Architectural styles

for software systems
The client-server style

Agenda

Client server style
CS two tiers

CS three tiers

CS n-tiers

Client-Server (CS): Overview

CS has been conceived in the context of
distributed systems, aiming to solve a problem of
resources shared among several computers

The driving idea is to make unbalanced the
partners’ roles within a communication process

One or many servers provide services to
instances of subsystems, called clients

Each client calls on the server, which performs
some service and returns the result

Client-Server: Overview

= Functions performed by client:

= Requires a service through the server interface(s)

= Allows to users to communicate with the system
through a certain input (Customized user interface)

= Front-end processing of input data
= Functions performed by server:
= Centralized data management

= Services provider
= Back-end processing of the data provided by client

Client server pattern: main

= A client-server system can be logically divided into
three parts:

= The presentation tier, in charge of managing the user
interface (graphic events, input fields check, etc...)

= [he actual application logic tier

= The data management tier for the management of
persistent data and transaction managers

The business logic tier

= Some patterns help in structuring the business logic:

= [ransaction script: a procedure that takes the input from the
presentation, processes it with validations and calculations, stores
data in the database, and invokes any operations from other
systems. It then replies with more data to the presentation, perhaps
doing more calculation to help organize and format the reply.

= Domain model: an object model of a domain incorporates both
behavior and data

= Table module: a single instance that handles the business logic for
all rows in a database table or view (as in relational database)

Fowler, Patterns of enterprise application architecture

Client-Server pattern

= A client-server system architecture can be:

= 2-tiered: presentation and application logic modeled as
a single tier contained in the client

= 3-tiered: one tier for each part, with dedicated servers
for application logic and data management

= N-tiered: the last two parts spread in a chain of servers

Client: CRC

Class Client Collaborators

Responsibilities
Component: handles User interaction « Server
*Asks the Server for some service

Server: CRC

Class Server Collaborators

Responsibilities
« Component (offers some services)
* Provides an API for receiving/answering messages

Client-Server: Architecture

CLIENT 1
Get/Display Info
Graphics
Processing

CLIENT 2
Get/Display Info
Graphics
FProcessing

=

Procedure Call
1

=l

Frocedure Call

1

CLIENT n
Get/Display Info
Graphics
Processing

in: burnk ate

out: altitude, fuel | time | velocity

SERVER:
Game State
Game Loagic
Environment
Simulation

=

FProcedure Call
1

CS 2-tiers: Overview

= This style Is used to describe client-server
systems where the client requests resources and
the server responds directly to the request using
its own resources

= [he server does not call on another application In
order to provide part of the service

= If the server is more powerful than its clients, it is
possible to connect many clients at the same time

11

CS 2-tiers: Architecture (1)

= Components:
= Client
= Active entity

= Contains always the User System Interface subsystem (session,
text input, dialog, and display management services)

« If it contains the Application Logic subsystem (process
management), than it is a Fat Client

= Server
= Reactive entity

= Contains a Database Management subsystem (such as data and
file services)

« If it contains the Application Logic subsystem, than it's a Fat
Server

s Connectors:

= Procedure Calls, RPC, or others
= They require a protocol

12

CS 2-tiers: Architecture (2)

= [he Application Logic may be present either at the
client side within a user interface or within the

database on the server side or spread on the both

Char. Terminal

|

o =

|

o =K

HA-Terminal

[

o‘ [y

TRy Client Distributed Central Distributed
Presentation Application Database Database
Data Data Data Data Dgta
Server Logic Logic Logic /er‘t/
Presentation R /R—E/ Data
Logic Logic Logic
RAC
Presentation||| Presentation||| Presentation|||Presentation
| I
Client l.l
==

pPC

o

o E=8

PC

pPC

*+—Centralized

Fat Server

Dec entra lize d[™

Fat Client

13

CS 2-tiers: Component Diagram

Client

Prese

ntation
Logic

2]

RPC

Presen

tation
Logic

Fat Client

Application
Logic

Fat Server
Application Data Logic
Logic
Serve
RPC Data Logic

14

CS 2-tiers: Class Diagram

Client

*

*

Server

requester

provider

servicel ()
service2 ()
serviceN ()

15

CS 2-tiers: Sequence Diagram

«tier»

«tier»

i

Client Server
1
I
I
Servi '
aService() > 1l
result() []
= — — - -
—~
I
updateGUI() :

anOperation()

16

CS 2-tiers example (1):
web browser and web server

HTTP (Hypertext Transfer Protocol):
s ASCIIl-based request/reply protocol that runs over TCP

= HTTPS: variant that first establishes symmetrically-encrypted
channel via public-key handshake, suitable for sensitive info

=By convention, servers listen on TCP port 80 (HTTP) or
443 (HTTPS)

sUniversal Resource Ildentifier (URI) format:

scheme, host, port, resource, parameters, fragment
» http://search.com:80/img/search/file?t=banana&client=firefox#p2

