Software Architecture

Paolo Ciancarini

Agenda

Software Architecture: definitions

The standard IEEE 1471 and its successors
Architectural frameworks

Architectural assets

What is the role of architecture?

Form vs function:
how many types of houses...

The role of architect of houses

= Architects focus on people’s need

= They design buildings and interiors according to
the desires of their customers

= In software terms this would be roughly equivalent
to «designers of the user experience»

What is Software Architecture?

= Software Architecture is like any other
architecture: it is about the function - or
purpose - and the form - or structure

s It is about the concerns of the stakeholders

= It is about the gap between a current
system'’s design and its future design

= It is about the evaluation of the properties

which govern the design and the evolution of
a system

Software architecture

= Software architecture is what is hard to change

= Software architecture is about decisions so critical
that if they are wrong they will kill the project or at
least will be very expensive to fix

What is the goal of Software Architecture?

To understand the fundamental elements of a
system that contribute to its utility, cost, effort to
build, and risk to use within its environment

In some cases, the fundamental elements are

physical or structural components of the system
and their relationships

Sometimes, the fundamental elements are
functional or logical elements

In other cases, what is fundamental to the
understanding of a system are its overarching
principles or patterns

Form and function of software

= What is the function of a software system?

= The function of a software system is its mission,
as described by some use cases in some scenario and
as verified by some tests which refer to the requirements

= What is the form of a software system?

= The form of a software system is a model of the system
as described by some structural or behavioral views and
as validated by some stakeholder

End-user
Functionality

Logical View

Programmers
Software management

Development
View

l Scenarios l

Process View

Integrators
Performance
Scalability

Physical View

System engineers
Topology
Communications

Figure 1 — The “4+1” view model

Views

Logical view Addresses the static design model
Process view Addresses the design's dynamic
view

Physical view Addresses how the software

components are mapped onto the hardware
infrastructure

Development view Represents the static
organization of the software components in the
development time environment

11

Topology

Designer

12

Test Servers
Production Servers

Physical Resources

Development Servers

A
Development

Logical View

Logical Schemas

What is software architecture?

The software architecture represents the "significant
decisions”, where significance is measured by cost of

change Grady Booch

Software architecture is the set of design decisions
which, if made incorrectly, may cause your project to
be cancelled Eoin Woods

13

Architecture = design decisions

Software Software
Architecture design

Decisions:
Design decisions
Architectural decisions
Requirements constraints

Code etc.

A
®
o
=
1
®
=
@
S
=k
7

decision: a choice that is binding in the final product

Hoare on software design

There are two ways of constructing a software design:

One way 1s to make 1t so simple that there are obviously no
deficiencies,
+and the other way 1s to make 1t so complicated that there are no

obuvious deficiencies.

15

Architecting software

Architectural design has no stopping rule:
there is no criterion that tells when the architecture is finished

Solutions to architectural problems are not correct or wrong:
usually they are good or bad; solving one problem may very well
result in an entirely different problem elsewhere in the system

Architectural design involves trade-offs, such as those between
speed and robustness: as a consequence, there is a number of
acceptable solutions, rather than one best solution

Architectural design problems do not have a well-defined set of
potential solutions: software architects cannot exploit a set of
ready-made solutions, but have to apply knowledge, practices,
and creativity to arrive at a satisfactory solution

16

Role of architecture

Software
concept

Preliminary
requirements
analysis

Architecture sets system structure

Design of
architecture and
system core

Develop
/’ a version \

Incorporate Deliver a
customer version

feedback
An iterative lifecycle model Elicit /
y customer

feedback

N\ First iteration implements system core

Architecture plays a vital role in establishing the structure of
the system, early in the development lifecycle

Role of architecture

Vision \
Inception
Ar ’_\

Development

Deployment
peratlon
Architecture is about decisions that affect Maintenance
the whole lifetime of the system
AIteratlon
Legacy
operatlon

Death

Significant decisions

= [he software architecture represents the
"significant decisions", where significance is
measured by cost of change

= Example1: if the system is an individual application, any
decision that could be made by implementors should be
deferred to them and not appear as part of the
architecture

= ExampleZ2: if the scope of the architecture is a family of
applications (a product line), then any decision that
relates only to a single application should be deferred to
the application architecture and not be part of the
application family architecture

19

Architecture = Design”? No!

