
Service Oriented
Architectures (SOA):
Architectural styles and patterns
for services and microservices

Prof. Paolo Ciancarini
Software Architecture
CdL M Informatica �
Università di Bologna

Agenda

n Software as a Service (SaaS)
n The SOA style
n The REST style
n Microservices

Software is “eating the world”

3

From products to services
n Our society is shaped by the forces of

n Specialization
n Standardization
n Scalability

n It is currently very “service” oriented
n Transportation
n Telecommunication
n Retail
n Healthcare
n Financial services
n Education and training
n …

The service economy

n Modern economies rely upon services
n This means that some companies offer support for

activities in the primary (agricolture) or secondary
(industry of goods) sectors, or to other companies
offering services themselves

n A service company is usually independent (not
owned) from other companies and their services;
however in several cases they should cooperate or at
least be coordinated in some way

6

No car No hotelNo storage

The API economy

7

What is the API economy?

Photo service
increases
revenues x6
wrt shops

Sensors and
API's open for
all trash
containers to
share info of
when to pick
up trash

90%
revenues from
API

60%
revenues from
API

Attributes of physical services
n A service is not owned by its user (compare with product)
n It has a well defined, easy-to-use, standardized interface

n New services can be offered by combining existing services
n (almost) always available but idle until requests come
n “Provision-able” (used by someone only when necessary,

then reassigned to someone else)
n A service should be easily accessible and usable readily

n no “integration” required
n Self-contained: no visible dependencies to other services

n A service is usually coarse grained
n It is independent from the consumer’s context

n but a service can have a context
n It should have a quantifiable quality of service

n Services do not compete on “What” but on “How”

Example: mail
n Customers use mail everywhere
n Interfaces: PostOffice, Mail Box, stamp, postman
n Apparently no relationship with other services (eg.

transportation, payments)
n Quantifiable quality of service: price, delivery time,

lost messages

What is meant by service?

n In economics and marketing, a service is the intangible
equivalent of an economic good. Service provision is an
economic activity where the buyer does not generally, except
by exclusive contract, obtain exclusive ownership of the thing
purchased (Wikipedia, 2010)

n A service is a “provider to client” interaction that creates and
captures value while sharing the risks of the interactions

n A service is the application of specialized competences (skills
and knowledge) for the benefit of someone

n A service is a value that can be rented (in the broad sense)
by some process that the renter (client) participates in.
This contrasts with goods, whose value (once purchased) is
owned by the customer (Lovelock & Gummesson, 2004)

http://sdlogic.net/foundations.html

14Service-based retail application [Gorton]

Software-as-a-Service (SaaS)
n 1990: Web 0.9 (Tim Berners-Lee)
n 1995: Web 1.0 (some dynamic content, Netscape)
n 1997: Services (Google, e-commerce...)
n 1999: LoudCloud (first infrastructure for SaaS)
n 2000: Web 2.0 (rich UI's, social computing)
n 2001: Autonomic computing (IBM)
n 2004: SaaS & SOA (Google Maps, Amazon S3...)
n 2006: Amazon Web Services
n 2008: Cloud Computing (pay as you go)
n 2011: Microservices

15

Software-as-a-Service (SaaS)
n Definition of SaaS: Internet-based deployment (for access

and management) of commercially available software
n Service managed from “central” locations enabling

customers to access applications remotely via web
n Delivery: one-to-many model (single instance, multi-tenant

architecture) including architecture, pricing, partnering, and
management characteristics

n Centralized updating, which obviates the need for end-
users to download patches and upgrades

n Frequent integration into a larger network of communicating
software—either as part of a mashup or a plugin to a
platform as a service

16

(Web) Mashup
n A mashup is a web application that uses content from more than one

source to create a single new service displayed in a single interface
n For example, a user could combine the addresses and photographs of

their library branches with a Google map to create a map mashup.
n The term implies easy, fast integration, frequently using open

application programming interfaces (open API) and data sources to
produce enriched results that were not necessarily the original reason
for producing the raw source data.

n The main characteristics of a mashup are combination, visualization,
and aggregation.

n It is important to make existing data more useful, for personal and
professional use.

n To be able to permanently access the data of other services, mashups
are generally client applications or hosted online.

