Architectural styles
for user interface design

Agenda

* Motivation: user interfaces have
components with several dependencies

 The Model View Controller architectural
style and its variants

* The architectural styles of Web
applications

Problems with Ul design

« User interfaces are often subject to changes in
requirements, independent from the application
— New types of input devices
« Touch screen, mouse, special keyboards

— New types of output
 Porting to different “look-and-feel”
 Alternative visualizations: charts, graphs, plots
» Output heterogeneity: applets, Javascript, HTML, Swing

— Prototyping the user experience

« The user interface changes more often than the
business logic of a software product

Dependencies among windows

data
Blue: 43%
Green: 39%
Yellow: 6%
¥ |Red: 10% L
'/' Purple: 2% \\
e £
O O Document Window O O Document Window
|A)
50 Blue 43%
37,5 Green 39%
25 Yellow 6%
12,5 Red 10%
0 Purple 2%

Separation of the user interface

Application

Presentation Layer

Ul Components

Ul Process Components

Business Layer

Sl i Web applications:
Business Workflows Business Components | The presentation tier
Data Access Layer changes often
Drtastems Lang e " The business tier does not

Data Stores

S = =

Separation of the user interface:
why it Is convenient

" Market pressure
* New technologies
* Fashionable “Look and feel”
" Modify the ‘way of working’
» E.g. form-based to task-based
" Extending an application architecture
+ E.g. “Webify” a rich client application

to a classic web application

From a rich client

_4Rich Client RI / Rich Web Classic Web
_____________ |/——&————'——\' ——‘__———_———;
Presentation Presentation Presentation | | Present.atlon | Presentation |,
: . . | Logic ' : ,
s Logic Logic Logic . : Engin |
OCJ : | :
= |
O . Business | | |
Business Coaie u | ,
Logic ! | | |
I | :
| tire
| Presentation |, resmyraan |
| el | Logic ,
: ogic ' |
| ‘ |
|
) Business Business i Business | Business ||
(% Logic Logic , Logic | Logic |
|
| ' :
Data Data Data | Data | Data |
Interaction Interaction Interaction : Interaction |, Interaction |1
Logic Logic Logic { Logic | Logic 1

Design of the user interaction

Separate modeling of domain, presentation, and
actions based on user input into three subsystems:
* Model

— Manages behavior and data of application domain
* View
— Manages display of information

« Control

— Processes user input and informs model and/or view of
change if appropriate

Burbeck "Applications programming in smalltalk-80 (tm): How to
use model-view-controller" Smalltalk-80 v2. 5. ParcPlace, 1992,

The model, the view, and the controller

In a typical application we find three fundamental parts:

Data (Model)
An interface to view and modify the data (View)
Operations that can be performed on the data (Controller)

The model represents the data, and does nothing else; it does NOT depend
on the controller or the view

The view displays the model data, and sends user actions (e.g. button clicks)
to the controller. The view can be independent of both the model and the
controller; or actually be the controller, and therefore depend on the model

The controller provides model data to the view, and interprets user actions
such as button clicks. The controller depends on the view and the model.

In some cases, the controller and the view are the same object

//Example 1 (no MVC):

void Person::setPicture(Picture pict){
m picture = pict; //set the member variable
m_listView->reloadData(); //update the view

//Example 2 (with MVC):
void Person::setPicture(Picture pict){
m picture = pict; //set the member variable

void PersonListController::changePictureAtIndex(
Picture newPict, int personIndex) {
m personList[personIndex].setPicture(newPict); //modify model

m_listView->reloadData(); //update the view

Problems

" Business logic need knowledge of the Ul
+ E.g. coloring a field when given a value

= Different presentation tiers have different
capabilities
- E.g. can we still color a field when given a value
" Ul performance can influence the implementation
- E.g. gather more data before sending

Typical requirements

" Decouple presentation from business logic
» Define service interface & data requirements

" Integrate local and remote data sources prior
to display

" Enable connected and disconnected use

Design of user interactions

User interface Controller
events (incapsulation of
> interaction
semantics)
View
Graphical : :
. I f
display «—— (incapsulation o

display choices)

Model
(incapsulation of
information)

MVC goal

« The goal of MVC is, by decoupling models and views, to
reduce the complexity in architectural design and to increase
flexibility and maintainability

3
°4

Controller [P

Ml

View

Comtvolier

14

MVC participants

The MVC style has three participants:
*The Model is a representation of the application data.

*The View is the collection of visual elements presented to
the end user

*The Controller coordinates changes to the model and the
view based on business logic execution.

This specification is sufficiently vague and allows for many
possible designs and different behaviors.

