
Architectural styles 
for user interface design

Prof. Paolo Ciancarini
Software Architecture
CdL M Informatica �
Università di Bologna



Agenda

• Motivation: user interfaces have 
components with several dependencies

• The Model View Controller architectural 
style and its variants

• The architectural styles of Web 
applications



Problems with UI design

• User interfaces are often subject to changes in 
requirements, independent from the application
– New types of input devices

• Touch screen, mouse, special keyboards
– New types of output

• Porting to different �look-and-feel�
• Alternative visualizations: charts, graphs, plots
• Output heterogeneity: applets, Javascript, HTML, Swing

– Prototyping the user experience
• The user interface changes more often than the 

business logic of a software product



Dependencies among windows



Separation of the user interface

Web applications:
§ The presentation tier 

changes often
§ The business tier does not



Separation of the user interface: 
why it is convenient

§ Market pressure
• New technologies
• Fashionable “Look and feel”

§ Modify the ‘way of working’
• E.g. form-based to task-based

§ Extending an application architecture
• E.g. “Webify” a rich client application



From a rich client 
to a classic web application



Design of the user interaction

Separate modeling of domain, presentation, and 
actions based on user input into three subsystems:

• Model
– Manages behavior and data of application domain

• View
– Manages display of information

• Control
– Processes user input and informs model and/or view of 

change if appropriate

Burbeck "Applications programming in smalltalk-80 (tm): How to 
use model-view-controller" Smalltalk-80 v2. 5. ParcPlace, 1992.



The model, the view, and the controller

In a typical application we find three fundamental parts:
• Data (Model)
• An interface to view and modify the data (View)
• Operations that can be performed on the data (Controller)

• The model represents the data, and does nothing else; it does NOT depend 
on the controller or the view

• The view displays the model data, and sends user actions (e.g. button clicks) 
to the controller. The view can be independent of both the model and the 
controller; or actually be the controller, and therefore depend on the model

• The controller provides model data to the view, and interprets user actions 
such as button clicks. The controller depends on the view and the model. 

• In some cases, the controller and the view are the same object



//Example 1 (no MVC):
void Person::setPicture(Picture pict){

m_picture = pict; //set the member variable
m_listView->reloadData(); //update the view

}

//Example 2 (with MVC):
void Person::setPicture(Picture pict){

m_picture = pict; //set the member variable
}

void PersonListController::changePictureAtIndex(
Picture newPict, int personIndex){

m_personList[personIndex].setPicture(newPict); //modify model
m_listView->reloadData(); //update the view

}



Problems

§ Business logic need knowledge of the UI
• E.g. coloring a field when given a value

§ Different presentation tiers have different 
capabilities
• E.g. can we still color a field when given a value

§ UI performance can influence the implementation
• E.g. gather more data before sending



Typical requirements

§ Decouple presentation from business logic
• Define service interface & data requirements

§ Integrate local and remote data sources prior 
to display

§ Enable connected and disconnected use



Design of user interactions

13

Controller
(incapsulation of 
interaction 
semantics)

View
(incapsulation of 
display choices)

Model
(incapsulation of 
information)

User interface 
events

Graphical
display



MVC goal
• The goal of MVC is, by decoupling models and views, to 

reduce the complexity in architectural design and to increase 
flexibility and maintainability

14



MVC participants
The MVC style has three participants:
•The Model is a representation of the application data.
•The View is the collection of visual elements presented to 
the end user
•The Controller coordinates changes to the model and the 
view based on business logic execution.
This specification is sufficiently vague and allows for many 
possible designs and different behaviors. 
In particular, it does not specify how the three participants 
interact with each other.



Model: CRC

Class 
Model

Responsibilities
• Provides the functional core
• It is a Repository for persistent data
• Registers Views and Controller interest in data
• Notifies registered Views or Controllers about data 

changes

Collaborators

• View
• Controller



View: CRC

Class 
View

Responsibilities
• Displays information to the user
• Creates and starts its Controller
• Updates when new data arrive from the Model

Collaborators

• Model
• Controller



Controller: CRC

Class 
Controller

Responsibilities
• Handles input events from the user
• Translates an event in a query for the Model or View
• Updates when new data arrive from the Model

Collaborators

• Model
• View



Controller

View1
Model

View2

View3

Unique controller

This architecture is problematic if requests to change the model come 
from many different sources (such as GUI components, keyboard and 
mouse event listeners, and timers), so that it is not practical to combine 
all of them in one class.



