
Architectural styles for
cloud computing

Prof. Paolo Ciancarini
Software Architecture
CdL M Informatica �
Università di Bologna

Agenda

n Introduction to Cloud Computing
n Cloud computing architectural styles
n Computing as a service: the MapReduce style

What is Cloud Computing?
n Cloud Computing is a new kind of computing

commodity over the Internet
n Cloud platform: a collection of integrated hardware,

software, and network infrastructure
n Offering to clients virtual hardware, software or

networking services
n The platforms (clouds) hide the complexity and the

details of the underlying physical infrastructure by
providing a simple graphical interface and/or some API
(Applications Programming Interface)

4http://www.programmableweb.com/api/netflix

Example:
Netflix

Amazon Elastic Cloud Computing EC2

n Provider of cloud infrastructure

n Data centers worldwide

n Many types of Virtual Machines
n e.g. Linux, Windows, FreeBSD Unix

n Free tier for one year

n Per-hour charging (NB: complex pricing model)
n Small 0.044$/h

n Large 0.14$/h

n Xlarge 0.28$/h

5

http://aws.amazon.com/ec2/pricing/

AWS
free tier

6

A cloud reference stack

7

Cloud
n A cloud platform provides services that are

always on, and on demand can be exploited
anywhere, anytime

n Pay for use and elastic (= as needed)
n scale up and down in capacity and functionalities

n The services are available to generic users,
enterprises, corporations, or businesses markets
n Thus, Cloud Computing can be considered a step on

from Service Oriented Computing

Services

Application

Development

Platform

Storage

Hosting

Cloud Computing Service Layers

Description

Complete business services such as PayPal, OpenID,
OAuth, Google Maps, Alexa

Services

Application
Focused

Infrastructure
Focused

Cloud based software that eliminates the need for local
installation such as Google Apps, Microsoft Online

Software development platforms used to build custom
cloud based applications (PAAS & SAAS) such as

SalesForce

Cloud based platforms, typically provided using
virtualization, such as Amazon ECC, Sun Grid

Physical data centers such as those run by IBM, HP,
NaviSite, etc.

Data storage or cloud based NAS such as CTERA,
iDisk,CloudNAS

Features in-the-cloud
n Cloud Computing is a generic term used to refer to

Internet-based deployment of services
n A number of features define data, applications,

services, and infrastructures in-the-cloud:
n Remotely hosted: Services or data are hosted remotely
n Ubiquitous: Services or data are available from

anywhere
n Commodified: The result is a utility computing model

similar to that of traditional utilities, like gas and
electricity - you pay for what you use

Cloud Architecture

Clouds: examples

12

13

SaaS, PaaS, IaaS

IaaS, PaaS, SaaS

14

15

Clouds:
public vs private

16
[Bergmayr 2016]

17[Bergmayr 2016]

18
[Bergmayr 2016]

Main types of clouds: IaaS

n Infrastructure as a service: Resource Clouds,

provide resources as services to the user

n Pay per use based on SLA

n Different resources may be provided :

n AMI (Amazon Machine Image)

n Data & Storage Clouds examples:

Amazon S3 (Simple Storage Service), SQL Azure.

n Compute Clouds examples:

Amazon EC2 (Elastic Cloud Computing), Zimory,

Elastichosts.

Amazon Machine Images

n An Amazon Machine Image
(AMI) is a template that contains
a software configuration (for
example, an operating system,
an application server, and
applications)

n From an AMI, you launch
instances, which are copies of
the AMI running as virtual
servers in the cloud

n You can launch multiple
instances of an AMI

20

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html

Amazon EC2

21

Mendeley (Elsevier) case study

22

Main types of clouds: PaaS
n Platform as a Service provides computational resources via

a platform upon which applications and services can be
developed and hosted.

n PaaS makes use of dedicated APIs to control the behaviour
of a server hosting engine which executes and replicates
the execution according to user requests (e.g. access rate).