In particular, it does not specify how the three participants
interact with each other.

Model: CRC

Class Collaborators
Model
Responsibilities _
« Provides the functional core * View
- Itis a Repository for persistent data * Controller

» Registers Views and Controller interest in data
* Notifies registered Views or Controllers about data
changes

View: CRC

Class

. Collaborators
View

Responsibilities
- Displays information to the user * Model

« Creates and starts its Controller * Controller
« Updates when new data arrive from the Model

Controller: CRC

Class

Controller Collaborators

Responsibilities
 Handles input events from the user * Model
- Translates an event in a query for the Model or View | * View

« Updates when new data arrive from the Model

Unique controller

Controller
— o<
- . ‘1 T~ ~
P - // \ ~ -~ -
View1 ! “ A
< Model
View2 “
]
View3

This architecture is problematic if requests to change the model come
from many different sources (such as GUlI components, keyboard and
mouse event listeners, and timers), so that it is not practical to combine
all of them in one class.

Multiple controllers

» Strong coupling!

Controller! === = > Model |€----- Controller2

Model as “repository”

Controller1 === = > Model Ie
N
P /I \
4 /I \
// 1 \
Pad I
) ! \
View1 ! \
l \
] \
View?2 \\
W

Controller2

Example: online shopping cart

nere are a variety of ways to implement an online store
ne next slide shows a possible solution based on MVC

he slide shows the Model, View, and Controller

modules, the connections between them, and some
back-end database support

This is a simplified design: many features of an online
store are not included in this implementation such as
customer information processing, shipping and handling
processing, accounting processing, etc.

Online store: architecture

client

View Controller Model
catalog
addltem
| show shoppin
—{ catalog removelte PPINg
| cart
checkout o O
show! 1=
shoppingCart | |

show
confirmation |

,,

db

Online store: A view

2 http://localhost/shoppingCart/jsp/ShowProductCatalog. jsp
File Edit View Favorites Tools Help

@ Back ~ @ = lﬂ @ h /) search S \(Favontes G‘Medla {3

Address @j http:/localhost/shoppingCart/jsp/ShowProductCatalog. jsp

DVD Catalog

' DVD Names Rate Year Price Quantity ~ AddCart
SecretWindow PG-13 2004 1495 | AddToCart

Shrek PG 2004 1995 AddToCan

opiderhlan PG 13 2004 18 95 | AddToCart

Martin R 2004 1395 | [AddToCart

public abstract class Model
{
private readonly ICollection<View> Views = new Collection<View>():;
public void Attach(View view)
{
Views.Add (view);

public void Detach(View view)
{
Views.Remove (view) ;

}
public void Notify()

{
foreach (View o in Views)
{
o.Update();
}

}

Update View Execute event

Model > View Controller public class ConcreteModel : Model
> > {

+Altach{in observer : View) +Update()

L Detachiin obs Vi +Algorithminterface() }
+N2[ify[)(m observer : View) +Contextinterface() A public abstract class View

public cbject ModelState { get; set; }

{
A public abstract veoid Update():
private readonly Controller Controller;
protected View()
{
}
ConcreteView ?ronected View(Controller controller)
-observerState Controller = controller;

subject

}
+Update() public void ContextInterface()
{

Controller.AlgorithmInterface();

}
ConcreteModel Update Model ConcreteController }
-subjectState

public class ConcreteView : View
+SetState()

+AlgorithmInterfacel {
*GetState[) g 0 private object ViewState;

private ConcreteModel Model { get; set; }
public ConcreteView(ConcreteModel model)

Figure 3: MVC :

}
public override veoid Update()

{

Model = model;

ViewState = Model.McdelState;
}
}

public abstract class Controller

{
public abstract void AlgorithmInterface():

}

public class ConcreteController : Controller

{
public override void AlgorithmInterface()

{

// code here

}

The MVC style: class diagram

 Model has the knowledge about the application domain —
it is also called business logic

* View takes care of making application objects visible to

system users

« Controller manages the interactions between the system

and it users

Controller

initiator

*

View

1 repository

Model

subscriber

1 notifier

*

A hierarchy of views and controllers

Model
Window j r WindowControl
ZF Panel PanelControl %
Scrollbar ScrollControl
Menulist MenuControl

Button1 ButtonControl

MVC and design patterns

In [GoF] MVC is not defined as a design pattern
— but as a “set of classes to build a user interface”
— The main structural pattern used is Composite