Multiple controllers

• Strong coupling!

Controller1

View1

Model

View2

View3

Controller2



Model as “repository”

Controller1

View1

Model

View2

View3

Controller2



Example: online shopping cart
• There are a variety of ways to implement an online store
• The next slide shows a possible solution based on MVC
• The slide shows the Model, View, and Controller 

modules, the connections between them, and some 
back-end database support 

• This is a simplified design: many features of an online 
store are not included in this implementation such as 
customer information processing, shipping and handling 
processing, accounting processing, etc. 



 
show
catalog

 show
shoppingCart

 show
confirmation

catalog

removeItem

checkout

addItem
shopping
cart

client

db

ModelControllerView

Online store: architecture



Online store: A view



MVC



26

The MVC style: class diagram
• Model has the knowledge about the application domain –

it is also called business logic
• View takes care of making application objects visible to 

system users
• Controller manages the interactions between the system 

and it users 

Controller

Model

subscriber
notifier

initiator

*

repository1

1

*

View



A hierarchy of views and controllers

Menulist

Model

Scrollbar

Panel

Window

Button1

MenuControl

ScrollControl

PanelControl

WindowControl

ButtonControl



MVC and design patterns
In [GoF] MVC is not defined as a design pattern 

– but as a “set of classes to build a user interface”
– The main structural pattern used is Composite
– The main behavioral patterns used are Observer and 

Strategy 
MVC can also use: 

– Factory Method to specify the default controller class for a view;
– Decorator to add scrolling to a view; 
– Chain of Responsibility for handling events

http://c2.com/cgi/wiki?ModelViewControllerAsAnAggregateDesignPattern



Observer design 
pattern



MVC based on Observer dp



Example 2: a harmful dependency



Example 2: deleting a harmful dependency



MVC behavior



MVC interactions

34



Basic interaction for MVC

35



Initialization for MVC

36



Design of the Presentation Layer

§ Passive Model
• Model does not report state changes

§ Active Model
• Model reports state changes to view(s)

– Observer pattern (Publish/Subscribe)



MVC passive



MVC passive



MVC active



MVC active



MVC: component diagram example

42



43

MVC Architectures
• The Model should not depend on any View or Controller 

• Changes to the Model state are communicated to the View 
subsystems by means of a “subscribe/notify” protocol (eg. 
Observer pattern)

• MVC is a combination of the repository and three-tiers 
architectures:

– The Model implements a centralized data structure; 

– The Controller manages the control flow: it receives 
inputs from users and forwards messages to the Model 

– The Viewer pictures the model



44

MVC: an example
n Two different views of a 

file system:
n The bottom window 

visualizes a folder named 
Comp-Based Software 
Engineering

n The up window visualizes 
file info related to file 
named 
90DesignPatterns2.ppt

n The file name is 
visualized into three 
different places



45

MVC: communication diagram
1. Both InfoView and FolderView subscribe the changes to the model File when 

created 
2. The user enters the new filename
3. The Controller forwards the request to the model 
4. The model actually changes the filename and notifies the operation to 

subscribers 
5. InfoView and FolderView are updated so that the user perceives the changes in 

a consistent way

:Controller

:InfoView

:Model

2.User types new filename

1. Views subscribe to event

3. Request name change in model

4. Notify subscribers

5. Updated views

:FolderView



46

The benefits of the MVC style
• The main reason behind the separation (Model, View, and 

Controller) is that the user interface (Views) changes much 
more frequently than the knowledge about the application 
domain (Model)

• The model and the views can become very reusable
• This style is easy to reuse, to maintain, and to extend
• The MVC style is especially effective in the case of 

interactive systems, when multiple synchronous views of 
the same model have to be provided 



MVC benefits
• The model is strictly separated from the UI
• Changes to the data in the underlying model are 

reflected in all the views automatically
• The UI (Views and controller) can be changed without 

changing the data model
• The views do not interact
• MVC architectures can be used as extensible 

frameworks, simplifying maintenance and evolution
• MVC is quite portable



MVC weaknesses
• Complexity is increased
• Changes to the Model must be published to all the Views 

which subscribed to them
• Each pair Controller/View has strong interdependencies
• Controllers have to know well the Model
• Inefficient data access can result because the separation 

of Views and Model data



ClientServer 3-tiers vs MVC
• The CS 3-tiers style may look similar to the MVC style; 

however, they are different
• A fundamental rule in a CS 3-tiers architecture is: the 

client tier never communicates directly with the data tier; 
all communication must go through the middleware tier: 
the CS 3-tiers style is linear