17

CS example: World Wide Web

Figure 1: The Concept of Client/Server Computing

A client can request
information from
several servers at the
time

1
Commuu;t
]

netw

L server can serve

several clients at the
time

A K. Veung 1992-02405u145-01

18

CS 2-tiers example (2):
web browser and web server

n Client's request. [g11p method & URI

GET /index.html=HTTP /.U

User-Agent: Mozilla/4.73 [en] (X11; U; Linux 2.0.35 1686)

Host: www.yahoo.com

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, image/png,
/

Accept-Language: en

Accept-Charset: is0-8859-1,*,utf-8

= Server's reply: Cookie data:
HTTP/1.0 200 OK .
Content-Length: 16018 llP to 4KiB
Set-Cookie: B=2vscong5pOh2n MIME content type

Content-Type: text/html

<html><head><title>Yahoo!</title><base href=http://www.yahoo.com/>
<img width=230 height=33
..etc..

CS 2-tiers: Pro & Cons (1)

= Benefits (towards a Monolithic Architecture):

= Good security, because the users usually cannot see
the database directly and can only access the data by
starting the client

= More scalable, because allows multiple users to access
the database at the same time as long as they are
accessing data in different parts of the database

s Faster execution due to a shared workload

20

CS 2-tiers: Pro & Cons (2)
= Pitfalls:

sExhibits a heavy message traffic since the front-ends
and the servers communicate intensively

=The Application Logic is not managed by an ad-hoc
component, but it's “shared” by front-end and back-end

« Client and server depend one from each other

« It's difficult to reuse the same interface to access different data

= It's difficult to interact with databases which have different
front-ends

= The business logic is encapsulated into the user interface, thus
if the logic changes, the interface has to change as well

21

CS 3-tiers: Overview (1)

= In 3-tiers CS architecture, there is an intermediary
tier, meaning the architecture is generally split up
between:

= A client, which requests the resources through a user
interface (i.e. web browser) for presentation purposes

= [he application server, whose task it is to provide the
requested resources, but by calling on another server

= [he data server, which provides the application server
with the data it requires

22

Generic 3-tiers software architecture

B2C

B2B

Pl

Thick Client
Applet

Thin Client
JavaScript

First Tier

Untrusted

By

Internet

<
2

Hosting LAN

Middleware

Host System

\Applicationls:rv:r
I

Web Container \ |
Decorator Serviet -
" Serviet wd A ﬁﬁﬁ,%";'gg
| [Beans
JavaServer |
N Pages
| Entity Beans
L ——————
Second Tier

CS 3-tiers: Overview (2)

= [lers work as they were not part of a single application:

= Applications are conceived as collections of interacting
components

= Each component can take part to several applications at the
same time

= Each server component is specialised with a certain task:
= web server, database server, etc...

s liers 1 and 3 do not communicate:

= The user interface neither receives any data from data
management, nor it can write data

= Information passing (in both the directions) are filtered by the
Application Logic

24

CS 3-tiers: Architecture (1)

= Components:
s Client

= Active entity
= “Thin” client containing only the Presentation Logic subsystem
(session, text input, dialog, and display management services)
= Application Server

=« Contains the Application Logic subsystem providing process
management such as queuing, application execution, and
database staging

= Data Server
= Passive entity

=« Contains the Database Management subsystem (such as data
and file services)

25

CS 3-tiers: Architecture (2)

= Connectors:
= Remote Procedure Calls (RPC)

= Protocol: The client calls for the business logic on the server, the
business logic on the behalf of the client accesses the database

Log¥c Business Business Business
Business layer Rules Rules Rules

Data Management

Data layer Data Data Data
Service Service Service
Enterprise

26

CS 3-tiers: Component Diagram

rver

Thin client Data Server

: 2]
8]
i

Web Server

oo

«rESOUrces Resources Application RPC

Presentation .%[H Logic ._>[] (O E]% Data

Logic

L
O
rﬂ

CS 3-tiers: Class Diagram

Application Server

* %
Client : _ :
requester prOVld sessions
I er - services
: session ()
1 ,’| doService ()
1 v |
| Kuse> 7 |
| /, :
: I
| IKcall>»
| /, :
W /// v
Kinterface > e Cata s
| ata Server
Middleware ’
+ GET() select ()
+ PUT() insert()
+ POST() delete()
+ DELETE () update ()

28

CS 3-tiers: Sequence Diagram

«Tiers aTiern xTiers
Client Application Server Data Server
T T T
| | |
I getResource() | |
L P |
|
|
|
|
createResource() |
L |
|
|
|
getData() |
resultSet
e — - T T o
|
|
|
|
processData() :
[5 ; |
|
|
|
resource
e — ———————————— - — |
T |
| |
| |
updateGUI() : :
| |
| |
| |
| |
| |