— The main behavioral patterns used are Observer and
Strategy

MVC can also use:
— Factory Method to specify the default controller class for a view;
— Decorator to add scrolling to a view;
— Chain of Responsibility for handling events

http://c2.com/cgi/wiki?ModelViewControllerAsAnAggregateDesignPattern

public abstract class Subject
{

| |
O b S e rve r d e S I n private readeonly ICollection<CObserver> Observers =
new Collection<Cbserver>():
public veoid Attach(Observer observer)

{
p a tte r n Observers.Add (cbserver) ;

}
public veid Detach(Observer cbserver)

{

Observers.Remove (cbserver);

}
public void Notify()

{

foreach (Observer o in Observers)

{

cbsarvers o.Update():
Subject »| Observer }
—— . }
‘&ﬂz’m‘*xg{' :%b::::;ra) foreach{Obsaerver o in cbservers) +Updata(} }
+Nolify()
o0.Update();
) public class ConcreteSubject : Subject
{
subject i 1 ~ - -
ConcreteSubject] 0 : public cbject SubjectState { get; set; }
-subjectState B [observerstate

+SetState() ohssn.reerata = ‘ Update()
[+ GetState() 7 retum subjectState subject GetState(); public abstract class Cbserver
{

public abstract void Update():

Figure 1: Observer }

public class ConcreteObserver : Observer

{
private cbject ObserverState;
private ConcreteSubject Subject { get; set; }

public ConcreteObserver (ConcreteSubject subject)
{
Subject = subject;
}
public cverride wvoid Update()

{
ObserverState = Subject.SubjectState;

}

MVC based on Observer dp

Observer

subject ﬁ

/

Model

- CoreData
- SetOfObservers

+ attach(Observer)
+ detach(Observer)
+ notify()

+ getData()

N

AN
NN

\ \ -service

thisexample

there isno concrete subject in

+ update()

:

Observer ﬁ

View

-myModel

<- —getdata. __|

ﬁ \ attach

ConcreteObservers ﬁ

-myController — \
+initialize(Model) \
+ makeContwoller()
+activate() S \
+display () display Controller
+update () ~“myModel
- myView
[—+ initialize(Model, View)

+ handleEvent()
+ update()

Example 2: a harmful dependency

Control

Main
+init()

e - - — -

=<instantiate==

|
|
|
c<instantiate>>
I
|

View

A4

DeparturesScreen

-startDate
-endDate

+DeparturesScreen(DeparureControl)

T

;<<instantiate>>
|
|

'

StatusWindow

+StatusWindow(DeparturesScreen)
+showStatus(Departure)

Model

DepartureControl

+watchDepartures(s : StatusWindow)

content

1

"V
Departure
-departureDate
-departureTime
-arrivalTime
-ticketPrice

+getTickets()

L] L] /

Ticket Bus

-datePurchased
-price

-husMumber
-seats

Example 2: deleting a harmful dependency

Control
- Model
Main
T I LSS SR S S S = DepartureControl
: <<instantiates> +watchDepartures(s : StatusWindow)
I
T 1
I
I content
- s
:=:<|nstant|ate>> 1 Vi
T Vi Departure
iew
\:/ <<Interface>> -departureDate
DeparturesScreen Observer -departureTime
-arrivalTime
+showStatus() aTva
-StaanE:te -ticketPrice
-En e
+getTickets()
+DeparturesScreen(DeparureControl) sepiCrowdedaseaD
' 1 :
;<<instantiate>> /
| \
\Y/ Ticket Bus
StatusWindow -datePurchased -busNumber
+StatusWindow(DeparturesScreen) -price -seats
+showStatus(Departure)

MVC behavior

Model-View-Controller Architecture

% Event Generate View
=
’ A
Input Output
) }
Q@
© .
E Process Event Process Results »| Select View
o
o
O r
—
=
=)
a) e
88
sS4 Business i ¥ :
2_ > Logic < » Process Object
= I
= E
g g
g o Object < Data Access
=]

MV C interactions

r

Model

* Encapsulates application state

* Hesponds to state queries

* Exposes application
functionality

* Notifies views of changes

£ i
View Controller

« Rendars the modals * Defines application behavior

» Requests updates from models - Maos'user actions to
* Sends user gestures o controller "4~] | o model updates
£ ntrall : Ry » Selects view for response
Allows controller to select view U :
* One for each functionality

Method Invocations
Events

Basic interaction for MVC

35

Initialization for MVC

Main Program

initialize make controller

View

<

Model,View

Contoller

36

Design of the Presentation Layer

" Passive Model
* Model does not report state changes

" Active Model

* Model reports state changes to view(s)
— Observer pattern (Publish/Subscribe)

