
Case study
from the book: 

Designing software architectures by Cervantes and Kazman

Big Data System



Outline

• Business Case
• Step 1: Review Inputs
• The Design Process
– Iteration 1
– Iteration 2
– Iteration 3
– Iteration 4

• Summary



Business Case
• Internet company that provides popular content and 

online services to millions of web users 
– the company collects and analyzes massive logs of data 

generated from its infrastructure (e.g., application and 
server logs, system metrics) 

• this is called log management
• the IT department realizes that existing systems can 

not process the log data volume and velocity 
• requests for a new system are coming from other 

stakeholders, who would like to leverage the kinds of 
data that can be collected from multiple data sources



Marketecture Diagram



Step 1: Review Inputs

• Design Purpose
– This is a greenfield system from a mature domain. 

The purpose is to produce a sufficiently detailed 
design to support the construction of the system.



Use Cases
Use Case Description 

UC-1: Monitor online 
services 

On-duty operations staff can monitor the current state of 
services and IT infrastructure (such as web server load, 
user activities, and errors) through a real-time operational 
dashboard, which enables them to quickly react to issues. 

UC-2: Troubleshoot 
online service issues 

Operations, support engineers, and developers can do 
troubleshooting and root-cause analysis on the latest 
collected logs by searching log patterns and filtering log 
messages. 

UC-3: Provide 
management reports 

Corporate users, such as IT and product managers, can see 
historical information through predefined (static) reports in
a corporate BI (business intelligence) tool, such as those 
showing system load over time, product usage, service 
level agreement (SLA) violations, and quality of releases. 



Use Cases
Use Case Description 

UC-4: Support data 

analytics 

Data scientists and analysts can do ad hoc data analysis 

through SQL-like queries to find specific data patterns and 

correlations to improve infrastructure capacity planning 

and customer satisfaction. 

UC-5: Anomaly 

detection 

The operations team should be notified 24/7 about any 

unusual behavior of the system. To support this 

notification plan, the system shall implement real-time 

anomaly detection and alerting (future requirement). 

UC-6: Provide security 

reports 

Security analysts should be provided with the ability to 

investigate potential security and compliance issues by 

exploring audit log entries that include destination and 

source addresses, a time stamp, and user login information 

(future requirement). 



Marketecture + Use Cases



Quality Attribute Scenarios
ID Quality

Attribute
Scenario Associated 

Use Case
QA-1 Performance The system shall collect up to 15,000 events/ 

second from approximately 300 web servers. 
UC-1, 2, 5 

QA-2 Performance The system shall automatically refresh the 
real-time monitoring dashboard for on-duty 
operations staff with < 1 min latency. 

UC-1

QA-3 Performance The system shall provide real-time search 
queries for emergency troubleshooting with 
< 10 seconds query execution time, for the 
last 2 weeks of data. 

UC-2

QA-4 Performance The system shall provide near-real-time 
static reports with per-minute aggregation 
for business users with < 15 min latency, < 5 
seconds report load. 

UC-3, 6 



Quality Attribute Scenarios
ID Quality 

Attribute
Scenario Associated 

Use Case

QA-5 Performance The system shall provide ad hoc (i.e., non-
predefined) SQL-like human-time queries for 
raw and aggregated historical data, with < 2 
minutes query execution time. Results should 
be available for query in < 1 hour. 

UC-4

QA-6 Scalability The system shall store raw data for the last 2 
weeks available for emergency troubleshoot-
ing (via full-text search through logs). 

UC-2

QA-7 Scalability The system shall store raw data for the last 60 
days (approximately 1 TB of raw data per day, 
approximately 60 TB in total). 

UC-4



Quality Attribute Scenarios
ID Quality 

Attribute
Scenario Associated 

Use Case

QA-8 Scalability The system shall store per-minute aggregated 
data for 1 year (approximately 40 TB) and per-
hour aggregated data for 10 years 
(approximately 50 TB). 

UC-3, 4, 6

QA-9 Extensibility The system shall support adding new data 
sources by just updating a configuration, with 
no interruption of ongoing data collection. 

UC-1, 2, 5

QA-10 Availability The system shall continue operating with no 
downtime if any single node or component 
fails. 

All

QA-11 Deployability The system deployment procedure shall be 
fully automated and support a number of 
environments: development, test, and 
production 

All



Constraints
ID Constraint

CON-1 The system shall be composed primarily of open source 
technologies (for cost reasons). For those components where the 
value/cost of using proprietary technology is much higher, 
proprietary technology may be used. 