17

Mashup example: trendsmap

18

SaaS delivery chain

19
Source: Compuware

Software as a service
n An operating system service?

n Program execution, file management

n A Software Service?
n Compiler Service
n Search engine service
n Deployment service

n A Business Service?
n Customer service
n Bidding service

21

22

23

SaaS vs SOA
n SOA is an architecture, whereas SaaS is hosting a set of software

services over the Web.
n SaaS focuses on Software Hosted As A Service,
n SOA focuses on Software Designed As A Service.
n SaaS may be considered as a consumption model in which a user is

involved; SOA is a design model in which there is no restriction on who
the consumer is

n all SaaS implementations follow the SOA concept. SaaS relies upon
the Web, whereas SOA does not restrict its use on the web only

n SaaS means using software as a service over the Web using some
protocol, which is used to communicate between the client side
application and the server side software service.

n Traditionally, SaaS services use REST but SOAP (as discussed later)
is also used. SaaS services are also hosted on the cloud just like Web
services, but a SaaS application usually calls the services using
RESTful services, where as web services make calls using RPC
(Remote Procedure Call) 24

SOA
n SOA = Service Oriented Architecture
n SOA is not a reference architecture, it is a

technology stack for application integration
n The essence of a SOA lies in independent

services interconnected by messages
n On the Web, a specific SOA technology stack is

Web Services (W3C)

26

Web
browser

Web
server

HTML
HTTP

Client
Server

XML
HTTP

SOAP

WSDL

Web

Web Services

Client
Web
Server

XML
HTTP

JSON

WADL RESTful WS

The SOA style

27

API vs SOA

n API technology focuses on the consumption of the back-end services
created using SOA principles.

n APIs can be thought of as an evolution of SOA: creating and exposing
reusable services.

n The main difference between them is that APIs are focused more on
making consumption easier, whereas SOA is focused on control and
has an extensive and well-defined description language 28

SOA: example

29

SOA technology stack
D

ata A
rchitecture and B

usiness Intelligence

Q
oS, Security, M

anagem
ent, and

M
onitoring Infrastructure

Service

Integration (Enterprise Service B
us A

pproach)

consumers

business processes
process choreography

services
atomic and composite

service components

operational systems

Service C
onsum

er
Service Provider

AJAX Portlets WSRP B2B Other

OO
Application

Custom
Application

Packaged
Application

G
overnance

Main SOA Standards (the SOA soup)

n XML (Extensible Markup Language): a data markup language for Web services
n SOAP (Simple Object Access Protocol): a W3C-approved standard for

exchanging information among applications
n WSDL (Web Service Description Language): a W3C-approved standard for

using XML to define Web services
n WADL (Web ApplicationDescription Language): is the REST equivalent of

WSDL, WADL is based on XML and models the resources provided by a service
and the relationships between them

n UDDI (Universal Description, Discovery, and Integration): an OASIS-approved
standard specification for defining Web service registries

n WS-Reliability (Web Services Reliability): a SOAP-based protocol for
exchanging SOAP messages, with delivery and message-ordering guarantees

n WS-Security (Web Services Security): a SOAP-based protocol that addresses
data integrity, confidentiality, and authentication in Web services

n JEE: the Java Platform, Enterprise Edition, with APIs for deploying and
managing Web services

n WSIF (Web Services Invocation Framework): an open source standard for
specifying, in WSDL, EJB implementations for the Web server

n WSRP (Web Services for Remote Portlets): an OASIS standard for integrating
remote Web services into portals

n BPEL (Business Process Execution Language): a standard for assembling sets
of discrete services into an end-to-end business process