MVC passive

Controller

= =—

View

MVC passive

:Controller :Model View

I I I
handleEvent | : :
_ 1 I
service 0 0
I
I
I
I
1 I
update i

; >

etData
< g
1
1 T

MVC active

. T R —— Controller
I
]
v Vv .
. <<interface>> 0
Model = => Observer I
+update [
A pdate() |
i L Y

MVC active

:Model ‘View
| I
handleEvent I :
. I
‘ Notify '
' i
I
update "
ﬁ
getData
Data
—-_——— = === =D

MVC:

component diagram example

<<filax>
e

Userinterface Files :

<<executable >
L]

{_ R Controller

CMSController :

W

hdadel

CourseAdministrator :

Course : Course Topic : Topic

Course Calendar : Course Calendar

Student : Student

<<library > >
Database Access

MV C Architectures

 The Model should not depend on any View or Controller

« Changes to the Model state are communicated to the View

subsystems by means of a “subscribe/notify” protocol (eg.
Observer pattern)

« MVC is a combination of the repository and three-tiers
architectures:

— The Model implements a centralized data structure;

— The Controller manages the control flow: it receives
iInputs from users and forwards messages to the Model

— The Viewer pictures the model

MVC: an example

s Two different views of a

file system:
= The bottom window
dDesignPatterns2.ppt Info visualizes a folder named
@ SN Comp-Based Software
. Engineering
PowerPoint document
130K on disk(127,885 bgtes used) m The up WindOW Visualizes
Teaching: TUM WS 97/98: 1 I 1
CZ::p-Bguod Software Engineering: flle |nf0 related tO flle
Comp-Based Software Engineering E1 & named
Narne Size Kind Last Modifi 90DeS|gnPattern32.ppt
L SSoftwarelifecycle pdf 410K Acrobat'“_Exchange Fri, Ded & . .
[SSoftwarelifecycle 271K PowerPoint document Fri, De u The flle name IS
D éProject Management 780K PowerPoint document Fri, Ja Visualized into three
) éProject Management pdf 293K Acrobat™ Exchange ... Fri, Ja .
) 7Systembesign.pdf 85K Acrobat™ Exchange ... Fri, Ja dlﬁerent places

) 7SystemDesignl.ppt 137K PowerPoint document Fri, Ja
[8DesignRationale pdf 358K Acrobat™ Exchange ... Fri, Ja
D s 208K PowerPoint document Fri, Ja
= : 130K PowerPoint document Thu, Ja
104K PowerPoint document Mon, D
D Introduction pdf S59K Acrobat™ Exchange ... Fri, Noy

Juf o

44

MVC: communication diagram

1. Both InfoView and FolderView subscribe the changes to the model File when
created

2. The user enters the new filename

3. The Controller forwards the request to the model

4. The model actually changes the filename and notifies the operation to
subscribers

5. InfoView and FolderView are updated so that the user perceives the changes in
a consistent way

2.User types new filename

—o :Controller 3. Request name change in model

1. Views subscribe to event

:Model
5 . Updated VieWS /

L — :InfoView 4. Notify subscribers

N 4 :FolderView

The benefits of the MVC style

The main reason behind the separation (Model, View, and
Controller) is that the user interface (Views) changes much
more frequently than the knowledge about the application

domain (Model)

The model and the views can become very reusable
This style is easy to reuse, to maintain, and to extend

The MVC style is especially effective in the case of
interactive systems, when multiple synchronous views of
the same model have to be provided

MV C benefits

The model is strictly separated from the Ul

Changes to the data in the underlying model are
reflected in all the views automatically

The Ul (Views and controller) can be changed without
changing the data model

The views do not interact

MVC architectures can be used as extensible
frameworks, simplifying maintenance and evolution

MVC is quite portable

MVC weaknesses

Complexity is increased

Changes to the Model must be published to all the Views
which subscribed to them

Each pair Controller/View has strong interdependencies
Controllers have to know well the Model

Inefficient data access can result because the separation
of Views and Model data

ClientServer 3-tiers vs MVC

 The CS 3-tiers style may look similar to the MVC style;
however, they are different

« Afundamental rule in a CS 3-tiers architecture is: the
client tier never communicates directly with the data tier;
all communication must go through the middleware tier:
the CS 3-tiers style is linear

* Instead, the MVC style is triangular: the View sends
updates to the Controller, the Controller updates the
Model, and the Model updates directly the Views

MVC on CS 3-tiers

Model-View-Controller (MVC) Architecture

~Controller \

Controls application
behaviour. Maps user
actions to model. Selects
views for response.