• Instead, the MVC style is triangular: the View sends
updates to the Controller, the Controller updates the 
Model, and the Model updates directly the Views

49



MVC on CS 3-tiers

50



MVC

51



Java interaction frameworks
• Most MVC frameworks follow a push-based architecture 

also called "action-based". They use actions that do the 
required processing, and then "push" the data to the 
view layer to render the results

• An alternative is a pull-based architecture, also called 
"component-based". These frameworks start with the 
view layer, which can then "pull" results from multiple 
controllers as needed. Multiple controllers can be 
involved with a single view
– Action-based frameworks: Apache Struts, Spring
– Component-based frameworks: Apache Click, Apache 

Tapestry, Apache Wicket, Java Server Faces



Struts2



Alternatives to MVC: MVP

54

The Presenter is responsible for binding the Model to the View.
Easier to unit test because interaction with the View is through an interface
Usually View to Presenter map one to one. Complex views may have multi presenters



MVC vs MVP

www.mvcsharp.org/Overview/Default.aspx



http://www.codeproject.com/Articles/42830/Model-View-Controller-Model-View-Presenter-and-Mod



MVP: two flavors
• Passive view: the interaction with the Model is handled 

only by the Presenter; the View is not aware of changes 
to the model

• Supervising controller: The interaction with the Model is 
handled NOT only by the Presenter. The View uses data 
binding to update itself when the Model is updated.





Alternative to MVC: PAC
(Presentation Abstraction Control)

Model

ControllerControllerController

Controller

ViewViewView
View

P

CA

P

CA

P

CA

P

CA



PAC



PAC: responsibilities
• The Presentation is the visual representation of a particular 

abstraction within the application, it is responsible for defining how 
the user interacts with the system

• The Abstraction is the business domain functionality within the 
application

• The Control is a component which maintains consistency between 
the abstractions within the system and their presentation to the user 
in addition to communicating with other Controls within the system

• Note: some descriptions use the term “agent” to describe each 
Presentation-Abstraction-Control triad



PAC: collaborations
• the Presentation-Abstraction-Control pattern approaches 

the organization of an application as a hierarchy of 
subsystems rather than layers of responsibility (e.g. 
Presentation Layer, Domain Layer, Resource Access 
Layer, etc.)

• Each system within the application may depend on zero 
or more subsystems to accomplish its function

• By organizing systems into a hierarchy of subsystems, 
each of which are composed of the same PAC 
components, any level of granularity of the system can 
be inspected while maintaining the same architectural 
model



PAC: benefits

• Separation of concerns: each triad (PAC 
agent) is responsible for a part of the 
application

• Adding new agents is easy
• Agents are easy to distribute
• Changes within an agent do not affect 

other agents



References

• www.martinfowler.com/eaaDev/ModelViewPresenter.html
• www.codeproject.com/Articles/42830/Model-View-Controller-Model-View-Presenter-and-Mod
• www.infragistics.com/community/blogs/todd_snyder/archive/2007/10/17/mvc-or-mvp-pattern-whats-

the-difference.aspx
• www.javacodegeeks.com/2012/02/gwt-mvp-made-simple.html
• msdn.microsoft.com/en-us/library/ff647543.aspx



Styles for the Web



Client-side options

§ Rich client
§ Thin client
§ Smart client
§ Special devices

Types of clients



Comparing client-side options

Rich Client Thin Client Smart Client

Advantage § Performance
§ Offline availability
§ High integration
§ Rich UI

§ Deployment
§ OS independent
§ Reach

§ Performance
§ Offline availability
§ High integration
§ Rich UI
§ Deployment

Disadvantage § Deployment
§ OS dependent

§ Online availability
§ Simple UI
§ Limited integration
§ Performance

§ OS dependent

Service 
Interface

§ Client based
§ Proxy
§ Late vs Early binding

§ Server based
§ Proxy or direct
§ Late vs Early binding

§ Client based
§ Proxy
§ Late vs Early binding

Client 
Technology

§ Progress 4GL GUI
§ Microsoft .NET GUI
§ Java™ GUI

§ Progress WebSpeed®
§ Microsoft ASP.NET
§ Java™ JSP

§ Progress WebClient™
§ Microsoft .NET
§ Java™ WebStart



Web 2.0
• Primitive UI => Rich UI

– enable “desktop-like” interactive Web apps
– enable browser as universal app platform on cell phones