Standardizing bodies for SOAs
n W3C (established 1994)
n OASIS (1993), consortium of former GML

providers, deals with applications using XML
n OMG (1989)
n WS-I (2002), promotes interoperability among the

stack of Web Services specifications

OMG Standards for SOA

Interfaces defined by enterprise context

Data Data Data
Data

ServersMainframes Mainframes
Servers

BPMN

UML

BPDM

SBVR

ODM UML

RAS

J2EE UML
Profile

CORBA
UML Profile

CWM/
IMM
KDM

Business
Process

Business
Services

Task
definition

Task
implementation

Components

Operational
Resources

Interfaces defined by enterprise semantics and requirements

Typical issues in SOA
n Model, design, and implement a SOA
n Automate business processes by mapping them to the

architectural model
n Orchestrate services and execute processes with the

Business Process Execution Language (BPEL)
n Choreography describes a global protocol governing how

individual participants interact with one another
n Achieve interoperability within a SOA using proven

standards and best practices
n Secure and govern an enterprise SOA

Elements of SOA Design

n Business Modeling
n Service Oriented Architectural Modeling and Design
n Model Driven assumptions (loose coupling)
n Distributed objects and MOM (Message Oriented

Middleware) for component-based sw systems

SOA design patterns http://soapatterns.org

n Service-orientation has deep roots in distributed
computing platforms,

n Many SOA design patterns can be traced back to
established design concepts, approaches, and
previously published design pattern catalogs

36Historical influences on SOA patterns

Orchestration and choreography
n An orchestration process has public and private activities
n The public activities are those required by the choreography
n Private activities are there to meet internal requirements, but are not

visible to partners
n The figure shows the public activities of the orchestration process for an

energy retailer

37www.packtpub.com/article/modeling-orchestration-and-choreography-in-service-oriented-architecture

Business modeling

38

http://www.ibm.com/developerworks/rational/library/360.html

Service oriented modeling and architecting

39

Model driven SOA design

40www.theenterprisearchitect.eu/archive/2009/06/03/a-framework-for-model-driven-soa

Services and SOAs
n A service is a program interacting via message

exchanges
n Using Web Services all messages and service

descriptions are written in XML
n A SOA is a set of deployed services cooperating

in a given task
n Adapt to new services after deployment

SOA Concepts

Edge

Message Exchange
Pattern

describe

Operational
Requirements

enforce State

manageService

Expose itself using

Messages

Process/Create

direction & types of

Contracts

bound by

contain Schemas define structure of

governed by

Policies

implement

SOA: main components and relations

43

The essence of SOA
n Use other services as RPC servers for your app
n Web 1.0: large sites organized this way internally

n Yahoo!, Amazon, Google, …: external “Services”
available, but complex: Doubleclick ads, Akamai

n XML based Web Services msgs and descriptions
n Web 2.0: public service API’s

n Services: Google API, Amazon CloudFront...
n Platforms: Facebook, Google Maps, ...
n Mashups, e.g. housingmaps.com
n User-composable services, e.g. Yahoo Pipes

44

Example: Amazon Cloudfront

http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/HowCloudFrontWorks.html 45

Simple SOA architecture

46
http://docs.oracle.com/cd/E21764_01/integration.1111/e10224/fod_intro1.htm#CHDEBGCJ

A workflow based
on a SOA

n This workflow shows how
services, both internal to an
enterprise, and external at other
sites, can be integrated using a
SOA architecture to create an
ordering system.

n The BPEL process orchestrates
all the services in the enterprise
for order fulfillment with the right
warehouse, based on the
business rules in the process