Client

-
4. select view

Business logic and
application state
(domain model).
Renders the model, and

hould only have display logic. §

Application tier Data tier

ant tier

50

Java interaction frameworks

 Most MVC frameworks follow a push-based architecture
also called "action-based". They use actions that do the
required processing, and then "push” the data to the
view layer to render the results

« An alternative is a pull-based architecture, also called
"component-based". These frameworks start with the
view layer, which can then "pull" results from multiple
controllers as needed. Multiple controllers can be
iInvolved with a single view

— Action-based frameworks: Apache Struts, Spring

— Component-based frameworks: Apache Click, Apache
Tapestry, Apache Wicket, Java Server Faces

e

Client
Browser

N

<

Struts?2

-~

(Controller)

‘\

v Servlet
o
v
(View)
A JSP

2

o

<4

o

(Model)
JavaBean

Application Server

-

~

Enterprise
Server

kData Source /

Alternatives to MVC: MVP

User Interaction User Interaction
‘_/ ' ‘""\\#/
Passes Passes
calls to View . Fires calls to View
', events
’
: j Updates
Controller Model Presenter e
Fires s
> events *
W
Manipulates
Model-View-Controller Model-View-Presenter

The Presenter is responsible for binding the Model to the View.
Easier to unit test because interaction with the View is through an interface
Usually View to Presenter map one to one. Complex views may have multi presenters

MVC vs MVP

MVP MvVC

% User % User
$ outpV input

Presentation View View
________________ N R
View notifications :
L A
Application Controll Presentatlion t
logic ontroller
g (Presenter)) << Controller
A A
- My
notifications I notifications I
Domain Model Model
(Business objects) (Business objects)

www.mvcsharp.org/Overview/Default.aspx

> Controller

+Algarithminterface()

JAN

ConcreteController

Update View Execute event
Model View
- >
+Altach(in observer : View) +Update()
+Detachiin observer : View) +Caontextinterface()
+Motify()
JAN
subject
. ConcreteView
-obsarverSlate
+Updata()
ConcreteModel Updale Model
-subjectState <
H+SetState()
+GetState()
Figure 3: MVC

+AlgarithmInterface()

View

+Update()

Model

+SetState()
+GetState()

Interactor

+Addltemn()

Presenter

Selection

+CreateView()

-State

?

Command

+doCommand()

+undoCommand()

Figure 6: MVP

http://www.codeproject.com/Articles/42830/Model-View-Controller-Model-View-Presenter-and-Mod

MVP: two flavors

« Passive view: the interaction with the Model is handled
only by the Presenter; the View is not aware of changes
to the model

« Supervising controller: The interaction with the Model is
handled NOT only by the Presenter. The View uses data
binding to update itself when the Model is updated.

% <- eyt
invoke Raise event user

Controllers Presenter ViewModel

Services

Services Services

Repositories Repositories Repositories

3-Layer Architecture | MVCArchitecture MVP Architecture MVVM Architecture

Alternative to MVC: PAC

(Presentation Abstraction Control)

\1e\
[e v

View [
Model < \

Controller

| A 4

LI vll\{l

COHHOHE
Canfrallatr
S N1 TULT \JTINY

PAC

TOP-Level-Agent

Presentation

R
Control)

Intermediate-Level-Agent

I'/

Control \I

/

Presentation Abstraction

ﬁ‘ Abstraction |

Intermediate-Level-Agent

’k Control

/

Bottom-Level-Agent

Control

Bottom-Level-Agent

Control

Presentation

Abstraction

Abstraction

PAC: responsibilities

The Presentation is the visual representation of a particular
abstraction within the application, it is responsible for defining how
the user interacts with the system

The Abstraction is the business domain functionality within the
application

The Control is a component which maintains consistency between
the abstractions within the system and their presentation to the user
in addition to communicating with other Controls within the system

Note: some descriptions use the term “agent” to describe each
Presentation-Abstraction-Control triad

PAC: collaborations

» the Presentation-Abstraction-Control pattern approaches
the organization of an application as a hierarchy of
subsystems rather than layers of responsibility (e.g.
Presentation Layer, Domain Layer, Resource Access
Layer, etc.)