CON-2 The system shall use the corporate BI tool with a SQL interface for 
static reports (e.g., MicroStrategy, QlikView, Tableau). 

CON-3 The system shall support two specific deployment environments: 
private cloud (with VMware vSphere Hypervisor) and public cloud 
(Amazon Web Services). Architecture and technology decisions 
should be made to keep deployment vendor as agnostic as 
possible. 



Architectural Concerns

ID Concern

CRN-1 CRN-1 Establishing an initial overall structure as this is a greenfield 
system. 

CRN-2 Leverage the team’s knowledge of the Apache Big Data ecosystem. 



Iteration 1



Iteration 1: Step 2
• Iteration goal: achieve the architectural concern CRN-1 of 

establishing an overall system structure
• In addition the architect must keep in mind all of the 

drivers and, in particular, constraints and quality attributes: 
– CON-1: Leverage open source technologies whenever applicable
– CON-2: Use corporate BI tool with SQL interface for static 

reports 
– CON-3: Two deployment environments: private and public 

clouds
– QA-1, 2, 3, 4, 5: Performance
– QA-6, 7, 8: Scalability
– QA-9: Extensibility
– QA-10: Availability
– QA-11: Deployability 



Iteration 1: Steps 3 & 4

• Elements of the system to refine (step 3): The 
entire system as this is greenfield 
development

• Selection of design concepts (step 4):
– Build the application as an instance of the Lambda 

(reference) architecture 
– Use fault tolerance and no single point of failure 

principle for all elements in the system 



Big Data Analytics Reference 
Architectures - Trade-offs

Data Refinery

Extended
Relational

Pure 
Non-relational

Traditional
Relational

Lambda 
Architecture

Sc
al

ab
ili

ty

Ad-hoc analysis

Legend

Unstructured data processing 
capabilities (the larger the better)

Real-time analysis capabilities
(more saturated the better)



Iteration 1: Step 5

• Step 5: Instantiate Architectural Elements, 
Allocate Responsibilities, and Define Interfaces

• Decisions
– Split the Query and Reporting element into two 

sub-elements associated with the drivers 
– Split the Precomputing and Batch Views elements 

into sub-elements associated with Ad Hoc and 
Static Views 

– Change semantics and name of the Master 
Dataset to Raw Data Storage 



Iteration 1: Step 6
• Step 6: Sketch Views and Record Design Decisions



Iteration 1: Step 6
Element Responsibility

Data Sources Web servers that generate logs and system metrics (e.g., Apache access and error 
log, Linux sysstat). 

Data Stream This element collects data from all data sources in real-time and dispatches it to 
both the Batch Layer and the Speed Layer for processing. 

Batch Layer This layer is responsible for storing raw data and precomputing the batch views to 
be stored in the Serving Layer. 

Serving Layer This layer exposes the batch views in a data store (with no random writes, but 
batch updates and random reads), so that they can be queried with low latency. 

Speed Layer This layer processes and provides access to recent data, which is not available yet 
in the serving layer due to the high latency of batch processing, through a set of 
real-time views. 

Raw Data Storage This element is a part of the batch layer and is responsible for storing raw data 
(immutable, append only) for a specified period of time (QA-7). 

Ad Hoc Views 
Precomputing

This element is a part of the Batch Layer and is responsible for precomputing the 
Ad Hoc Batch Views. The precomputing represents batch operations over raw data 
that transform it to a state suitable for fast human-time querying. 



Iteration 1: Step 6

Element Responsibility

Static Views 

Precomputing

This element is a part of the Batch Layer and is responsible for precomputing the 

Static Batch Views. The precomputing represents batch operations over raw data 

that transform it to a state suitable for fast human-time querying. 

Ad Hoc Batch 

Views

This element is a part of the Serving Layer and contains precalculated and 

aggregated data optimized for ad hoc low- latency queries (QA-5) executed by data 

scientists/analysts. 

Static Batch 

Views

This element is a part of the Serving Layer and contains precalculated and 

aggregated data optimized for predefined low-latency queries (QA-4) generated by a 

corporate BI tool. 

Real-Time 

Views

This element is a part of the Speed Layer and contains indexed logs optimized for ad 

hoc, low-latency search queries (QA-3) executed by operations and engineering staff. 