47docs.oracle.com/cd/E21764_01/integration.1111/e10224/fod_hi_level_fod.htm

Example Web 1.0 SOA: amazon.com
n ~50 “two-pizza” teams of

“developer/operators”
n ~10 operators

n monitor the whole site
n page the resolvers on alarm

n ~1000 resolvers
n 10-15 per team, 1 on-call 24x7
n monitor own service, fix problems

n Over 140 code change commits/month
n SOA (like Yahoo, Google, others)

web serverweb serverweb server

web serverweb serverservice A
web serverweb serverservice B

web serverweb serverservice C

DB DB DB

P. Bodík et al., Advanced Tools for Operators at Amazon.com, Proc. ICAC 2005

SOA based on RPC

n Transport: HTTP(S)
n Data interchange:

n XML DTD (e.g., RSS)
n JSON (Javascript Object Notation)

n Request protocol:
n SOAP (Simple Object Access Protocol)

n JSON-RPC

n See also WebHooks (HTTP POST callback, for
“push”) www.webhooks.org

49

AJAX vs SOA

n AJAX: client ó server
n A client makes async requests to a HTTP server
n client-side JavaScript upcall receives reply and

decides what to do
n response includes XHTML/XML to update page, or

JavaScript to execute

n SOA: server ó server or client ó server
n An initiator makes (sync or async) requests to an

HTTP server
n In the past, initiator was a server running some app
n today, JavaScript clients can exploit this approach

50

Two ways to do it: thin or fat clients

51

“Thin”
browser

client

Web 2.0
app

Craigslist.org

Google Maps“Fat” browser
client

+ Client portability
+/– Client performance (both app download &

JavaScript execution)
+ Availability of utility libraries for app development
– Privacy/trustworthiness of aggregator app
– Caching

REST (Representational State Transfer) style
n Architectural style:

n Client-server, stateless, cache
n description of properties that made Web 1.0 successful by

constraining SOA interactions
n In context of SOA for Web 2.0

n HTTP is transport; HTTP methods (get, put, etc.) are the
only commands

n URI names are a resource
n Client has resource ó has enough info to request

modification of the resource on server
n A cookie can encode part of transferred state

n If an app is RESTful, it is easy to “SOA”-ify
52

REST style
n Representation State Transfer (REST) was

introduced by R.Fielding to describe an
architectural style of networked software systems

n REST prescribes how a well-designed Web
application behaves: a net of web pages (a virtual
state-machine), where the user progresses through
an application by selecting links (state transitions),
resulting in the next page (representing the next
state of the application) being transferred to the
user and rendered for use."

http://www.ebuilt.com/fielding/pubs/dissertation/top.htm

Why is it called
"Representation State Transfer"?

ResourceClient
http://www.boeing.com/aircraft/747

747.html

The Client references a Web resource using a URL. A representation of the resource
is returned (in this case as an HTML document).
The representation (e.g., Boeing747.html) places the client application in a state.
The result of the client traversing a hyperlink 747.html is another resource is accessed.
The new representation places the client application into yet another state.
Thus, the client application changes (transfers)
state with each resource representation --> Representation State Transfer!

Fuel requirements
Maintenance

...

Motivation for REST

"The motivation for developing REST was to create
an architectural model for how the Web should work,

such that it could serve as a framework for the Web protocol standards.

REST has been applied to describe the desired Web architecture,
help identify existing problems, compare alternative solutions,

and ensure that protocol extensions
would not violate the core constraints that make the Web successful."

- Roy Fielding

REST with HTTP examples
HTTP GET HTTP PUT HTTP POST HTTP DELETE
Collection URI, such as http://example.com/customers/257/orders

List the members of
the collection,
complete with their
member URIs for
further navigation

Replace the
entire collection
with another
collection

Create a new entry in the
collection. The ID created is
usually included as part of
the data returned by this
operation.

delete the
entire
collection

HTTP GET HTTP PUT HTTP POST HTTP DELETE
Element URI, such as http://example.com/resources/7HOU57Y

Retrieve a
representation of
the addressed
member of the
collection in an
appropriate MIME
type

Update (or
create) the
addressed
member of the
collection

Treats the addressed
member as a
collection in its own
right and creates a
new subordinate of it.

Delete the
addressed member
of the collection.

