
Architectural styles
for software systems

Peer to Peer

Prof. Paolo Ciancarini
Software Architecture
CdL M Informatica �
Università di Bologna

Agenda
n P2P: overview
n Basic types of P2P systems
n Case study: Skype
n Case study: Bitcoin

2

Peer to peer computing
n a class of applications that takes advantage of

resources— storage, cycles, content, humans —
available at the edges of the Internet

n Because accessing these decentralized resources
means operating in an environment of unstable
connectivity and unpredictable IP addresses, peer-
to-peer nodes must operate outside the DNS
system and have autonomy from central servers

3

Layers in P2P

The overlay network layer is responsible for implementing an efficient routing
algorithm: the nodes in the system are structured in order to decrease the
search steps necessary to find the target identifier.
Each node maintains a local routing table, which holds the identifiers of other
nodes in the system

4

Distributed hash tables
A distributed hash table (DHT) provides a lookup service
similar to a hash table: (key, value) pairs are stored in a DHT,
and any participating node can efficiently retrieve the value
associated with a given key

5

Distributed ledgers and blockchains

6

Distributed ledger

Blockchain

Distributed ledgers vs blockchains

7

n A P2P system is a distributed collection of peer
nodes

n Each node is able to provide services, as well as
to make requests, to other nodes
n Each node acts as both a server and a client

n The goal of this style:
n To share resources and services (data, CPU, disk,…)

8

P2P: Overview

Peer-to-peer systems
n File sharing systems based on BitTorrent
n Messaging systems such as Jabber
n Blockchains – Bitcoin and Ethereum
n Databases – Freenet is a decentralized database
n Phone systems – Viber or Skype
n Computation systems - SETI@home

9

n Typical functional characteristics of P2P systems:
n File sharing system
n File storage system
n Distributed file system
n Redundant storage
n Distributed computation

n Typical non-functional requirements:
n Availability
n Reliability
n Performance
n Scalability
n Anonymity

10

P2P: requirements and drivers

Peer: CRC

Class Peer

Responsibilities
•Component
•Handles User interaction
•Asks other Peers for searching some data
•Asks some Peers for obtaining some data

Collaborators

P2P: Brief History

n Although they were proposed several years ago,
they mainly evolved in the last 20 years

n File sharing systems showed the power of the
concept (Napster, 1999; Gnutella, 2000)

n In 2000, the Napster client was downloaded in few
days by 50 millions users
n Traffic peak of 7 TB in a day

n Gnutella followed Napster’s footprint
n The first release was delivered in 2003
n In June 2005, Gnutella's population was 1.81 million

computers; in 2007, it was the most popular file sharing
network with an estimated market share > 40%

n Host servers are listed at gnutellahost.com

12

The phases of a P2P application

A P2P application is organized in three phases:
n Boot: a peer connects to the network and actually

performs the connections (remark: P2P boot is rare)
n Lookup: a peer looks for a provider of a given service

or information (generally providers are SuperPeers)
n Resource sharing: resources (requested and found)

are delivered, usually in several segments

13

P2P resource sharing example: bitTorrent

14

P2P: Classification

nThere are three types of P2P architecture, different with
respect to the lookup phase:

n Centralized
n Centralized network architecture uses a centralized indexed server

to maintain a database of all the content and users at any time
n The database is updated whenever a peer logs on to the network

n Decentralized (Pure P2P)
n Each peer acts as an index server, searches and holds its own

local resources, and as a router, relaying queries between peers
n Hybrid Architecture

n Deploys a hierarchical structure by establishing a backbone
network of Super Nodes that take on the characteristics of a
central index server

15

P2P: Centralized Index

n There is a centralized index used to search the information
n When peer connects, it informs central server:

n IP address
n Content

n File transfer is decentralized, but locating content is highly
centralized

n Example: Napster

16

Copyright © Tore Mørkved, Peer-to-Peer Programming with Wireless Devices

http://www.scribd.com/doc/50512545/2005-Peer-to-Peer-Programming-with-Wireless-Devices-rapport

Centralized: Architecture

n Components:
n Peer

n An entity with capabilities similar to other entities in the system
n Each node is both a server and a client
n Autonomous: no administrative authority
n Unreliable: nodes enter and leave the network “frequently”

n Index Server
n An entity with special capabilities:

n Allow peer to join the system
n Allow the research of content

n Maintain a database of all the content and users at any time, which is
updated whenever a peer logs on to the network

n Connectors:
n Network protocol

n Often specialized for P2P communication

17

Centralized Index: Component Diagram

18

Centralized Index: Class Diagram

19

Peer

+ FileTransfer()

requester

provider

*

*

Directory Index

+ Search()
+ Login()