Corporate BI 

Tool

This business intelligence tool is licensed to be used across different departments. 

The tool supports a SQL interface (such as ODBC or JDBC) and can be connected to 

multiple data sources, including this system (UC-3, UC-4, CON-2). 

Dashboard/

Visualization 

Tool

The operations team uses this real-time operational dashboard to monitor online 

services, search for important messages in logs, and quickly react to potential issues 

(UC-1, UC-2). 



Iteration 1: Step 7

Not 
Addressed

Partially 
Addressed

Completely 
Addressed

Design decisions made during the iteration

UC-1 Use Lambda architecture to provide access to real-time data. No 

detailed decisions of which dashboard technology to use have been 

made. 

UC-2 Use Lambda architecture to provide access to real-time data. No 

detailed decisions of which search technology to use have been made. 

UC-3 Use Lambda architecture to provide access to historical data. No 

detailed decisions of which storage and query technologies to use have 

been made.

UC-4 Use Lambda architecture to provide access to historical data. No 

detailed decisions of which storage and query technologies to use have 

been made.

UC-5 This use case has been omitted in this iteration as nonprimary, although 

the Lambda architecture supports it and we will address it in 

subsequent iterations.

UC-6 This use case has been omitted in this iteration as nonprimary, although 

from an architectural standpoint it is similar to UC-3.



Iteration 1: Step 7
Not 
Addressed

Partially 
Addressed

Completely 
Addressed

Design decisions made during the iteration

QA-1 Potential data sources for the Data Stream element have been 
identified. No detailed decisions of which technologies to use for the 
data stream element have been made.

QA-3 The Real-Time Views element has been identified. No detailed decisions 
of which storage and query technology to use have been made.

QA-4 The Static Batch Views element has been identified and its 
responsibilities have been established. No detailed decisions of which 
storage technology to use have been made.

QA-5 The Ad Hoc Batch Views element has been identified and its 
responsibilities have been established. No detailed decisions of which 
storage and query technology to use have been made.

QA-6 The Real-Time Views element’s responsibilities have been established. 
No detailed decisions of which storage and query technology to use 
have been made.

QA-7 The Raw Data Storage element has been identified and its 
responsibilities have been established. No detailed decisions of which 
storage technology to use have been made.



Iteration 1: Step 7
Not 
Addressed

Partially 
Addressed

Completely 
Addressed

Design decisions made during the iteration

QA-8 The Ad Hoc and Static Batch Views elements have been identified and their 
responsibilities have been established. No detailed decisions of which 
storage technologies to use have been made.

QA-10 It has been decided that all technologies chosen to implement the system 
elements support QA-10 by providing fault-tolerance configuration and no 
single point of failure.

CON-2 The Corporate BI Tool element has been identified. No detailed decisions 
on how this constraint will be met have been made.

CRN-1 An overall logical structure of the system has been established but the 
physical structure still needs to be defined.

CRN-2 No relevant decisions made.



Iteration 2



Iteration 2: Step 2

• Iteration goal:
– The goal of this iteration is to address CRN-2 

(leverage the team’s knowledge of the Apache Big 
Data ecosystem) by selecting technologies.

– Need to particularly keep in mind CON-1 (favor 
open source technologies). 



Iteration 2: Steps 3 & 4

• Elements of the system to refine (step 3): The 
Lambda architecture was decomposed into 
elements that facilitate the selection of 
technology families and associated specific 
technologies: Data Stream, Raw Data Storage, Ad 
Hoc and Static Views Precomputing, Ad Hoc and 
Static Batch Views, Real-Time Views, and 
Dashboard/Visualization Tool. 

• Selection of design concepts (step 4): Initially, 
technology families are selected and associated 
with the elements to be refined.



Big Data Analytics 
Design Concepts 

Catalog



Iteration 2: Step 5

• Step 5: Instantiate Architectural Elements, Allocate 
Responsibilities, and Define Interfaces

• Decisions
– Use Apache Flume from the Data Collector family for the Data 

Stream element 

– Use HDFS from the Distributed File System family for the Raw 
Data Storage element 

– Use Impala from the Interactive Query Engine family for both 
the Static and Ad Hoc Batch Views elements 

– Use Elasticsearch from the Distributed Search Engine family for 
the Real-Time Views elements. 