“Do not diluite the meaning of the
term architecture by applying it to
everything in sight.”

Mary Shaw

Definitions...

-

o

A system is a
collection of
parts

&

~

-

o

..and form a whole
that fulfils a
designed purpose

-

~
the parts have

relations to each
other...

s
=T 8

\

5 <

~

System

(actually, “software-intensive system”)

System

[

*

Software
. part

*

installed on p

*

*
< acts with

>

*

Hardware
part

*

acts with p

Most systems include also:

Natural elements
Humans

L

22

Definition: system [I[EEE 2000]

= A system is a collection of components organized
to accomplish a specific function or set of functions

= A system exists to fulfill one or more missions in its
environment

= [he term “system” encompasses individual
applications, systems in the traditional sense,
subsystems, systems of systems, product lines,

product families, enterprises, and other entities of
interest

23

Two main families of systems

Information systems, necessary for enterprise
business (eg. banks, e-commerce, egovernment)

Embedded software systems, necessary for
engineering domains (eg. automotive, aerospace)

Information systems’ architectures are usually related to an
enterprise organization, meaning that human roles and
actions are included in the description of the system

Embedded systems’ architectures are usually related to a
system architecture (people are “outside” the system)

24

Abstraction Granularity:

Enterprise Architecture

System Architecture

Software Architecture

Detailed Software Design

Key Design Concerns:

« Business Processes and Models

e Business Data

 Organizational Structure and Relationships
e Enterprise Stakeholders

o IT Infrastructure

o Identification of System Context

e Partitioning (hardware/infrastructure focus)
e Identification of Software Requirements

e Overall Systemic Functional Requirements
o Systemic Integration and Testing

o Identification of Crosscutting Design Concerns
(quality attributes)

e Software Functional Requirements

e Partitioning of Software Application(s)

o Software and Systemic Integration and Testing

e Language Features

e Algorithmic Efficiencies

e Data Structure Design

o Software Application Testing
 Implementation of Functionality

Definition: Software architecture

= [he software architecture of a system is the
structure of the system, which comprises its
software elements, the externally visible
properties of those elements, and the
relationships between them

s [he term also refers to the documentation of a
system's software architecture

= Documenting a software architecture facilitates the
communication between stakeholders, documents
the early decisions about high-level design, and
allows the reuse of its components across projects

26

Short history

= The basics of software architecture were introduced by
Dijkstra (1968) and Parnas (1970). They studied:

The key role of the structure of a software system, and
How tricky the definition of the right structure for a given system is

= A great deal of research has been conducted on software
architectures starting from the '90s, mainly focusing on:

How to solve recurrent architectural problems (patterns)
Which architectural forms are more common (styles)
Defining languages to describe software architectures (ADL)
How to document the architecture of a system (views)

. claimed to give rise to the definition of a discipline

See: Shaw and Garlan Software Architecture: Perspectives on an
Emerging Discipline, 1996

27

Standard: IEEE 1471

The main standard in the field of software
architectures is the ANSI/IEEE 1471-2000:
Recommended Practice for Architecture
Description of Software-Intensive Systems

= better known as IEEE 1471 standard

It is a “recommended practice”

= the “weakest” type of IEEE standards, whose adoption
and interpretation are the responsibility of the using
organization

It has been adopted by ISO/IEC JTC1/SC7 as
ISO/IEC 42010:2007, in 2007

most recent version is ISO/IEC/IEEE 42010:2011

28

Definition: IEEE 1471

= Intuitively, the architecture of a software system
represents its internal structure, in terms of the
single components of which it is made up and of
the interactions among them