« Each system within the application may depend on zero
or more subsystems to accomplish its function

« By organizing systems into a hierarchy of subsystems,
each of which are composed of the same PAC
components, any level of granularity of the system can
be inspected while maintaining the same architectural
model

PAC: benefits

» Separation of concerns: each triad (PAC
agent) is responsible for a part of the
application

* Adding new agents is easy
* Agents are easy to distribute

» Changes within an agent do not affect
other agents

References

www.martinfowler.com/eaaDev/ModelViewPresenter.html
www.codeproject.com/Articles/42830/Model-View-Controller-Model-View-Presenter-and-Mod

www.infragistics.com/community/blogs/todd_snyder/archive/2007/10/17/mvc-or-mvp-pattern-whats-
the-difference.aspx

www.javacodegeeks.com/2012/02/gwt-mvp-made-simple.html
msdn.microsoft.com/en-us/library/ff647543.aspx

Styles for the Web

Client-side options

Types of clients Smart Clients
* Rich client
" Thin client
" Smart client
" Special devices

. Network
\ Dependency

Poor User
Experience

Manage /' complex
/ To
Develop

Comparing client-side options

Rich Client

Thin Client

Smart Client

Advantage " Performance " Deployment " Performance
= Offline availability " OS independent = Offline availability
= High integration " Reach = High integration
" Rich Ul " Rich Ul
" Deployment
Disadvantage " Deployment ® Online availability " OS dependent
" OS dependent = Simple Ul
" Limited integration
" Performance
Service " Client based = Server based = Client based
Interface " Proxy " Proxy or direct " Proxy
= Late vs Early binding = Late vs Early binding = Late vs Early binding
Client " Progress 4GL GUI " Progress WebSpeed® " Progress WebClient™
Technology " Microsoft .NET GUI " Microsoft ASP.NET " Microsoft .NET

= Java™ GUI

= Java™ JSP

= Java™ WebStart

Web 2.0

Primitive Ul => Rich Ul
— enable “desktop-like” interactive Web apps
— enable browser as universal app platform on cell phones

“Mass customize” to consumer => Social computing

— tagging (Digg), collaborative filtering (Amazon reviews), etc. =>
primary value from users & their social networks

— write-heavy workloads (Web 1.0 was mainly read-only)
— lots of short writes with hard-to-capture locality (hard to share)

Libraries => Service-oriented architecture

— Integrate power of other sites with your own (e.g. mashups that
exploit Google Maps; Google Checkout shopping cart/payment)

— Pay-as-you-go democratization of “services are king”
— Focus on your core innovation

Buy & rack => Pay-as-you-go Cloud Computing

68

Rich Internet Apps (RIASs)

Closing gap between desktop & Web
— Highly responsive Ul's that don’t require server roundtrip per-action
— More flexible drawing/rendering facilities (e.g. sprite-based animation)
— Implies sophisticated client-side programmability
— Local storage, so can function when disconnected

early example: Google Docs + Google Gears

— include offline support, local storage, support for video, support for
arbitrary drawing, ...

many technologies—Google Gears, Flash, Silverlight...
— client interpreter must be embedded in browser (plugin, extension, etc.)
— typically has access to low-level browser state => new security issues
— N choices for framework * M browsers = N*M security headaches

proposed HTMLS may obsolete some of these

Rich Ul with AJAX
(Asynchronous Javascript and XML)

« Web 1.0 GUI: click —» page reload
« Web 2.0: click - page can update in place

— also timer-based interactions, drag-and-drop,
animations, etc.

How is this done?

1. Document Object Model (1998, W3C) represents
document as a hierarchy of elements

2. JavaScript (1995; now ECMAScript) makes DOM
available programmatically, allowing modification of
page elements after page loaded

3. XMLHttpRequest (2000) allows async HTTP
object requests decoupled from page reload

4. CSS define look and feel

DOM & JavaScript:
Document = tree of objects

» hierarchical object model representing HTML or

XML doc HISTORY LOCATION
 Exposed to JavaScript interpreter
— Inspect DOM element value/attribs
— Change value/attribs — redisplay or fetch new
content from server :;L
* Every element can be given d unique ID CHECKBOX [BUTTON |
:
« JavaScript code can walk the DOM tree or select SASSWORD

specific nodes via provided methods

<input type="text" name="phone number" id="phone number"/>
<script type="text/javascript">

var phone = document.getElementById(' 'phone number');
phone.value='555-1212";

phone.disabled=true;
document.images[0].src="http://.../some other image.jpg";
</script>

71

JavaScript

A browser-embedded scripting language
— OOP: classes, objects, first-class functions, closures
— dynamic: dynamic types, code generation at runtime
— JS code can be embedded inline into document...

<script type="text/javascript"> <!-- # protect older browsers
calculate = functionO) { ... ¥} J/ -->
</script>

— ...or referenced remotely: <script src="http://evil.com/Pwn.js"/>
* Current page DOM available via window, document objects

— Handlers (callbacks) for Ul & timer events can be attached to JS
code, either inline or by function name: onClick, onMouseOver, ...