1 *

Centralized Index: Sequence Diagram

20

Centralized Index Example: Napster

21

Centralized Index: Pro & Cons

n Benefits:
n Low per-node state
n Limited bandwidth usage
n High success rate
n Fast search response time
n Easy to implement and maintain

n Pitfalls:
n Single point of failure
n Vulnerable to censorship
n Limited scale
n Possibly unbalanced load
n Database might be obsolete

22

P2P: Decentralized

n Decentralized P2P organizes the overlay network as a
random graph

n Each node knows about a subset of nodes, its “neighbors”
n Neighbors are chosen in different ways:

n physically close nodes, nodes that joined at about the same time, etc.

n Example: Gnutella, Bitcoin

23

Copyright © Tore Mørkved, Peer-to-Peer Programming with Wireless Devices

http://www.scribd.com/doc/50512545/2005-Peer-to-Peer-Programming-with-Wireless-Devices-rapport

Decentralized : Class Diagram

24

Peer

service1()
service2()

serviceN()
…

requester

provider

*

*

Decentralized: Architecture

n Components:
n Peer

n An entity with capabilities similar to other entities in the system
n Each node is both a server and a client
n Autonomous: no administrative authority
n Unreliable: nodes enter and leave the network “frequently”
n Local knowledge: nodes only know a small set of other nodes

n Connectors:
n Network protocol

n Often specialized for P2P communication

25

Decentralized Example: Gnutella

26

Decentralized: Component Diagram

27Cornelli et al., Implementing a Reputation-Aware Gnutella Servent , Proc. Networking 2002

Decentralized: Sequence Diagram (1)

28Cornelli, Implementing a Reputation-Aware Gnutella Servent , 2002

Decentralized: Sequence Diagram (2)

29

Decentralized: Pro & Cons

n Benefits:
n Limited per-node state
n Fault tolerant

n Pitfalls:
n High bandwidth usage
n Long time to locate item
n No guarantee on success rate
n Possibly unbalanced load

30

P2P: Hybrid Architecture

n Deploys a hierarchical structure by establishing a
backbone network of Super Nodes that take on the
characteristics of a central index server

n When a client logs on to the network, it makes a direct
connection to a single Super Peer

n Example: Skype
31

Copyright © Tore Mørkved, Peer-to-Peer Programming with Wireless Devices

http://www.scribd.com/doc/50512545/2005-Peer-to-Peer-Programming-with-Wireless-Devices-rapport

Example: Skype

32

Hybrid: Architecture

n Components:
n Peer

n An entity with capabilities similar to other entities in the system
n Each node is both a server and a client
n Autonomous: no administrative authority
n Unreliable: nodes enter and leave the network “frequently”

n Super Peer
n Gathers and stores information about peer and content available for

sharing
n Act as servers to regular peer nodes, peers to other super Peers
n Maintain indexes to some or all nodes in the system

n Connectors:
n Network protocol

n Often specialized for P2P communication

33

Hybrid Architecture: Component Diagram

34

Hybrid Architecture: Class Diagram

35

Simple Peer

requester

provider

*

*

Super Peer

Search()
Login()

Peer

FileTransfer()

DisseminateQuery()

Hybrid Architecture: Sequence Diagram

36

Hybrid Architecture Example: Skype (1)

37

Hybrid Architecture Example: Skype (2)

n A mixed client-server and peer-to-peer
architecture addresses the discovery problem

n Replication and distribution of the directories, in
the form of supernodes, addresses the scalability
problem and robustness problem encountered in
Napster

n Promotion of ordinary peers to supernodes based
upon network and processing capabilities
addresses another aspect of system performance:
n “not just any peer” is relied upon for important services

38

Hybrid Architecture Example: Skype (3)

n A proprietary protocol employing encryption
provides privacy for calls that are relayed through
supernode intermediaries

n Restriction of participants to clients issued by
Skype, and making those clients highly resistant
to inspection or modification, prevents malicious
clients from entering the network