= According to the standard, the architecture of a
software system is its basic organization, in terms
of its components, of the interactions among
components and with the external environments,
as well as of the basic, driving, principles for
system design and evolution

29

IEEE1471 Conceptual Model for Sw Architectures

Mission
fulfills 1..*
influences has an
Environment System Architecture
inhabits
described by
has 1..* 1
is important to identifies

1.* 1.° .
Stakeholder Archilsctural
Description

identifies
1..*

has
1.0

is addressed to

1.*

provides

Rationale

organized by
selects 1.*
1.0
conforms to

Concern Viewpoint
used to
cover1..*
has source
0.1
Library
Viewpoint

View

participates in

1.* 1.°

consists of

participates in

aggregates
1.°

establishes methods for
1.0

Model

Scope of the standard

The standard covers software-intensive systems in
which software development and/or integration are
dominant issues in terms of cost and resources

Software-intensive systems include: individual
software applications, information systems,
embedded systems, software product lines and
product families, and systems-of-systems

31

Consequences of IEEE 1471

IEEE 1471's contributions:

It provides the definitions and a conceptual model for the description
of a software architecture

It states that an architecture goal is to respond to specific
stakeholders’ concerns about the software system being described

It asserts that architecture descriptions are inherently multi-view, as
no single view can capture all stakeholders’ concerns about an
architecture

It separates the notion of a view from a viewpoint, which identifies
the set of concerns and the representations/modeling techniques,
etc. used to describe the architecture to address those concerns

It establishes that a conforming architecture description has a 1-to-1
correspondence between its viewpoints and its views

It can be extended to become a company specific architectural
model

32

Extending 1471

class TEEE 1471 - extended /

IEEE 1471 - extended IEEE 1471 Concepts (abridged) Common Architactural Descriptions
Nick Malik and Bob Sturm i
Microsoft IT Technology Office System h Architecture
Version 2.3 as an Ecosyst: Application Design
May 2003 Context Model Model
C =L RM-ODP has
1. is described by \| /4 = I—
- - Enterprise Process
Model
B Concern : Stakeholder A.r‘!illte'dl'lfal < is a type of
Viewpoint = =
\ od /I\ Information Model
— group: ; .
i cohesively) addresses the
?ll:::l':c:’:t i(nin concenl'ns of ;ompused draws from
Viewpoint (viewtype) 4
(Architectural W Model E =
Perspective conforms to ‘erence Metam.
! =" participates in e hitedh
Information 1.* 1.*
Viewpoint A A
i \ base'd on
35_505'319‘1 associated
Computational 7'&’ with
- . Reference Model
Profile [Arch Description] is 3
uses Method collects
. related
sa
Engineering
Viewpoint ollects
c
defined related
ina may contain
T Document ,_; Document
Viewpoint T - based on a
<P y contain contains a
coherent set of
conceptualized
may contain i Diagram
one or more < >—
based on a contzins
many
Element Type |) j Element Element Value
defined may contain instance of
ina based on an
S
kelationshlp Type finks Relationship
L many
based on a
5 33

Evolution of the standard
2000: IEEE 1471

2001: ANS
2007: IS0/
2011: IS0/

EC 42010
EC/IEEE 42010:2011 Systems and

software engineering -- Architecture description

New version: architecture frameworks &
conformance

www.iso-architecture.org/ieee-1471/

34

exhibits »

42010:2011

System-of- Architecture
Interest 1 1
1 < identifies 1
A has interests in S
1 ..' 1
. 4 identifies 1 Architecture
takeholder 1. Description
o Architecture
1 Rationale
has 4 identifies
A 4
0.*
1..Y
Correspondence Correspondence
Rule
Concern
: PR
frames A
1. y [P
Architecture govemns b Architecture
Viewpoint 1 1 View
1 1.2
1 ; [Py
Model Architecture
Kind Model
governs P 35