56

REST vs SOAP: example
n A company deploying 3 Web services to enable its

customers to:
n get a list of parts
n get detailed information about a particular part
n submit a Purchase Order (PO)

n the REST solution first, then the SOAP solution

57

The REST way of Implementing the
Web Services

Response
(HTML/XML doc)

W
eb

 S
er

ve
r

HTTP GET request URL 1

Response
(HTML/XML doc)

HTTP GET request URL 2

HTTP POST URL 3

HTTP responseURL to submitted PO

PO
(HTML/XML)

Parts
List

Part

PO

HTTP response

HTTP response

Implementing a Web Service
using SOAP

• Service: Get detailed information about a particular part
– The client creates a SOAP document that specifies the procedure

desired, along with the part-id parameter.

<?xml version="1.0"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>

<p:getPart xmlns:p="http://www.parts-depot.com">
<part-id>00345</part-id>

</p:getPart>

</soap:Body>
</soap:Envelope>

the client will HTTP POST this document to the SOAP server at:
http://www.parts-depot.com/soap/servlet/messagerouter

Note that this is the same URL as was used when requesting the parts list.
The SOAP server peeks into this document to determine what procedure to invoke.

Implementing the Web Services
using SOAP

Request
(XML doc)

Response
(XML doc)

W
eb

 S
er

ve
r

SOAP envelope

HTTP POST
URL 1

HTTP Response

getPartsList()

Request
(XML doc)

Response
(XML doc)

HTTP POST
URL 1

HTTP Response
getPart(id)SOAP Server

Note the use of the same URL (URL 1) for all transactions.
The SOAP Server parses the SOAP message to determine which method to invoke.

All SOAP messages are sent using an HTTP POST.

PO
(XML doc)

HTTP POST
URL 1

submit(PO)
Response
(XML doc)

HTTP Response

Dynamic content generation
n Most Web 1.0 (e-commerce) sites actually run a

program that generates the output
n Originally: templates with embedded code

“snippets”
n Eventually, embedded code became “tail that

wagged the dog” and moved out of the Web server
n Languages/frameworks evolved to capture

common tasks
n Perl, PHP, Python, Ruby on Rails, ASP, ASP.NET, Java

Servlet Pages, Java Beans/J2EE, ...

61

SaaS 3-tiers architecture

n Common gateway interface (cgi): allows a Web
server to run a program
n Server maps some URI’s to application names
n When the app is run, it gets the complete HTTP

request including headers
n “Arguments” embedded in URL with “&”

syntax or sent as request body (with POST)
http://www.foo.com/search?term=white%20rabbit&show=10

&page=1

n App generates the entire response
n content (HTML? an image? some javascript?)
n HTTP headers & response code

n Plug-in modules for Web servers allow long-
running CGI programs & link to language
interpreters

• Various frameworks have evolved to capture this structure

62

HTTP
server

application

persistent
storage

app
server

storage

SaaS 3-tiers deployment
n HTTP server (“web server”)

n “fat” (e.g. Apache): support virtual hosts, plugins for
multiple languages, URL rewriting, reverse proxying,

n “thin” (nginx, thin, Tomcat, ...): bare-bones machinery to
support one language/framework; no frills

n Application server
1. separate server process, front-ended by a “thin” HTTP

server
2. or linked to an Apache worker via FastCGI or web server

plug-in: mod_perl, mod_php, mod_rails, ...
n Apache can spawn/quiesce/reap independent processes

n Persistent storage
n Common RDBMS (MySQL, PostgreSQL, etc.)
n communicate w/app via proprietary or standardized

database “connector” (ODBC, JDBC, ...)
n Hence LAMP: Linux, Apache, MySQL, PHP/Perl

63

HTTP
server

application

persistent
storage

app
server

storage

Social Computing

n Web 1.0: add value via mass customization
n select content for you based on best guesses about your interests
n resource: demographic/analytic data about users

n Web 2.0: add value via connecting to social network
n vendor: your friends’ interests are a good indicator of your interests
n user: value added to existing content == how your friends interact

with it
n resource: social networks

n From social networking site to social network as a way of
structuring applications

64

Social Computing
n Amount of content “created” by each user small

n e.g., tweets, rate video, play a Facebook game
n but still creates lots of short random writes

n consider “Like” feature on Facebook
n social graphs hard to partition

n current developers should not ask whether social
computing is part of their app, but how

65

Facebook “connect”

n Facebook plug-in apps

66

AJAX

Facebook.com Your app2.
3.