Changing attributes/values of DOM elements has side-effects, e.g.:
Click me

72

AJAX = Asynchronous Javascript and XML

* Recipe:

— attach JS handlers to events on DOM
objects

— in handler, inspect/modify DOM elements
and optionally do asynchronous HTTP
request to server

— register callback to receive server response

— response callback modified DOM using
server-provided info

« JavaScript as a target language
— Google Web Toolkit (GWT): compile Java => emit JS
— Rails: runtime code generation ties app abstractions to JS

Async comm in a web page

User action invokes a
request from an
XMLHttpRequest

object, which initiates

a call to the server (Document content b (Requestor ’(Callback function bl Server ’
asynchronously. The : ! : :

I I I I

; ; ;

method returns very
quickly, blocking the
user interface for
only a short period of
time, represented by
the height of the
shaded area. The
response is parsed
by a callback
function, which then
updates the user
interface accordingly.

2a. HTTP request .
— =

I i
: 3.HTTP response |

4. Update user interface

SREHERE R

browser client

user interface
A
HTTP request

httn(s) transport
HTML+CSS data

Y

web server

v A

datastores, backend
processing, legacy systems

server-side systems

classic

web application model
Jesse James Garrett [adaptivepath.com

browser client

user interface

JmScllpt call T
4' H1ML+<.;SS data

Ajax engine

A
HTTP request

nttp(s) transport
XML data
v

web and/or XML server

v A

datastores, backend
processing, legacy systems

server-side systems

Ajax
web application model

Traditional Web Application Model

Web Browser

HTML, Images, — 3
CSS, JavaScript Data
< <
> = >
HTTP = Query/Data
Request = Request
Web Server
Ajax Web Application Model
Web Browser
Vc -
HTML, CSS Data . Data
-] - -
User Ajax
Interface > Engine > — >
JavaScript HTTP = Query/Data
Call Request — Request

Web Server

Database

Database

full page refresh

= client [ciick >.. wait . gnﬁuh click rofruh click >
Traditional

synchronous data tnﬂd/ \m transfer Web interaction

=| server

time

partial Ul updates

client
browser Ul

Ajax Engine

asynchronous data transfer data transfer

AJAX 2| server - —
server-side server-side
processing processing

Web interaction .
o=

time

An architecture based on AJAX

Client Browser . HUTTP Server App.

DOM | Decoder : Ul Comp.

""""""" o

event Aupdate Aupdate invoke

|
Service
Provider

J‘ event | Ajax AC : " Aupdate |
<¥t):l Engine : : f .x
1 Aupdate ~ AS " Encoder [* Aupdate

http://arxiv.org/pdf/cs/0608111.pdf

AJAX

AJAX uses JavaScript (or VBScript) on the client side
Client-side Javascript libraries: Dojo or Prototype or Jquery
The server side might be in any language, e.g., PHP, ASP.NET, or Java

Any XML document or text may be returned to the caller: simple text,
JavaScript Object Notation (JSON) or XML are common

Frameworks (RoR, JSF, etc.,) support Ajax.
Normally, requests may only go back to the originating server.

However, mashups (combining diverse site output) may still be
constructed by having the originating server make calls to other servers

Client side mashups may also be built with a dynamic <script> tag

See www.openajax.org

Some useful concepts

* A servletis Java code that runs on the
server when an HT TP request arrives.

« A Java Server Page (JSP) is XHTML+
Java and is compiled to a servlet

» JavaScript is not Java and runs in the
browser

 XHTML is one of many XML languages

% Web page | | Event handler Java serviet | | Application logic

| — ! This sequence
with L1 2: Aaise) di h
DOM 5: Create, [XMLHNpRequest lagram sSNows a
avant XML _
ggzuest T typlCal AJAX
s ' Callback function Interaction
s Create 1 T
c:allbgc:k I
function "

A solid arrowhead
represents a
synchronous call

5: Begister S l I
callback -
|

&: Dispatch I
request
{asyncronous)

7 Send

]
|
|
|
1
|
|
1
| .
Poque | Ll] A stick arrowhead
|
1
|
|
|
|
|
|
1

e represents an
J]?F&';m' asynchronous signal
as XNL

10: Parse
response info
HMAL DT I
|
) i
11: Raise
complebon !
|

aveant 12 I
N Intermogate |
TESpOnSE |
Dok ,
. 13: Update HTML

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
g
|_|" according 1o I
| responss document I
] N I
] L}