Architecture frameworks

4 identifies

Stakeholder

2.

has

4 identifies

4 frames

Architecture
Framework

|

Concern

*

Architecture
Viewpoint

([P

i

Model Kind

Correspondence
Rule

Architecture framework

= An architecture framework includes one or more
concerns, one or more stakeholders having those
concerns, any correspondence rules

= These are architecture frameworks recognized by
the standard: Krutchen 4+1, Siemens’ 4 views
method, Zachman framework, UKMODAF,
TOGAF, RM-ODP, GERAM

37

Defining a software architecture

= [he definition of the architecture is an important
step of system design (i.e., architectural design)

= |Its aim is the structural decomposition of a system
iInto sub-systems:

= Divide et impera approach: to develop single sub-entities
Is simpler than to develop an entire system

= It allows to perform several development activities at the
same time (different entities can be developed in parallel)

= It fosters the modifiability, the reusability, and the
portability of a system

38

Defining the architecture

= [he definition of the criteria for the identification of
sub-entities is a preliminary step:
= A typical criterion is the functional one, i.e., a sub-entity
may be identified by mapping software functionalities to
Its parts:
=« E.g., userinterface, database access, security management...
= High Cohesion and Low Coupling among
components are key guidelines
= Each sub-system has to contain cohesive components

(e.g., modules providing services which are strictly
related one to each other)

= Minimize interactions among subsystems, that should
result scarcely coupled

39

Software module

= A module is a piece of software that:
= Provides an abstraction (on data, on function)
= Clearly separates the interface from the body

= Usually makes sense at compilation time
rather than at run time

Module

= [he interface specifies “what” the
module is (the abstraction provided) and
“how” it can be used

= [he interface is the contract between a user
and the provider of the abstraction

= The body describes “how” the
abstraction is implemented

40

Main elements of a sw architecture

= Components
= Connectors
= Configurations

Architecture

T

Architectural

element
Component Configuration Connector
+name +name +name

Component

A software component is a unit of composition with
contractually specified interfaces (including some ports) and
explicit dependencies

Example: a web server

A software component can be deployed independently and
IS subject to composition by third parties

A component model defines rules (standards) for naming,
meta data, behavior specification, implementation,
iInteroperability, customization, composition, and
deployment of components

Example: the CORBA component model

Connector

A software connector specifies the mechanisms by which
components transfer control or data

Examples: procedure call, protocol, buffer, channel, stream

A connector defines the possible interactions among
components: the interfaces of connectors are called roles,
which are attached to ports of components

structured classifier Internal structure

/ / compartment
Bank ATM /

ort
part box \ internal structure / P

Al scd :Display connector mdm: Modem [——
_—- typed by association
1 4/ required
— external :Bus interface
role, part ‘Bus
cr :Card Reader
:Central :Crypto
Processor Processor
:PIN Pad multiplicity
referenced mem Bus ;{- of part
role \ Fe—————— ' 4
:Memory
| - | vitbus: Bus
—I>-| :Printer — 4'\
Lo I connector,
typed by association

/’— ’ vault

“vault” role of
anonymous and
nested class

(RN RSaGRAnSSm :Electronic Journal

——— e . multiplicity
__>: Cash Cartridge[1..4] I F/'_ofrole
referenced] :Lash Cartridge|1..
role | L : :Security Sensor([1.."]

© uml-diagrams.nrg_

UML component model

RPC_Class

addClient(string name)

send(string server; string event)

Server Component

Client
- GuiPart gui w GuiPart
newClientUpdate(string clientnames) setupGUI(int x; int y)
receiveMessage(string line) redrawClients()
receivePercept(string line) conferenceGUI()
conferenceStart() isWaiting()
connectServer(string location) addLine(string line)
sendMessage(string line)
sendCommand(string command)
...other operations...