n As each provider exposes its own API, applications
developed for one specific cloud provider cannot be moved
to another cloud host

n Examples: Force.com, Google App Engine, Heroku
(SalesForce), CloudBees, OpenShift, Windows Azure
(Platform)

n Pattern: MapReduce

23

Deployment

n “Deployment-as-a-service” increasingly common

n monthly pay-as-you-go curated environment (Heroku)

n hourly pay-as-you-go cloud computing (EC2)

n hybrid: overflow from fixed capacity to elastic capacity

n Remember administration costs when comparing!

n Good framework can help at deployment time

n Separate abstractions for different types of state: session state,

asset server, caching, database

n ORM – natural fit for social computing, and abstracts away from

SQL (vs Web 1.0 PHP, e.g.)

n REST – make your app RESTful from start, so that “SOA”-ifying it is

trivial

n Scaling structured storage: open challenge

24

Microsoft Azure
n Windows Azure

n Compute: Virtualized computing based on Windows
n ServerStorage: Durable, scalable, & available storage
n Management: Automated management of the service

n SQL AzureDatabase:
n Relational processing for structured/unstructured data

n .Net Services
n Service Bus: General purpose application bus
n Access Control: Rule-driven

n Azure provides a complete cloud computing stack. The
administration interface is simple. It allows to allocate a
server or database capacity, hook in the service bus, and
configure an application

25

MS Azure services platform

26

Aneka

27

Ranjan, Decentralized Overlay for
Federation of Enterprise Clouds,
Handbook of Research on Scalable
Computing Technologies, 2009, IGI
Global

Data-as-a-Service

n Need flexibility
n No big initial investments
n Pay for use

n Each user owns everal devices
n Social services and sharing
n Usability, user-friendliness
n Enjoy free services

Enterprise Single users

Common needs:
¢Huge quantities of data

¢Syncronization, collaboration
¢Privacy and security

Storage utility

Dropbox architecture

Client
Web interface

Server Dropbox

Amazon S3

FONTE: [1]

Component diagram

use case: file delete and syncronization

Use case: file upload

Classifying Clouds for Web 2.0

n Instruction Set VM (Amazon EC2)
n Managed runtime VM (Microsoft Azure)
n Curated “IDE-as-a-service” (Heroku)
n Platform as service (Google AppEngine, Force.com)
n flexibility/portability vs. built-in functionality

EC2 Azure Salesforce

Lower-level,
Less managed

Higher-level,
More managed,

more value-added SW

34

Heroku,
AppEngine

Joyent

Basic cloud features
n The “no-need-to-know” in terms of the

underlying details of infrastructure, applications
interface with the infrastructure via the APIs

n The “flexibility and elasticity” allows these
systems to scale up and down at will
n utilising the resources of all kinds

n CPU, storage, server capacity, load balancing, and
databases

n The “pay as much as used and needed” type
of utility computing and the “always on,
anywhere and any place” type of network-
based computing

Virtualization
n Virtual workspaces:

n An abstraction of an execution environment that can be made
dynamically available to authorized clients by using well-defined
protocols,

n Resource quota (e.g. CPU, memory share),
n Software configuration (e.g. O/S, provided services).

n Implement on Virtual Machines (VMs):
n Abstraction of a physical host machine,
n Hypervisor intercepts and emulates instructions from VMs, and

allows management of VMs,
n VMWare, Xen, etc.

n Provide infrastructure API:
n Plug-ins to hardware/support structures Hardware

OS

App App App

Hypervisor

OS OS

Virtualized Stack

Virtual Machines

n VM technology allows multiple virtual machines
to run on a single physical machine.

Hardware

Virtual Machine Monitor (VMM) / Hypervisor

Guest OS
(Linux)

Guest OS
(NetBSD)

Guest OS
(Windows)

VM VM VM

AppApp AppAppApp
Xen

VMWare

UML

Denali

etc.

