer to external data sources and may be based on data models
that are represented using a language different from RIF'.

The tool will be extended with a package manager that enables users
to add plug-ins developed separately from Semion but designed to
work in cooperation with it. This feature will be useful, for instance,
in order to manage different data soures as Semion plug-ins.

88 CHAPTER 6. CONCLUSION AND FUTURE WORK

Appendix A

Engineering detalils

The three main components of the Semion tool, namely the graphical
user interface, the reengineering module and the refactoring module,
were built as three different java projects. Specifically, the reenginee-
ring and the refactoring modules were implemented as two comple-
tely independent components in order to possibly use them separately,
while the graphical user interface, as it plays the role of being a bridge
to user for the two former modules, imports both projects.

Figure A.1 shows the diagram about the project depedencies existing
among the three java projects that are the core of the Semion tool.

mit.cnr.istc.semion |

T T

I I

I I
AV k'

|Bit.cnr.istc.semion.reengineer | u it.chr.istc.semion.refactorer

Figure A.1: Projects dependencies in the Semion tool.

Expanding each project in the diagram in figure A.1, it is possible
to see that, as figure A.2 shows, the it.cnr.istc.semion, that contains
classes and methods related to the graphical user interface, is compoed
by the following packages:

89

90 APPENDIX A. ENGINEERING DETAILS

e it.cnr.istc.semion, that contains tha basic classes to build the
user interface

e it.cnr.istc.semion.workspace, that contains classes in order to
manage the user workspace during the working sessions

e it.cnr.istc.semion.treeNode, that contains interfaces, abstract classes
and classes that represent Java objects for the tree viewer of the
Project Explorer (see figure 4.10)

1 it.cnr.istc.semion.gui.jface.wizard.page

i it.cnristc.semion.gui.treeNode

)
T <Call, Import, Instartistes

eDetives)

<+Call, Imparts

«hccess, Call, Imparts

ahooess, Calls 2 it.cnr.istc.semion.gui.jface.wizard

e |

f# it.cnr.istc.semion.workspace

L

«Cal, Import, fstantistes
shooesss sl

ahicers, Cals

«Calls

«ACCETTE

«Cal |
f# it.cor.istc.semion.gui.itemData

3 it.cnr.ste.semion.gui.main I
)

«Calls

slmport, Instantiates

it.cnr.ste.semion.gui.cTabltem, |, .

«Calls

<Gl pipertojnstantistes

f# it.cnr.istc.semion.owl.hierarchy |

Figure A.2: Projects dependencies in the Semion tool.

e it.cnr.istc.semion.cTabltem, that contains interfaces, abstract
classes and classes that represent Java object for the tab ele-
mentes of the tab viewer(see figure 4.10)

91

e it.cnr.istc.semion.ltemData, that contains classes for represen-
ting the inner data associated to tab items

e it.cnr.istc.semion.hierarchy, that contains some utility classes
that ensure to infer RDF/OWL classes and properties hierar-
chies

e it.cnr.istc.semion.wizard and it.cnr.istc.semion.wizardPage, that
allows to Semion to display wizard menus in order to perform
action like adding a new transformation from a database or crea-
ting a new project

The project it.cnr.istc.semion.reengineer has the following packages,
as figure A.3 shows:

s «Cal, Instartiste, Ingort: R, . . 1 shoresy @i . a q T

nnnnnnnnnnnnn

Figure A.3: Package dependencies in the it.cnr.istc.semion.reengineer
project.

e it.cnr.istc.semion.reengineer, that is the core package of the pro-
ject and accesses and calls all the other packages

e it.cnr.istc.semion.reengineer.dbs, that contains a class that al-
lows to manage the semionDB ontology via the Jena framework

92 APPENDIX A. ENGINEERING DETAILS

e it.cnr.istc.semion.reengineer.objectrole, that contains a class that
allows to manage the object role content pattern via the Jena
framework

e it.cnr.istc.semion.reengineer.setting, that contains classes and
methods in order to connect and query a relational database
via JDBC [FEBO3]

e it.cnr.istc.semion.reengineer.workspace, that contains classes in
order to manage the user workspace during the working sessions

Finally the project it.cnr.istc.semion.refactorer is composed by the
packages shown in figure A.4, and thery are:

f2 it.cnr.istc.semion.refactorer.swrl |

]\ «ACcessy

8 it.cnr.istc.semion.refactorer.swrl.atom [# it.cnr.istc. ion.refactorer i 2 it.cnr.istc, ion.refactorer.swrl.rule

Figure A.4: Package dependencies in the it.cnr.istc.semion.refactor
project.

it.cnr.istc.semion.refactorer, that is the core package of the pro-
ject and accesses and calls all the other packages. In this package
is performed the reasoning on sets of rules for the alignments

e it.cnr.istc.semion.refactorer.swrl, that contains classes and me-
thods that allow to tranlate from SWRL [HPSB*04] to Semion-
Rule and vice versa

e it.cnr.istc.semion.refactorer.swrl.atom, that contains classes and
methods that implement the SWRL atoms in SemionRule

e it.cnr.istc.semion.refactorer.swrl.tule, that contains classes and
methods that implement the SWRL rules in SemionRule

The three projects are composed by 11728 lines of code.