PClientl PClient2 PServer

<< Port >> PClient

Black box view

newClientUpdate(string clientnames)

receiveMessage(string line)

receivePercept(string line)

conferenceStart()

White box view

45

Architectural configuration

An architectural configuration is a connected
graph of components and connectors that
describes the structure of a software architecture

Example:

- - - - — — — A

Clients | Business objects and |
T . 1 components server
- |
' —— | Web server | | |
EJB Container I
| “h/tt_‘f” | Web Server | | |
lll | | Enterprise |
) «RMI»
«hips» | a | A JavaBean |
P | Servelet o~ L
| ______ Jd
. _ _ _ «SNA»
Non-browser
GUI r—————————|———~
| Mainframe |
| [Logacy system Legacy Adapter | |
I — |

Key architectural design principles

= Simplicity

s Abstraction

Modularity
Low coupling
Separation of concerns

Postponing decisions
Encapsulation
Information hiding
Clear interface

High cohesion

47

Sources of Architecture

s [heft

= From a previous system or from technical literature

s Method

= An approach to deriving the architecture from the requirements

= [ntuition
= The experience of the architect

Method Method

Intumon Theft Intuition

A classn:al system An unprecedented system

Architecture goal: reuse of components

Component design for reuse

Component-based software design by reuse

Lifecycle step

Production

Lifecycle step

Production

development and

Component
documentation

1

storage and
indexation

' Component code

Caption:

=== Uses

) Produces
Il‘ Precedes

=

Component
code & models

=k

Component
repository

System
requirement
analysis

1

Architecture
specification

\

- Component

- 1 search

Architecture
configuration

== Component

‘ instantiation

‘

Instantiated
component
assembly

=1

Functional & non
functional requirements

—

Abstract architecture
description

Concrete architecture
description

Instantiated assembly
description & software

/ Domain Engineering \
Reference Architecture |

l
Product Line
ReRE Architectural
Derivation Infrastructure Model
i Elements
el Architecture .
I
Business Dgrivation
' upport

Requirements Wil - "

g <<derived|from>>
<<instance of>>

3 <<automated by>>
/ Application Engineering \
Derivation Target
Product Support 2
Requirements 5 é’é’els Architecture
f / Architectural
Model

h 7

Architectural assets

Most elements of a software architecture are derived from a
previous system of the same kind, another system with similar
characteristics, or an architecture found in technical literature

)

CoarceCIraines Reference Packaged Legacy
Coarse-Gramed Architecture Application Applicatiol
Architectural Application

Style Framework
Agget Architectural Architectural
.) Pattern Mechanism
Granularity
Design Component
Pattern Library
Programming Component
Fine-Grained Pattern
None Partial Complete

Level of Implementation

51

What Types of Architectural Asset are there?

>

Reference
Architecture

Design
Pattern

Legacy Architectural
Application Mechanism
Pattern Packaged
Language Application
Development Reference
Method Model

Architectural

Programming

Decision Pattern
Pattern Component
Library
Component Architectural
Pattern
Architectural Application
Style Framework

Pattern

= [A pattern is] a common solution to a common
problem in a given context. [UML User Guide]

= Pattern types

= Architectural Patterns
= Distribution patterns
= Security Patterns

Design Patterns
Programming Patterns

Architectural Pattern

= An architectural pattern expresses a fundamental structural
organization schema for software systems. It provides a set
of predefined subsystems, specifies their responsibilities,
and includes rules and guidelines for organizing the
relationships between them. [Buschmann]

= Example:

Pattern: Layers

Context
A system that requires decomposition

Problem

High-level elements rely on lower-level elements and the following forces must
be balanced:

- Interfaces should be stable
- Parts of the system should be exchangeable
- Source code changes should not ripple through the system