FB data
FBQL

4.html

1.

SOA

3.
Your app Facebook.com

FB data

html+
xfbml

1.

4
.

2 (opt.).

REST

REST via JavaScript & XFBML
�HTML IFRAME w/FB content

Google Maps

n App embeds Javascript client code (provided by Google)
n client-side functionality: clear/draw overlays, etc.
n server-side functionality: fetch new map, rescale, geocoding

n Attach callbacks (handled by your app) to UI actions
n Result of callback can trigger additional calls to Google

Maps code, which in turn contact GMaps servers

html+
js

Your
app

Google
Maps

1.
2.

3.
4.

67

Mashup

68
http://www.programmableweb.com

Mashups: housingmaps.com

69

Microservices
n "Microservice Architecture" describes a particular

way of designing software applications as suites of
independently deployable services.

n While there is no precise definition of this
architectural style, there are certain common
characteristics around organization, business
capability, automated deployment, intelligence in
the endpoints, and decentralized control of
languages and data

70
http://martinfowler.com/articles/microservices.html

Microservice technologies timeline

71

Summary: SOA principles
n Services are autonomous
n Services are distributable
n Services are loosely coupled
n Services share schema and contract, not class
n Compatibility is based on policy
Common examples of service-oriented applications
include sharing information, handling multistep
processes such as reservation systems and online
stores, exposing specific data or services over an
extranet, and creating mashups that combine
information from multiple sources

72

SOA benefits: summary
n Domain alignment. Reuse of services with standard interfaces

increases business and technology opportunities and reduces
costs

n Abstraction. Services are autonomous and accessed through a
formal contract, which provides loose coupling and abstraction

n Discoverability. Services expose descriptions that allow other
services to locate them and automatically determine the interface

n Interoperability. Because the protocols and data formats are
based on industry standards, the provider and consumer of the
service can be built and deployed on different platforms

n Rationalization. Services can be granular in order to provide
specific functionality, rather than duplicating the functionality in
number of applications, which removes duplication

73

Before and after SOA

74https://herbertograca.com/2017/11/09/service-oriented-architecture-soa/

Self test
n Which are the consequences of defining software “a
service” (instead of “a good”)?

n What are the main features of a SOA architectural style?
n What are the main features of the REST architectural style?
n Discuss the difference between REST and SOAP-based

architectures.
n How can we see that a site is RESTful?
n Which architectural issues and patterns are typical of

systems based on SOA technologies?

75

References
n Erl, SOA design patterns, Prentice Hall, 2008
n RotemGalOz, SOA patterns, Manning, 2012
n Richards, Microservices vs SOA, O’Reilly, 2015
n Wolff, Microservices, AW, 2016
n Daniel & Matera, Mashups, Springer, 2014

76

Relevant sites
n www.soapatterns.org
n www.omg.org/technology/readingroom/SOA.htm
n martinfowler.com/articles/microservices.html
n www.ibm.com/developerworks/architecture/library/ar-logsoa
n aws.typepad.com/
n kasunpanorama.blogspot.it/2015/11/microservices-in-
practice.html

n www.packtpub.com/article/modeling-orchestration-and-
choreography-in-service-oriented-architecture

n www.ibm.com/developerworks/rational/library/09/modelingwiths
oaml-1/index.htm

77

Journals and conferences
n IEEE Transactions on Network and Service management
n Future Generation Computing Systems
n IEEE Int. Conf. on Web Services

78

Questions?