-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

A browser Is an application container

“Web apps” include animation, sound, 3D graphics,
disconnection, responsive GUI...
— Browser =~ new OS: manage mutually-untrusting apps (sites)

4
/ é CSS source

Source: Inside Firefox

HTT

=]

é JS source

é HTML source
/

HTML parser

/

/

CSS parser

KK;TML / Style rulfj
/

JS parser
i Code Script
execution
JS VM ——»

DOMcore [—» Style system
DOM tre Computed
styles
Layout

Compressed
images

Image decoder

engine
Image data

Layout objects

Graphics engine

Browsers are fatter and fatter

RIA frameworks/plugins: Flash, HTML 5, Silverlight
Performance, security, energy issues

Cookie and JavaScript management

CSS layout, side-effects of DOM manipulation
Documents can change anytime after loading

Device variation: new issues due to power limits

Bring “desktop-quality” browsing to mobile tel

Enabled by 4G networks and better output devices
Parsing, rendering, scripting are all potential bottlenecks

See www.google.com/googlebooks/chrome for a description in
comic-book form

Example: Rails, a Ruby-based MVC Framework

* Implemented almost entirely in Ruby
« Distributed as a Ruby “gem” (collection of related libraries & tools)
» Connectors for most popular databases

mysql or
sqlite3

Model, View, Controller

Ruby
interpreter

CGl or other dispatching

apache

firefox

Pool of threads:
an architectural pattern for WebServers

« A single threaded web server is not likely to scale up to many
simultaneous clients

 In a multi-threaded web server, the main loop listens for incoming
client connections. When it discovers one, it reads the HTTP request
and creates a request structure. It then creates a new thread and
passes it the request structure

* However, most thread packages are limited to a fixed maximum
number of threads. Also, thread creation and deletion can be
expensive operations unnecessarily repeated under high load. Finally,
a given machine may achieve optimum performance for a certain
number of threads, independent of the number of actual clients

* |If we control the number of threads without regard to the number of
clients, the server can be tuned to maximum performance. So, most
real-world servers use a thread-pool approach

Single-Threaded
Web Server

HTTP request

web
browser

GET schooner.jpg HTTP

/1.0

response

I/

=

setup
WWW
socket

S~

accept
connhection

i

=~ =

S

create
request
struct

1 I

R

S

send

HTTP |:

response

main
thread

AN

delete
request
struct

www3.nd.edu/~dthain/courses/cse30341/spring2009/project4/project4.html

Multi Threaded
Web Server

HTTP request

web
browser

GET schooner.jpg HTTP/1.0

(changing # of threads)

HTTP
response

-

/

N

HTTP ¢

. delete
oXIt request
thread 9
struct

worker thread

send |/

setup

socket

S~

accept
connection

main
thread

T

S

create

request
struct

R

<~ ~

create

] new

response [\

thread

Thread Pool
setup main
AALAN thread
Web Server oo
HTTP request
web q M
browser GET schooner.jpg HWP{& > connection
?v7 L
ATTP o fixed pool of threads create
response = o L request
%3;, worker thread struct
A R | add to list
‘:é get remove
Q- next from list N~
s request || >" """"""" 1
D ques]
send delete :_ _ _”n_kfd_l ift_of_rtiq_ue_st_s_ _
HTTP request (protected by a monitor)g
i response struct

Whic
Whic
Whic

n are t
n are t

N are t

Self test

he motivations at t
he motivations at t

he motivations at t

he basis of MVC?
he basis of MVP?

he basis of AJAX?

Compare the CS style with the MVC style

References

Gamma et al., Design patterns
Bushmann et al., POSA 1, Wiley
aspiringcraftsman.com/2007/08/25/interactive-application-architecture/

aosabook.org/en/index.html
apcentral.collegeboard.com/apc/members/courses/teachers _corner/185168.html

Useful sites

martinfowler.com/eaaDev/uiArchs.html
todoMVC.com

www.infog.com/articles/rest-introduction
stackoverflow.com/questions/2056/what-are-mvp-and-mvc-and-what-is-the-difference
www.codeproject.com/Articles/228214/Understanding-Basics-of-Ul-Design-Pattern-MVC-MVP
www.codeproject.com/Articles/34562/COMET-or-Reverse-AJAX-based-Grid-Control-for-ASP-N

www.programmableweb.com

Java and MVC java.sun.com/blueprints/patterns/MVC-detailed.html
NET and MVC www.devx.com/dotnet/Article/10186/0/page/1
Interface Hall of Fame homepage.mac.com/bradster/iarchitect/shame.htm
Ul Patterns & Techniques time-tripper.com/uipatterns/Introduction

Questions?