Solution
Structure the system into layers

Architectural pattern — Layers

Layer 7

Layer 6

Layer 5

Layer 4

Layer 3

Layer 2

Layer 1

Application

Presentation

Session

Transport

Network

Data Link

Physical

Provides application facilities

Structures information as required

Manages the connection

Creates packets of data

Routes packets of data

Detects and corrects errors

Transmits bits

]

<<layer>>
Application-Specific

V

<<layer>>
Busi ness-Specific

]

Personal Organizer
(from Application-Specific)

v A_‘

Address Book
(from Business-Specific)

Calculator
(from Business-Specific)

v

<<layer>> Filestore
Base Management

(from Base)

Memory
Management

(from Base)

\
\

A_‘

Math
(from Base)

Design Pattern

= A design pattern provides a scheme for refining the subsystems or
components of a software system, or the relationships between them. It
describes a commonly-recurring structure of communicating
components that solves a general design problem within a particular
context. [Gamma]

Mokify (]
) {3 Subject
for all o in observers © Observer
P PET R @ Attach [ohsarver) >
o->Natification() @ Detach { observer) | * * | @ Notification)
1 @ Motify ()
{3 Client {9 ConcreteSubject {3 ConcreteObserver
___________ :_:. e
@ SetState [) @ Motificap==— - - -
- | & :Client | | (3 :Concretesubject | | (& a:ConcreteChbserver ‘ | (& B:ConcreteChserver
. ! 1; SetState !
SetState() |
!
}NUUWU] 1.1 Motify |

|

|

|

1.1.1: Notification | |
-

|

|

|

1.1.1.1; Motification

Programming Pattern

= An idiom is a low-level pattern specific to a
programming language. An idiom describes how to
iImplement particular aspects of components or the
relationships between them using the features of
the given language. [Buschmann]

// Swap the values of 2 variables
temp = a;

a=b;

b = temp;

Architectural Style

[An architectural style] defines a family of systems in terms
of a pattern of structural organization. More specifically, an
architectural style defines a vocabulary of components and
connector types, and a set of constraints on how they can

be combined. [Shaw]
Client-server

= Supports the physical separation of client-side processing (such as
a browser) and server-side processing (such as an application
server that accesses a database)

Event-based

= Promotes a publish-subscribe way of working, applied strategically
across large areas of the architecture

Pipes-and-filters

= A series of filters that provide data transformation, and pipes that
connect the filters. Examples include compilers, signal processing

Pattern Language

A pattern language defines a collection
of patterns and the rules to combine
them. Pattern languages are often
used to describe a family of systems

IBM Patterns for e-Business

=A set of architectural patterns that
describe various web-based

applications
sIncludes a pattern selection process
that drives:
. Selection of a business,
integration or composite pattern
. Selection of application patterns
. Selection of runtime patterns
. Identification of product
mappings

Outside world Demilitarized
Zone (DMZ)

AIX 4.3.3 + ML6
WebSphere Application

Internal network

Windows NT 4.0 SP6a
SecureWay Directory V3.2.1
HTTP Server 1.3.12
GSKit4.0.3

DB2 UDB EE V6.1 + FP4

AIX 4.3.3 + ML8
WebSphere Application
Server Enterprise Edition V4.01
DB2UDBEE 7.2
MQSeries 5.2.0 + U474779
MAS88 SupportPac + 1C31907

Server Advanced Edition V4.01

HTTP plug-in (beta)
HTTP Server 1.3.19

Public key
infrastructure

Diucto:!
and security
services

WebSphere Application

Server Advanced Edition V4.01
DB2 UDBEE 7.2
MQSeries 5.2.0 + U474779
MAS88 SupportPac + 1C31907

Domain Namol 2 g
= Web Existing
S Internet L5k Server E LApplication| Integration Lapplications
\ 8| Redirector| | server server and data
User - §
< z/0S Release 1
— I < cIcs
» Transaction
Server V1.3
y » CICS bridge
T MQSeries
AIX 4.3.3 + ML6 - V211

Windows NT 4.0 + SP6a
DB2 UDB EE V7.2

AIX 4.3.3 +MLS8

DB2 UDB EE 7.1

MQSeries 5.2.0 +
U474779

VisualAge for C++
runtime 5.0.2.0

MQSeries Integrator 2.02

©Copyright IBM Corporation, 2002. All rights reserved.