• “Mass customize” to consumer => Social computing
– tagging (Digg), collaborative filtering (Amazon reviews), etc. => 

primary value from users & their social networks
– write-heavy workloads (Web 1.0 was mainly read-only)
– lots of short writes with hard-to-capture locality (hard to share)

• Libraries => Service-oriented architecture
– Integrate power of other sites with your own (e.g. mashups that 

exploit Google Maps; Google Checkout shopping cart/payment)
– Pay-as-you-go democratization of “services are king”
– Focus on your core innovation

• Buy & rack => Pay-as-you-go Cloud Computing

68



Rich Internet Apps (RIAs)
• Closing gap between desktop & Web

– Highly responsive UI’s that don’t require server roundtrip per-action
– More flexible drawing/rendering facilities (e.g. sprite-based animation)
– Implies sophisticated client-side programmability
– Local storage, so can function when disconnected

• early example: Google Docs + Google Gears
– include offline support, local storage, support for video, support for 

arbitrary drawing, ...
• many technologies—Google Gears, Flash, Silverlight...

– client interpreter must be embedded in browser (plugin, extension, etc.)
– typically has access to low-level browser state => new security issues
– N choices for framework * M browsers = N*M security headaches

• proposed HTML5 may obsolete some of these

69



Rich UI with AJAX
(Asynchronous Javascript and XML)

• Web 1.0 GUI: click ® page reload

• Web 2.0: click ® page can update in place

– also timer-based interactions, drag-and-drop, 
animations, etc.

How is this done?

1. Document Object Model (1998, W3C) represents 
document as a hierarchy of elements

2. JavaScript (1995; now ECMAScript) makes DOM 
available programmatically, allowing modification of 
page elements after page loaded

3. XMLHttpRequest (2000) allows async HTTP 
object requests decoupled from page reload

4. CSS define look and feel

70



DOM & JavaScript:
Document = tree of objects

• hierarchical object model representing HTML or 
XML doc

• Exposed to JavaScript interpreter
– Inspect DOM element value/attribs
– Change value/attribs ® redisplay or fetch new 

content from server
• Every element can be given a unique ID
• JavaScript code can walk the DOM tree or select 

specific nodes via provided methods

<input type="text" name="phone_number" id="phone_number"/>
<script type="text/javascript">
var phone = document.getElementById('phone_number');
phone.value='555-1212';
phone.disabled=true;
document.images[0].src="http://.../some_other_image.jpg";
</script>

71



JavaScript
• A browser-embedded scripting language

– OOP: classes, objects, first-class functions, closures
– dynamic: dynamic types, code generation at runtime
– JS code can be embedded inline into document...

<script type="text/javascript">  <!-- # protect older browsers

calculate = function() {   ...  } // --> 
</script>

– ...or referenced remotely: <script src="http://evil.com/Pwn.js"/> 
• Current page DOM available via window, document objects

– Handlers (callbacks) for UI & timer events can be attached to JS 
code, either inline or by function name: onClick, onMouseOver,...

Changing attributes/values of DOM elements has side-effects, e.g.: 
<a href="#" onClick="this.innerHTML='Presto!'">Click me</a>

72



AJAX = Asynchronous Javascript and XML

• Recipe:
– attach JS handlers to events on DOM 

objects 
– in handler, inspect/modify DOM elements 

and optionally do asynchronous HTTP 
request to server

– register callback to receive server response
– response callback modified DOM using 

server-provided info
• JavaScript as a target language

– Google Web Toolkit (GWT): compile Java => emit JS
– Rails: runtime code generation ties app abstractions to JS

73



Async comm in a web page
User action invokes a 
request from an 
XMLHttpRequest 
object, which initiates 
a call to the server 
asynchronously. The 
method returns very 
quickly, blocking the 
user interface for 
only a short period of 
time, represented by 
the height of the 
shaded area. The 
response is parsed 
by a callback 
function, which then 
updates the user 
interface accordingly.