Performance: Para-virtualization (e.g. Xen) is very close to raw physical performance!

Docker
Docker containers wrap a software in a complete filesystem
that contains everything needed to run: code, runtime, system
tools, libraries – anything that can be installed on a server.
This guarantees that the software will always run the same,
regardless of its environment.

38

A design pattern for cloud computing:
MapReduce

39

Challenges of a Cloud

n Cheap nodes fail, especially when you have many
n Mean time between failures for 1 node = 3 years
n MTBF for 1000 nodes = 1 day
n Solution: Build fault tolerance into system

n Commodity network = low bandwidth
n Solution: Push computation to the data

n Programming distributed systems is hard
n Solution: Restricted programming model: users write

data-parallel “map” and “reduce” functions, system
handles work distribution and failures

File systems for big data

n A new challenge in the form of web logs, or web
crawler’s data: large scale “peta scale”

n Big data are very different from transactional or
“customer order” data : “write once read many
(WORM)”; for instance

• Google copies of web pages;
• Privacy protected healthcare and patient information;
• Historical financial data;
• Climate data

n A solution: Google File System (GFS)

41

What is Hadoop?

� At Google operations are run on a special file
system called Google File System (GFS) that is
highly optimized for big chunks (1 file: 100 GB)

� GFS is not open source

� Doug Cutting and others at Yahoo! reverse
engineered the GFS and called it Hadoop
Distributed File System (HDFS).

� The software framework that supports HDFS and
related entities (eg MapReduce) is called Hadoop

� This is open source and distributed by Apache

42

Fault tolerance in HDFS

n Failure is the norm rather than exception
n A HDFS instance may consist of thousands of

server machines, each storing part of the file
system’s data.

n Since we have huge number of components and
that each component has non-trivial probability of
failure means that there is always some component
that is non-functional.

n Detection of faults and quick, automatic recovery
from them is a core architectural goal of HDFS

43

44hadoop.apache.org/docs/r0.18.3/hdfs_design.html

Hadoop (Apache)

45

Typical Hadoop Cluster

Hadoop Components

n Distributed file system (HDFS)
n Single namespace for entire cluster
n Replicates data 3x for fault-

tolerance

n MapReduce framework
n Runs jobs submitted by users
n Manages work distribution & fault-

tolerance
n Colocated with file system

Hadoop

• 40 nodes/rack, 1000-4000 nodes in cluster
• 1 Gbps bandwidth in rack, 8 Gbps out of rack
• Node specs (Facebook):

8-16 cores, 32 GB RAM, 8�1.5 TB disks, no RAID

Aggregation switch

Rack switch

Hadoop Distributed File System

n Files split into 128MB blocks
n Blocks replicated across

several datanodes (often 3)
n Namenode stores metadata

(file names, locations, etc)
n Optimized for large files,

sequential reads
n Files are append-only

Namenode

Datanodes

1
2
3
4

1
2
4

2
1
3

1
4
3

3
2
4

File1

Hadoop Distributed File System

Application

Local file
system

Master node

Name Nodes

HDFS Client

HDFS Server

Block size: 2K

Block size: 128M
Replicated

50

MapReduce: an architectural style for CC

n MapReduce: a data-intensive programming
paradigm and style for computing on clouds

n Pioneered by Google on GFS
n Processes 20 PB of data per day

n Popularized by the Apache Hadoop project
n Used by Yahoo!, Facebook, Amazon, …

What is MapReduce used for
n At Google:

n Index building for Google Search
n Article clustering for Google News
n Statistical machine translation

n At Yahoo!:
n Index building for Yahoo! Search
n Spam detection for Yahoo! Mail

n At Facebook:
n Data mining
n Ad optimization
n Spam detection

What is MapReduce used for?
n In research:

n Analyzing Wikipedia conflicts (PARC)
n Natural language processing (CMU)
n Climate simulation (Washington)
n Bioinformatics (Maryland)
n Particle physics (Nebraska)
n <Your application here>