59

Reference Architecture

= A reference architecture is an architecture representation of
a particular domain of interest. It typically includes many

different architectural patterns, applied in different areas of
its structure

= Examples include JEE and .NET

Client Server
Presentation Tier Business Tier [ntegration Tier
Client Device
s e
HTML, XML, WML e _J0BC_|" Relational
Database
‘ ——EE—
i Web Container
e [' EJB Server JovaMail | Mail
: HITPS Jsp Serviet Sarver
Applet Container EJB Container
J2EE Services
HTTP \
Applet u HTIpS | J2SE Services JNDI Directory
- "l Service
J2SE Services JZEE Services N
J2SE Services
JMS Message
Client Device " Quese
Application Client | |
Container
- | RMI Java
Application Application
Client
2 RMI-IOP | CORBA
J2SE Services —] Server

Reference Model

s A reference model is an abstract representation of entities,
their relationships and behavior, in a given domain of

interest, and which typically forms the conceptual basis for
the development of more concrete elements

= Examples: a business model, an information model, or a
glossary of terms

__

! | IFW Foundation Models
Y

L}
[}
[}
! : e N2
. | Financial : Financial
1 . . . o Services 1 Services
: Financial Services Data Model : . Function : Workflow
I ' Model I Model
: 1 1\
| ! 1
L T T T T R —— T==— === —————— - 1
e | : 4 N\ N
1
! Business Application . Business Business 1
I Solution Solution - Object Process '
' Templates Templates ! Model Model !
- /. o
s
1 L}
Banking Data Warehouse Model ' \ Interface Design Model
1 1
- -

Strawman Reference Architecture for
Open Bank Standard

4.? ﬂ

Advisor Chent

— O %9,
8 0 & éw
FinTechs eBank App iPad Mobile — Regulators

|
AP| based service inocation
o E L

Unified UX with intuitive & advanced visualization

LT

&

Enable Partners to Develp
and Host Analytics apps
more easily

API ice i i
Process & Predictive based service inocation

Analytics Tier e BillPay Orders Onboard
< — i | o
‘ Microservices based Business Services &
{g} predictive Analytics
Hra
Data ~ ©
Scientists '$= API based service inocation {:}

Wadoop (MOFS, Storm,
Spark, HBase & ML)

¢ _, 80
¢

Big Data Tier providing data ingest, governance, quality,
cleansing & processing, normalization & predictive capabilities

1T 1

- @ &
T o))
Mirkat Data Analyst Rusesrch Prodect Processors

Common
Standards

)

Clous (laas)
A
managemest

62

Example: automotive sw architecture (AUtOSAR)

Application
SWC

Sensor
SWC

Actuator
SWC

]

]

Application
SWC

t Application Software t

Runtime Environment (RTE)

]

Operating
System
(OS)

——

Services

3

Com-
munication

ECU
Abstraction

Basic Software

ECU Hardware

puC
Abstraction

3

Complex
Device
Drivers

(CCD)

Application Framework

= An application framework represents the partial
implementation of a specific area of an application

= Most widely-known frameworks support user interfaces

= Java Server Pages
= ASP.NET

% Client ' Server

s, HITP HTTP

e |5 S 6 -E D
= o > Web
’ Internet Server
< <
Welcome to ClassicsCD T 1

Scripting
container

Script

e [E]

Architectural Mechanism

» Architectural mechanisms represent common

concrete solutions to frequently encountered
problems. They may be patterns of structure,
patterns of behavior, or both. [RUP]

Often described as

= the mechanism for achieving X”