– Use Kibana from the Interactive Dashboard family for the 
Dashboard/ Visualization Tool element.

– Use Hive from the Data Processing Framework for the Views 
Precomputing elements



Iteration 2: Step 6

• Step 6: Sketch Views and Record Design Decisions



Iteration 2: Step 6

• Summary of Technology families and specific 
technologies chosen:



Iteration 2: Step 6

• Relationships between elements based on the 
selected technologies: 



Iteration 1: Step 7
Not 
Addressed

Partially 
Addressed

Completely 
Addressed

Design decisions made during the iteration

UC-1 Use Distributed Search Engine (Elastic- search) and Interactive Dashboard
(Kibana) to display real-time monitoring information.
Pending: Model indexes and create UI mockup.

UC-2 Use Distributed Search Engine (Elastic- search) and Interactive Dashboard
(Kibana) for full-text search over recent log data.
Pending: Model indexes and create a proof-of-concept.

UC-3 Use Interactive Query Engine (Impala) for the Batch Views elements.
Pending: Model data and typical reports.

UC-4 Use Interactive Query Engine (Impala) for the Batch Views elements.
Pending: Model data and typical reports.

UC-6 This use case has been omitted in this iteration as nonprimary, although 
it is similar to UC-3 from an architectural standpoint.

QA-1 Use Data Collector (Apache Flume) for the Data Stream element.
Pending: Configuration, proof-of-concept, and performance tests.

QA-2 Use Distributed Search Engine (Elasticsearch) and Interactive Dashboard 
(Kibana).
Pending: Proof-of-concept and performance tests.



Iteration 1: Step 7
Not 
Addressed

Partially 
Addressed

Completely 
Addressed

Design decisions made during the iteration

QA-3 Use Distributed Search Engine (Elasticsearch) and Interactive Dashboard 
(Kibana).
Pending: Proof-of-concept and performance tests.

QA-4 Use Interactive Query Engine (Impala) for the Static Batch Views element.
Pending: Model data, proof-of-concept, and performance tests.

QA-5 Use Interactive Query Engine (Impala) for the Ad Hoc Batch Views 
element. 
Pending: Model data, proof-of-concept, and performance tests.

QA-6 Use Distributed Search Engine (Elasticsearch) for the Real-Time Views 
element.
Pending: Do capacity planning.

QA-7 Use Distributed File System (HDFS) for the Raw Data Storage element. 
Pending: Select file format and do capacity planning.

QA-8 Use Distributed File System (HDFS) as storage for Batch Views.
Pending: Select file format and do capacity planning.

QA-9 Use Data Collector (Apache Flume) for the Data Stream element.
Pending: Configuration and proof-of- concept.



Iteration 1: Step 7
Not 
Addressed

Partially 
Addressed

Completely 
Addressed

Design decisions made during the iteration

QA-10 Use fault tolerance in all system elements.
Pending: Stress test.

QA-11 Use Puppet scripts to automate the deployment process for different 
environments.

CON-1 All the selected technologies are open source.

CON-2 Use Interactive Query Engine (Impala) with ODBC interface.

CON-3 All selected technologies can be deployed to both private cloud 
(VMware) and public cloud (AWS) environments using Puppet scripts.

CRN-1 No relevant decisions made. 

CRN-2 Technologies from the Apache Big Data ecosystem were selected and 
associated with the different elements in the reference architecture.



Iteration 3



Iteration 3: Step 2

• Step 2 - Iteration goal:
– Address concerns associated with the selection of 

Apache Flume, the technology to be used for the 
Data Collector element. 

– The elements in Flume’s structure include:
• The source: consumes events delivered to it by external 

data sources such as web servers
• The channel: stores events received by the source
• The sink: removes events from the channel and puts 

them in an external repository (i.e., destination)



Iteration 3: Step 2

• The selection of Flume raises several architectural 
concerns to be addressed: 

– Selecting a mechanism for getting data from the external 

sources

– Selecting specific input formats in the Source element

– Selecting a file data format in which to store the events

– Selecting a mechanism for the channeling events in the 

channel

– Establishing a deployment topology for the Data Source 

elements

• Addressing these concerns will contribute to the 

satisfaction of: QA-1 (Performance), QA-7 (Scalability), 

QA-9 (Extensibility), QA-10 (Availability) 



Iteration 3: Step 3

• Step 3 - Element of the system to refine: 
Apache Flume.