39

Hybrid Architecture: Pro & Cons

n Benefits:
n Manageable per-node state
n Manageable bandwidth usage and time to locate item
n Guaranteed success

n Pitfalls:
n Possibly unbalanced load
n Harder to support fault tolerance

40

Bitcoins
n Bitcoins are based on the idea of avoiding to let to

spend twice the same digital coin using a chain of
transactions recorded in a shared ledger

n The Bitcoin system is the blockchain, a P2P
architecture, and transactions take place between
anonimous users directly, without an intermediary

n These transactions are verified by network nodes
and recorded in a public distributed ledger called a
blockchain

41

Bitcoin: dynamics

42

Bitcoins are finite, and
some are lost forever

43

http://www.coinbuzz.com/2015/03/31/23-bitcoins-mined-13-may-lost/

Bitcoin wallet interface

44

45

46

Bitcoin nodes

47

Bitcoin node: main functions

http://chimera.labs.oreilly.com/books/1234000001802/ch06.html

48

Bitnodes

49

Bitcoin architecture

50

Anonimity
n Bitcoin addresses are not tied to people
n Transactions are not tied to people
n Transaction data is transmitted to a random subset

of nodes

n However, there are some (expensive) methods to
de-anonymize a user, so Bitcoin is not perfectly
anonymous

51

Moving bitcoins between wallets

52

Bitcoin

53https://bulldozer00.com/2015/10/25/bitcoin-in-uml/

54

Blockchain

55

Implementing bitcoins: blockchain

n Each bitcoin (BTC) node retains a copy of
the global, publicly shared blockchain.

n the Blockchain has 380K+ Blocks.
n Each Block has one or more validated BTC

Transactions embedded within it.
n Via the interface facilities provided by a

BTC Node, a User composes a Transaction
and submits it to the network for validation
and execution.

n Each instance of a BTC Transaction
contains a source address, destination
address, the BTC amount to be transacted,
and the source address owner’s signature.

56

Bitcoin vs Ethereum
n Since the sw infrastructure is open source, it is

easy to develop new cryptocurrencies
n The difference between Bitcoin and Ethereum is

that Bitcoin is a currency, whereas Ethereum is a
ledger technology.

n Both Bitcoin and Ethereum operate on the
“blockchain”, however Ethereum is more robust.

n Ethereum supports the building of decentralized
applications – smart contracts

57

Smart contracts are agents
n A smart contract is a set of promises, specified in digital

form, including protocols within which the parties perform on
these promises

n A smart contract is a general purpose computation that
takes place on a blockchain

n The bitcoin is limited to the currency use case; ethereum
replaces bitcoin's restrictive language (a scripting language
of a hundred scripts) and replaces allowing developers to
write their own programs

n Smart contracts are similar to autonomous agents

58

Conclusions
n P2P networks are quite old: the Internet is a P2P
n Several new applications are implemented as p2p
n Blockchains are a powerful architecture for

innovative financial applications

59

Self test
n Which architectural drives support P2P

applications?
n What is an overlay network?
n What is the relationship between p2p and C/S?
n What is a hybrid p2p system?
n What is a blockchain?

60

References
n Raval, Decentralized applications, O’Reilly 2016
n Grolimund, A Pattern Language for Overlay Networks in Peer-to-Peer

Systems, EuroPloP 2006
n Ripeanu, Peer-to-peer architecture case study: Gnutella network, 2001
n Nakamoto, Bitcoin: A Peer-to-Peer Electronic Cash System, 2008
n Wang, Skype VoIP service-architecture and comparison, 2005
n Amoretti e Zanichelli, P2P-PL: A Pattern Language to Design Efficient

and Robust Peer-to-Peer Systems, 2016
n Zheng, An Overview of Blockchain Technology: Architecture,

Consensus, and Future Trends, IEEE BigData, 2017

61

Useful resources
n http://www.disruptivetelephony.com/2010/11/a-brief-primer-on-the-tech-behind-skype-

p2psip-and-p2p-networks.html
n https://en.bitcoin.it/wiki/Help:FAQ
n http://www.vamsitalkstech.com/?cat=2
n https://www.theverge.com/2013/12/19/5183356/how-to-steal-bitcoin-in-three-easy-steps
n https://github.com/ethereum/wiki/wiki/White-Paper

62

https://en.bitcoin.it/wiki/Help:FAQ
https://en.bitcoin.it/wiki/Help:FAQ
http://www.vamsitalkstech.com/?cat=2
https://www.theverge.com/2013/12/19/5183356/how-to-steal-bitcoin-in-three-easy-steps

Questions?