Bibliography

[AHOS]

[BCO7]

[BCGO7]

[Bec04]

[BG04a]

[BGO4b)]

Grigoris Antoniou and Frank van Harmelen. A Semantic
Web Primer. The MIT Press, second edition, 2008.

Christian Bizer and Richard Cyganiak. D2RQ - Lessons
Learned. W3C' Workshop on RDF Access to Relational
Databases, October 2007.

Christian Bizer, Richard Cyganiak, and Tobias Gauss.
The RDF Book Mashup: From Web APIs to a Web of
Data. In Sren Auer, Christian Bizer, Tom Heath, and
Gunnar Aastrand Grimnes, editors, SFSW, volume 248
of CEUR Workshop Proceedings. CEUR-WS.org, 2007.

Dave Beckett. RDF/XML Syntax Specification (Re-
vised). W3C recommendation, W3C, February
2004. http://www.w3.org/TR/2004/REC-rdf-syntax-
grammar-20040210/.

Dave Beckett and Jan Grant. RDF Test Cases.
W3C recommendation, W3C, February 2004.
http://www.w3.org/TR/2004/REC-rdf-testcases-
20040210/.

Dan Brickley and Ramanathan V. Guha. RDF
Vocabulary Description Language 1.0: RDF
Schema. W3C recommendation, W3C, February
2004. http://www.w3.org/TR/2004/REC-rdf-schema-
20040210/.

93

94

[BHBLO9]

[BLFMO5]

[BLHLO1]

[BS01]

[dB07]

[FEBO3]

[GGM*02]

(GISBO3]

[HMOA]

BIBLIOGRAPHY

Christian Bizer, Tom Heath, and Tim Berners-Lee. Lin-
ked Data - The Story So Far. Int. J. Semantic Web Inf.
Syst., 5(3):1-22, 20009.

Tim Berners-Lee, Roy Fielding, and Larry Ma-
sinter. RFC 3986: Uniform Resource Identifier
(URI): Generic Syntax. Technical report, W3C/MIT,
http://www.ietf.org/rfc/rfc3986.txt, January 2005.

Tim Berners-Lee, James A. Hendler, and Ora Lassila.
The semantic web. Scientific American, 284(5):34-43,
2001.

Franz Baader and Ulrike Sattler. An Overview of Tableau
Algorithms for Description Logics. Studia Logica, 69:5—
40, 2001.

Jos de Bruijn. RIF RDF and OWL Com-
patibility. W3C working draft, W3C, October
2007. http://www.w3.org/ TR /2007 /WD-rif-rdf-owl-
20071030.

Maydene Fisher, Jon Ellis, and Jonathan Bruce. JDBC
API Tutorial and Reference. Addison-Wesley, Boston,
MA, 2003.

Aldo Gangemi, Nicola Guarino, Claudio Masolo, Ales-
sandro Oltramari, and Luc Schneider. Sweetening On-
tologies with DOLCE. In EKAW °02: Proceedings of
the 13th International Conference on Knowledge Engi-
neering and Knowledge Management. Ontologies and the
Semantic Web, volume 2473 of Lecture Notes in Compu-
ter Science, pages 166—181, London, UK, October 2002.
Springer-Verlag.

James Gosling, Bill Joy, Guy Steele, and Gilad Bra-
cha. Java(TM) Language Specification, The (3rd Edi-
tion) (Java (Addison-Wesley)). Addison-Wesley Profes-
sional, 2005.

Frank van Harmelen and Deborah L. McGuin-
ness. OWL Web Ontology Language Overview.

BIBLIOGRAPHY 95

[HPSB*04]

[KFNMO04]

[Lam86]

[Mil95]

[Pei31]

[PGGOS]

[Pre04]

[PSO08]

W3C recommendation, W3C, February 2004.
http://www.w3.org/TR/2004/REC-owl-features-
20040210/.

[an Horrocks, Peter F. Patel-Schneider, Harold Boley,
Said Tabet, Benjamin Grosof, and Mike Dean. SWRL:
A Semantic Web Rule Language Combining OWL
and RuleML. W3C member submission, W3C, May
2004. http://www.w3.org/Submission/2004/SUBM-
SWRL-20040521/.

Holger Knublauch, Ray W. Fergerson, Natalya Fridman
Noy, and Mark A. Musen. The Protégé OWL Plugin: An
Open Development Environment for Semantic Web Ap-
plications. In International Semantic Web Conference,
pages 229-243, 2004.

L. Lamport. LaTeX: A Document Preparation System.
Addison-Wesley, 1986.

George A. Miller. WordNet: A lexical database for En-
glish. Communications of the ACM, 38(1):39-41, 1995.

Charles S. Peirce. Collected Papers of Charles Sanders
Peirce. Harvard University Press, 1931.