= this element is underpinned by mechanism Y~
Examples

= Persistency mechanism

= Error logging mechanism

= Communication mechanism

= Shopping cart

Packaged application

A packaged application is a Commercial-Off-The-Shelf
(COTS) product available in the market that can be bought
"as is”

These applications are usually large grained, that is they
provide a significant amount of capability (and reuse)

Examples
= Customer Relationship Management (CRM) application (e.g. Siebel)
= Enterprise Resource Planning (ERP) application (e.g. SAP)

The amount of required custom development is minimal
Primary focus is on configuring the application

Component & component library

= Component examples —
= GUI widget (such as a table)

s Service —

=

= Component library examples | f |

= Class libraries (e.g. Java class library)
= Procedure libraries

Legacy Application

A legacy application is a system that continues to
be used because the owning organization cannot
replace or redesign it

Usually no way to have past (regression) tests

Tends to be a focus on integration rather than new
development

Often results in a focus on enterprise application
integration (EAI)

Architectural Decision

m [Architectural decisions are] conscious
design decisions concerning a o
software system as a whole, or one or
more of its core components. These
decisions determine the non-functional
characteristics and quality factors of L O o
the system. [Zimmermann]

= Decision rationale may come from

experience, method or some other
asset

Decision Model

Ratlonale

Model Content
Architecture AD Ratlonale Rationale
Rationale

oMers 0..°

pariopates in 1..°

Architectural
1
Archiiecture Description View Maodel

69

A map of architectural concepts

Style

used to .

create

Architecture | used to "

Pattern

create

used to

Domain
Architecture

refined Y|

Application
Architecture

/H\constrain

create

Platform
Architecture

/70

Summary: what is a software architecture?

An architecture

= defines the form of software

= defines the function of software

= focuses on significant elements

= reuses and conforms to an architectural style
= balances the needs of its stakeholders

= Is influenced by its environment

= Influences its environment

= Influences its development team

Quotation

Mez%e’z fomez%z/%y 1s past O//Z%e architecture &5 e//zz‘/%eé based on
whethes the aéue/opeff think i 65 vnpostant.
/%cé/é‘ea‘we 6 a socil construct

because i doesn 2‘/2&‘ aépe/m/ on the 50/%%2%,
ézzz‘ orn u/é&zf patl 0/[1%6 50/%1/62?5

(S CONSle ezm/ unpostant éy qroup consensus.

Wastin Lowles

72

Self questions

What is a software architecture?
What is an architectural concern?
What is an architectural view?

What is a component?
What is a connector?

What is an architectural framework?
What is an architectural asset?

/3

Suggested readings

" Www.iso-architecture.org/ieee-1471/

= Perry & Wolf, Foundations for the study of software
architecture, ACM Sw Eng Notes, 17:4(40-52), 1992

= Cervantes & Kazman, Designing Software Architectures,
AddisonWesley, 2016

74

References

Shaw & Garlan Software Architecture: Perspectives on an
Emerging Discipline, Prentice Hall, 1996

Bass, Clemens & Kazman, Software Architecture in
Practice, 3" ed, Addison Wesley, 2013
softarchpract.tar.hu 2" ed

Clements, Documenting Software Architectures: Views and
Beyond, The SEI Series in Software Engineering, 2010

Rozanski & Woods, Software Systems Architecture,
Addison-Wesley, 2012

Garland, Large-Scale Software Architecture: A Practical
Guide using UML, Addison-Wesley, 2005

Mistrik, Relating System Quality and Software Architecture,
MorganKaufman 2014

75

Interesting sites

www.sel.cmu.edu/architecture
www.softwarearchitectureportal.org
www.viewpoints-and-perspectives.info
msdn.microsoft.com/en-us/library/ee658093.aspx
www.bredemeyer.com/definiti.htm
www.booch.com/architecture
wWww.ivencia.com/index.html?/softwarearchitect/
stal.blogspot.com
softwarearchitecturezen.blogspot.com

76

Questions?