MapReduce goals

• Scalability to large data volumes:

– Scan 100 TB on 1 node @ 50 MB/s = 24 days

– Scan on 1000-node cluster = 35 minutes

• Cost-efficiency:
– Commodity nodes (cheap, but unreliable)

– Commodity network (low bandwidth)

– Automatic fault-tolerance (fewer admins)

– Easy to use (fewer programmers)

MapReduce
n Data type: key-value records

n Map function:
(Kin, Vin) è list(Kinter, Vinter)

n Reduce function:
(Kinter, list(Vinter)) è list(Kout, Vout)

Example: Word Count

def mapper(line):
foreach word in line.split():

output(word, 1)

def reducer(key, values):
output(key, sum(values))

Word Count Execution

the
quick
brown

fox

the fox
ate the
mouse

how
now

brown
cow

Map

Map

Map

Reduce

Reduce

brown,
2

fox, 2
how, 1
now, 1
the, 3

ate, 1
cow, 1

mouse,
1

quick, 1

the, 1
brown, 1

fox, 1

quick, 1

the, 1
fox, 1
the, 1

how, 1
now, 1

brown, 1
ate, 1

mouse, 1

cow, 1

Input Map Shuffle & Sort Reduce Output

An optimization: the Combiner
n Local reduce function for repeated keys produced

by same map
n For associative ops. like sum, count, max
n Decreases amount of intermediate data

n Example: local counting for Word Count:

def combiner(key, values):
output(key, sum(values))

Word Count with Combiner

the
quick
brown

fox

the fox
ate the
mouse

how
now

brown
cow

Map

Map

Map

Reduce

Reduce

brown,
2

fox, 2
how, 1
now, 1
the, 3

ate, 1
cow, 1

mouse,
1

quick, 1

the, 1
brown, 1

fox, 1

quick, 1

the, 2
fox, 1

how, 1
now, 1

brown, 1
ate, 1

mouse, 1

cow, 1

Input Map Shuffle & Sort Reduce Output

MapReduce behavior

60

MapReduce behavior

61

blog.gopivotal.com/products/hadoop-101-programming-mapreduce-with-native-libraries-hive-pig-and-cascading

Hadoop and MapReduce

62

Execution details

n Mappers preferentially scheduled on the same
node or the same rack as their input block
n Minimize network use to improve performance

n Mappers save outputs to local disk before serving
to reducers
n Allows recovery if a reducer crashes
n Allows running more reducers than # of nodes

Fault Tolerance in MapReduce
1. If a task crashes:

n Retry on another node
n OK for a map because it had no dependencies
n OK for reduce because map outputs are on disk

n If the same task repeatedly fails, fail the job or ignore
that input block

Ø Note: For the fault tolerance to work, user tasks must be
deterministic and side-effect-free

Fault Tolerance in MapReduce
2. If a node crashes:

n Relaunch its current tasks on other nodes
n Relaunch any maps the node previously ran

n Necessary because their output files were lost along with the
crashed node

Fault Tolerance in MapReduce
3. If a task is going slowly (straggler):

n Launch second copy of task on another node
n Take the output of whichever copy finishes first, and kill

the other one

nCritical for performance in large clusters (many
possible causes of stragglers)

GrepTheWeb

The Alexa Web Search service
allows developers to build
customized search engines
against the massive data that
Alexa crawls every night
The web service allows users to
query the Alexa search index
and get results back as output
Developers can run queries that
return up to 10 million results

67

http://aws.amazon.com/articles/Amazon-SQS/1632

GrepTheWeb: zoom 1

68

69

GrepTheWeb:
zoom 2

GrepTheWeb: mapreduce on hadoop

70

Apache Mesos
n Mesos is built using the same principles as the Linux kernel: it runs on

every machine and provides applications (e.g., Hadoop, Spark, Kafka,
Elastic Search) with API’s for resource management and scheduling
across entire datacenter and cloud environments.