Davide Picca, Alfio M. Gliozzo, and Aldo Gangemi.
LMM: an OWL-DL MetaModel to Represent He-
terogeneous Lexical Knowledge. In Proceedings of
the Sixth International Language Resources and FEwva-
luation (LREC’08), Marrakech, Morocco, May 2008.
European Language Resources Association (ELRA).
http://www.lrec-conf.org/proceedings/lrec2008/.

Roger S. Pressman. Software Engineering:
A Practitioner’s Approach. McGraw-Hill
Science/Engineering/Math, sixth edition, April 2004.

Eric Prud’hommeaux and Andy Seaborne. SPARQL
Query Language for RDF. W3C recommendation, W3C,
January 2008. http://www.w3.org/TR/2008/REC-rdf-
sparql-query-20080115/.

96

[RLHJ99]

[RNO3]

[SMYM™*08]

[vAGS06]

[WA02]

[WF04]

BIBLIOGRAPHY

Dave Raggett, Arnaud Le Hors, and Tan Jacobs. HTML
4.01 specification. W3C recommendation, W3C, Decem-
ber 1999. http://www.w3.org/TR/1999/REC-html401-
19991224.

Stuart J. Russell and Peter Norvig. Artificial Intelli-
gence: A Modern Approach. Pearson Education, 2003.

C. Michael Sperberg-McQueen, Francois Yergeau, Eve
Maler, Jean Paoli, and Tim Bray. Extensible Mar-
kup Language (XML) 1.0 (Fifth Edition). W3C pro-
posed edited recommendation, W3C, February 2008.
http://www.w3.org/TR /2008 /PER-xml-20080205.

Mark van Assem, Aldo Gangemi, and Guus
Schreiber. RDF/OWL Representation of Word-
Net. W3C working draft, W3C, April 2006.
http://www.w3.org/2001/sw/BestPractices/ WNET /wn-
conversion-20062304/.

Michael Widenius and Davis Axmark. Mysql Reference
Manual. O’Reilly & Associates, Inc., Sebastopol, CA,
USA, 2002.

Priscilla Walmsley and David C. Fallside.
XML Schema Part O: Primer Second Edition.
W3C recommendation, W3C, October 2004.
http://www.w3.org/TR/2004/REC-xmlschema-0-
20041028/.

Webography

[BLSY]

[BLOS]

[BLO6)

[BM]

[Ecla]

[Eclb]

[GP]

[IBM]

Tim Berners-Lee. Information Management: A Proposal.
http://www.w3c.org/History/1989/proposal.html, 1989.
Visited on February 2010.

Tim Berners-Lee. Notation 3. http://www.w3.org/
DesignIssues/Notation3, 1998. Visited on February 2010.

Tim Berners-Lee. Linked Data. Worldwidewebdesignissues,
July 2006. Visited on January 2010.

Dan Brickley and Libby Miller. The Friend Of A Friend
(FOAF') Vocabulary Specification. http://xmlns. com/foaf/
spec/. Visited on January 2010.

Eclipse. JFace. http://wiki.eclipse.org/index.php/
JFace, Visited on January 2010.

Eclipse. SWT: The Standard Widget Toolkit. http://www.
eclipse.org/swt/, Visited on January 2010.

Aldo Gangemi and Valentina Presutti. Agent Role Content
Pattern. http://ontologydesignpatterns.org/cp/owl/
agentrole.owl. Visited on February 2010.

IBM. Structured Query Language (SQL). http://publib.
boulder.ibm.com/infocenter/db2luw/v9/index. jsp?
topic=/com.ibm.db2.udb.admin.doc/doc/c0004100.htm.
Visited on February 2010.

97

98

[IP]

[Prea]

[Preb]

[W3C]

[Wika]

[Wikb)]

[Wikc]

[Wikd]

WEBOGRAPHY

IKS-Project. Interactive knowledge stack for small to medium
cms/kms providers. http://www.iks-project.eu/. Visited
on February 2010.

Valentina Presutti. Object Role Content Pattern. http:
//ontologydesignpatterns.org/cp/owl/objectrole.owl.
Visited on February 2010.

Valentina Presutti. Time Interval Content Pattern. http://
ontologydesignpatterns.org/cp/owl/timeinterval.owl.
Visited on February 2010.

RuleML. The Rule Markup Initiative. http://ruleml.org/.
Visited on January 2010.

Sourceforge. Jena A Semantic Web Framework for Java.
http://jena.sourceforge.net/. Visited on January 2010.

TopQuadrant. TopBraid Composer. http://www.
topbraidcomposer.com/index.html. Visited on January
2010.

W3C. Linking Open Data. http://esw.w3.org/
topic/SweolG/TaskForces/CommunityProjects/
LinkingOpenData. Visited on February 2010.

Wikipedia. Comma-separated values. http://en.wikipedia.
org/wiki/Comma-separated_values. Visited on February
2010.

Wikipedia. Modelviewcontroller. http://en.wikipedia.
org/wiki/Model-View-Controller. Visited on February
2010.

Wikipedia. Portable game notation. http://en.wikipedia.
org/wiki/Portable_Game_Notation. Visited on February
2010.

Wikipedia. Semantic Web Stack. http://en.wikipedia.
org/wiki/Semantic_Web_Stack. Visited on February 2010.