Traditional
Web interaction

AJAX
Web interaction



An architecture based on AJAX

http://arxiv.org/pdf/cs/0608111.pdf



AJAX
• AJAX uses JavaScript (or VBScript) on the client side
• Client-side Javascript libraries: Dojo or Prototype or Jquery
• The server side might be in any language, e.g., PHP, ASP.NET, or Java
• Any XML document or text may be returned to the caller: simple text, 

JavaScript Object Notation (JSON) or XML are common
• Frameworks (RoR, JSF, etc.,) support Ajax.
• Normally, requests may only go back to the originating server.
• However, mashups (combining diverse site output) may still be 

constructed by having the originating server make calls to other servers
• Client side mashups may also be built with a dynamic <script> tag

• See www.openajax.org



Some useful concepts

• A servlet is Java code that runs on the 
server when an HTTP request arrives.

• A Java Server Page (JSP) is XHTML+ 
Java and is compiled to a servlet

• JavaScript is not Java and runs in the 
browser

• XHTML is one of many XML languages



This sequence 
diagram shows a 
typical AJAX 
interaction

A solid arrowhead
represents a 
synchronous call

A stick arrowhead
represents an
asynchronous signal 



A browser is an application container

• “Web apps” include animation, sound, 3D graphics, 
disconnection, responsive GUI...
– Browser =~ new OS: manage mutually-untrusting apps (sites)

82

So
ur

ce
:  

In
sid

e 
Fi

re
fo

x



Browsers are fatter and fatter
• RIA frameworks/plugins: Flash, HTML 5, Silverlight
• Performance, security, energy issues
• Cookie and JavaScript management
• CSS layout, side-effects of DOM manipulation
• Documents can change anytime after loading
• Device variation: new issues due to power limits
• Bring “desktop-quality” browsing to mobile tel
• Enabled by 4G networks and better output devices
• Parsing, rendering, scripting are all potential bottlenecks
• See www.google.com/googlebooks/chrome for a description in 

comic-book form 

83



Example: Rails, a Ruby-based MVC Framework

apache

your app

CGI or other dispatching

Relational
Database

mysql or
sqlite3

Ruby
interpreter

firefox

tables

models/*.rb

controllers/*.rb
Rails 
routing

views/*.html.erb
Rails 
rendering

Model, View, Controller

Subclasses of 
ActiveRecord::Base

Subclasses of 
ActionView

Subclasses of 
ApplicationController

• Implemented almost entirely in Ruby
• Distributed as a Ruby “gem” (collection of related libraries & tools)
• Connectors for most popular databases 



Pool of threads: 
an architectural pattern for WebServers

• A single threaded web server is not likely to scale up to many 
simultaneous clients

• In a multi-threaded web server, the main loop listens for incoming 
client connections. When it discovers one, it reads the HTTP request 
and creates a request structure. It then creates a new thread and 
passes it the request structure 

• However, most thread packages are limited to a fixed maximum 
number of threads. Also, thread creation and deletion can be 
expensive operations unnecessarily repeated under high load. Finally, 
a given machine may achieve optimum performance for a certain 
number of threads, independent of the number of actual clients 

• If we control the number of threads without regard to the number of 
clients, the server can be tuned to maximum performance. So, most 
real-world servers use a thread-pool approach



www3.nd.edu/~dthain/courses/cse30341/spring2009/project4/project4.html







Self test
• Which are the motivations at the basis of MVC?
• Which are the motivations at the basis of MVP?
• Which are the motivations at the basis of AJAX?
• Compare the CS style with the MVC style



References
• Gamma et al., Design patterns
• Bushmann et al., POSA 1, Wiley
• aspiringcraftsman.com/2007/08/25/interactive-application-architecture/
• aosabook.org/en/index.html
• apcentral.collegeboard.com/apc/members/courses/teachers_corner/185168.html



Useful sites
• martinfowler.com/eaaDev/uiArchs.html
• todoMVC.com
• www.infoq.com/articles/rest-introduction
• stackoverflow.com/questions/2056/what-are-mvp-and-mvc-and-what-is-the-difference
• www.codeproject.com/Articles/228214/Understanding-Basics-of-UI-Design-Pattern-MVC-MVP
• www.codeproject.com/Articles/34562/COMET-or-Reverse-AJAX-based-Grid-Control-for-ASP-N

• www.programmableweb.com

§ Java and MVC java.sun.com/blueprints/patterns/MVC-detailed.html

§ .NET and MVC www.devx.com/dotnet/Article/10186/0/page/1

§ Interface Hall of Fame homepage.mac.com/bradster/iarchitect/shame.htm

§ UI Patterns & Techniques time-tripper.com/uipatterns/Introduction



Questions?