• Flume data-flow reference architecture:



Iteration 3: Step 4

• Step 4 - Selection of design concepts:
– Use Flume in agent/collector configuration. 

Agents are co-located on the web servers, and the 
collector runs in the Data Stream element. 

– Introduce the tactic of “maintaining multiples 
copies of computations” by using a load-
balanced, failover tiered configuration 
• to satisfy performance (QA-1, 15,000 events/sec.) and 

availability (QA-10, no single point of failure) scenarios. 



Iteration 3: Step 5

• Step 5: Instantiate Architectural Elements, 
Allocate Responsibilities, and Define Interfaces

• Decisions
– Use access and error logs from the Apache HTTP 

Server as input formats 
– Log files are piped through an IP port in the source 

element of Flume agent 
– Identify event channeling methods for both the agents 

and the collector; make final decision through 
prototyping 

– Select Avro as a specific file format for storing raw 
data in the HDFS sink 



Iteration 3: Step 6
• Step 6: Sketch Views and Record Design Decisions



Iteration 3: Step 7

Not 
Addressed

Partially 
Addressed

Completely 
Addressed

Design decisions made during the iteration

UC-1 
UC-2 
UC-3 
UC-4 

Refinement of the Data Stream element. Decisions about other elements 
that participate in these use cases still need to be made.

QA-1 Flume load-balanced, failover tiered configuration is selected.

QA-9 Usage of Flume and Avro format for storing raw data.

QA-10 Flume load-balanced, failover tiered configuration is selected.
Decisions on other elements that partici- pate in this scenario still need 
to be made.

CRN-1 Tiers were identified for the Flume collector and storage.

CRN-3 This is a new architectural concern that was introduced in this iteration: 
data modeling and developing proof-of-concept prototypes for key 
system elements. At this point, no relevant decisions have been made.



Iteration 4



Iteration 4: Step 2

• Step 2 - Iteration goal:

– Address the newly identified concern of data 

modeling and developing proof-of-concept prototypes 

for key system elements (CRN-3) to satisfy the 

requirements associated with the analysis and 

visualization of historic data (e.g. UC-3, UC-4). 

– The quality attribute scenarios associated with these 

use cases are: QA-4 (Performance), QA-5 

(Performance), QA-7 (Scalability), QA-8 (Scalability) 



Iteration 4: Step 3

• Step 3 - Element of the system to refine: 
– The elements that support historical data (the 

Serving Layer elements): the Ad Hoc and Static 
Batch Views. 

– Both elements use the same technology (Impala), 
thus decisions made in this iteration affect both 
elements. 



Iteration 4: Step 4

• Step 4 - Selection of design concepts:
– As in the previous iteration, the design activities 

here involve the configuration of technologies 
associated with the elements => no new 
elements. 

– Hence all of the decisions in this iteration are 
instantiation decisions. 



Iteration 4: Step 5

• Step 5: Instantiate Architectural Elements, 
Allocate Responsibilities, and Define Interfaces

• Decisions
– Select Parquet as a file format for Impala in the 

Batch Views 
– Use the star schema as a data model in the Batch 

Views 



Iteration 4: Step 6
• Step 6: Sketch Views and Record Design Decisions

Star Schema implemented in Impala and Parquet:



Iteration 4: Step 7

Not 
Addressed

Partially 
Addressed

Completely 
Addressed

Design decisions made during the iteration

UC-3 
UC-4 

Refinement of the Serving Layer, which is used in the use case. Decisions 
on other elements that participate in these use cases still need to be 
made.

QA-4 Use Parquet and star schema.

QA-5
QA-8

Performance tests are still required and thus a new concern is 
introduced:
• CRN-4: Develop performance tests.

CRN-1 No relevant decisions made.

CRN-3 Data modeling and proof-of-concept prototypes were developed for the
elements in the Serving Layer, but the same activity remains to be 
completed for the elements in the Speed Layer.



Summary
• An example of using ADD 3.0 in the Big Data domain
• architectural design can require many detailed 

decisions to be made to ensure that the quality 
attributes will be satisfied. 

• Also, this example shows that a large number of 
decisions rely on knowledge of different patterns and 
technologies. 

• The more novel the domain, the more likely that 
design concepts catalogs, books of patterns, reference 
architectures, etc. will not be available. 

• In that case you must rely on your own experience, or 
perform experiments and build prototypes. 