29

CS 3-tiers example: Web Malil

Sarver computer with
------ - | Wab sarver

..... software
HTTP request e
Client computer with o _.___....-:'-.-".'._ et
Wab browser - _'“..--' {.-" SMTP packet
-~ - 47].... Server computer with
e i
. P 2 ! mail server
2 software
HTTP response i e D ,,,,,,,,,,, ;

SMTPF packet

Internat

e L T TR

SMTP packet g er computer with

D mail sarver
e

software

Cliant computer with HTTFP requeast
Web browser -
IMAP or
SMTP packet

HTTP response mputer with

Wab server
software

30

CS 3-tiers example: Struts framework

Web
browser

Web
server

WebSphere Application Server

==

(B

Action servlet ‘ —

. \/

JSP file

Form bean

Enterprise
server

Data
store

Business
logic

View and controller
Copyright © IBM — Struts framework

The browser sends a request to an Action servlet
The Action servlet instantiates a Java bean that is connected to a database
The Action servlet communicates with a JSP file
The JSP file communicates with the Form bean
The JSP file responds to the browser

Model

31

http://publib.boulder.ibm.com/infocenter/iadthelp/v6r0/index.jsp?topic=/com.ibm.etools.struts.doc/topics/cstrdoc001.html

CS 3-tiers: Pro & Cons (1)

= Benefits:
= High flexibility and high modifiability:
= Components can be used in several systems

« New functionalities can be added to the system by only
modifying the components which are in charge of realizing
them, or by plugging new components

= More scalability and performance because we can add
as many middle tiers as needed

= “Thin” client, because only little communication is
needed between the client and the middleware which
Implements the Application Logic

32

CS 3-tiers: Pro & Cons (2)

s Pitfalls:

= The additional tier increases the complexity and cost of

the system:
= Ad hoc software libraries have to be used to allow the

communication among components
=« Heavy network traffic

= Legacy software:

= Many companies make use of preexisting (often monolithic)

software systems to manage data
= Adapters have to be implemented to interoperate with the

legacy software

33

CS n-tiers: Overview (1)

= In the 3-tier applications, the middle tier is
generally not a monolithic program but is
implemented as a collection of components that
are initiated by several client-initiated business
transaction

= [hus, one component can call other components
to help it implement a request

= Generally, a server can use services from other servers
In order to provide its own service

34

CS n-tiers: Overview (2)

s Fundamental items:

User Interface (Ul): a browser, a WAP mini browser, a
graphical user interface (GUI)

Presentation logic, which defines what the Ul has to
show and how to manage users’ requests

Business logic, which manages the application
business rules

Infrastructure services:

= They provides further functionalities to the application
components (messaging, transactions support)

Data tier:
= Application Data level

35

CS n-tiers: Architecture (1)

= [ypical components:
s Client

= Same as 3-tiers Architecture

= Web Server

= Session management

= Content creation, format and delivery
= Application Server

« Data access objects

= Transactions

= Business logic

=« Resources adapters
= Data Server

= Same as 3-tiers Architecture

36

CS n-tiers: Architecture (2)

= Connectors:
= Remote Procedure Calls (RPC)

= Many protocols

Business
Client Tier Web Tier Component Tier EIS Tier
— —— 1
Java RMI
(B;rowser-Based ERPs
lient
Applications HTTP % Web RMI /1
(HTML, Server Application
applets, Components
DHTML/ Serviets
Scripting) JSPs EJBs { ChMs
\
Java Client
Applications
\ Mainframe
TP System
Windows/ » Container
COM Client CAS COM Bridge, Services
Applications RMI over IIOP Components || [JOBC| | gnays
(e.g., JTS,
JMS)

Copyright © etutorials.com — Architectural solutions

http://publib.boulder.ibm.com/infocenter/iadthelp/v6r0/index.jsp?topic=/com.ibm.etools.struts.doc/topics/cstrdoc001.html

Example: 5 tiers

B) g 5
Presentation Process Logic

Clients

Process 7
Data | !
Applicationl
Client Data ORACLE
-— Microsoft, ~ ‘
- ' ot —
Microsoft’, ~ rocess .
-
Mobile 1

J

3

Service Infrastructure (" Service Management)

(2]

3

User Business § 3

Messaging Data Security : Custom S, Q,
Services Services Services Interaction Process Services 5 =
Services Services = =

-

« o

S

\ (7]

\

client stub (RPC)
stub (CORBA)
proxy (DCOM)

Client server middleware

Client }

ﬂ

Pre-

compiler

{ Server

v
~

Name
Server

Ho

[Session

J
J
|

Binding object

A

|

Binding
Factory

|

server stub (RPC)
skeleton (CORBA)
stub (DCOM)

References

s Fowler et al., Patterns of Enterprise Application Architecture, AW

2002
= Clemens et al., Documenting Software Architectures, Addison

Wesley, 2010

Questions?