n Scalability to 10,000s of nodes
n Fault-tolerant replicated master and slaves using ZooKeeper
n Support for Docker containers
n Native isolation between tasks with Linux Containers
n Multi-resource scheduling (memory, CPU, disk, and ports)
n Java, Python and C++ APIs for developing new parallel applications
n Web UI for viewing cluster state

71

Discussion

SOA vs Clouds
Horizontal (SOA) vs. vertical (Clouds) services
1. SOAs focus mainly on business

n each service may represent one aspect of the business
2. Clouds layered according to software stacks

n the lower services support the upper ones to deliver
applications

SOA vs Clouds
1. SOA concerns the application architecture

n Components designed for specific roles in a SOA application
n Design starts with a business problem and then abstract out

the services
n Services can be re-used by other applications in the future

2. Clouds are for the delivery of IT infrastructures
n Services based on their roles in a software stack, therefore

mostly well defined
n The cloud services are domain- or problem- independent
n The cloud services can be easily re-used by any application

SOA vs Clouds
1. SOA is mainly for enterprise computing

Ø Cloud computing is internet-based services
2. SOA provides services of computing

Ø Cloud computing provides computing of services
3. SOA applies the service principle to application software

Ø Cloud applies the service principle at all levels:
infrastructure, platform, and application level

4. Cloud is in many ways beyond SOA: implement Cloud, also get
to keep SOA

Common issues
n Network dependence

n Same structural weakness when the network is not
performing or is unavailable

n Producer/ consumer model
n Share concepts of service orientation
n Services can be shared by multiple applications/users
n Demand minimum coupling among different parts of the

system
n any change on one part of the system has limited impact

on the overall system
n SOA and clouds complement each other

Summary
n SOA define the Web as a powerful application and legacy

integrator
n The standards to support SOA based on WebServices -

such as XML, WSDL, and SOAP - are stable
n However, technologies to support quality attributes of SOA-

WS, such as security, transaction efficiency, and availability
are still evolving

n Clouds foster novel ecosystems: they require changes to
the development, deployment, and operational processes
(everything-as-a-service)

n Novel interesting research problems

77

Self test
n What is a hybrid cloud architecture?
n In which ways are clouds scalable?
n Which are the main components and connectors of clouds?
n Compare a SOA with a cloud architectural stack
n Which architectural issues and patterns are typical of cloud

computing systems?

78

Readings
n Erl & Cope, Cloud computing design patterns, Prentice Hall 2015
n Bergmayr, An Architecture Style for Cloud Application Modeling, PhD th,

TUWien 2016
n Dean & Ghemawat, MapReduce: simplified data processing on large

clusters, CACM, 51:1(107-113), 2008
n Miner & Shook, MapReduce design patterns, O’Reilly 2013
n Nurmi, The Eucalyptus Open-Source Cloud-Computing System, 9th

IEEE/ACM Int. Symp. on Cluster Computing and the Grid, 2009
n Rochwerger, The Reservoir model and architecture for open federated

cloud computing, IBM Journal of Research and Development. 53:4(1-
11), 2009

79

Relevant sites
n cloudcomputingpatterns.org
n docs.microsoft.com/en-us/azure/architecture/patterns/
n aws.typepad.com/
n developers.google.com/appengine/
n www.windowsazure.com
n www.armandofox.com/geek/teaching/
n radlab.cs.berkeley.edu

80

Journals and conferences
n IEEE Transactions on Cloud Computing
n Journal of Cloud Computing: Advances, Systems and

Applications
n IEEE/ACM Int. Conf. on Utility and Cloud Computing
n IEEE Int. Conf. on Cloud Computing
n ACM Symp. on Cloud Computing
n ACM Cloud and Autonomic computing Conf.

81

Questions?

