
Architectural styles
for software systems

The client-server style

Prof. Paolo Ciancarini
Software Architecture
CdL M Informatica �
Università di Bologna

Agenda
n Client server style
n CS two tiers
n CS three tiers
n CS n-tiers

2

Client-Server (CS): Overview

n CS has been conceived in the context of
distributed systems, aiming to solve a problem of
resources shared among several computers

n The driving idea is to make unbalanced the
partners’ roles within a communication process

n One or many servers provide services to
instances of subsystems, called clients

n Each client calls on the server, which performs
some service and returns the result

3

Client-Server: Overview

n Functions performed by client:
n Requires a service through the server interface(s)
n Allows to users to communicate with the system

through a certain input (Customized user interface)
n Front-end processing of input data

n Functions performed by server:
n Centralized data management
n Services provider
n Back-end processing of the data provided by client

4

Client server pattern: main
n A client-server system can be logically divided into

three parts:
n The presentation tier, in charge of managing the user

interface (graphic events, input fields check, etc…)
n The actual application logic tier
n The data management tier for the management of

persistent data and transaction managers

5

The business logic tier
n Some patterns help in structuring the business logic:

n Transaction script: a procedure that takes the input from the
presentation, processes it with validations and calculations, stores
data in the database, and invokes any operations from other
systems. It then replies with more data to the presentation, perhaps
doing more calculation to help organize and format the reply.

n Domain model: an object model of a domain incorporates both
behavior and data

n Table module: a single instance that handles the business logic for
all rows in a database table or view (as in relational database)

6

Fowler, Patterns of enterprise application architecture

Client-Server pattern

n A client-server system architecture can be:
n 2-tiered: presentation and application logic modeled as

a single tier contained in the client
n 3-tiered: one tier for each part, with dedicated servers

for application logic and data management
n n-tiered: the last two parts spread in a chain of servers

7

Client: CRC

Class Client

Responsibilities
•Component: handles User interaction
•Asks the Server for some service

Collaborators

• Server

Server: CRC

Class Server

Responsibilities
• Component (offers some services)
• Provides an API for receiving/answering messages

Collaborators

Client-Server: Architecture

10

CS 2-tiers: Overview

n This style is used to describe client-server
systems where the client requests resources and
the server responds directly to the request using
its own resources

n The server does not call on another application in
order to provide part of the service

n If the server is more powerful than its clients, it is
possible to connect many clients at the same time

11

CS 2-tiers: Architecture (1)

n Components:
n Client

n Active entity
n Contains always the User System Interface subsystem (session,

text input, dialog, and display management services)
n If it contains the Application Logic subsystem (process

management), than it is a Fat Client
n Server

n Reactive entity
n Contains a Database Management subsystem (such as data and

file services)
n If it contains the Application Logic subsystem, than it’s a Fat
Server

n Connectors:
n Procedure Calls, RPC, or others

n They require a protocol

12

CS 2-tiers: Architecture (2)

n The Application Logic may be present either at the
client side within a user interface or within the
database on the server side or spread on the both

13

R P C

R P C R P C
R P C R P C

Fat Server Fat Client

CS 2-tiers: Component Diagram

14

CS 2-tiers: Class Diagram

15

Client
Server

service1()
service2()
serviceN()

**
requester provider

CS 2-tiers: Sequence Diagram

16

CS 2-tiers example (1):
web browser and web server

HTTP (Hypertext Transfer Protocol):
n ASCII-based request/reply protocol that runs over TCP
n HTTPS: variant that first establishes symmetrically-encrypted

channel via public-key handshake, suitable for sensitive info

nBy convention, servers listen on TCP port 80 (HTTP) or
443 (HTTPS)
nUniversal Resource Identifier (URI) format:
scheme, host, port, resource, parameters, fragment

n http://search.com:80/img/search/file?t=banana&client=firefox#p2

17

CS example: World Wide Web

18

CS 2-tiers example (2):
web browser and web server

n Client’s request:
GET /index.html HTTP/1.0
User-Agent: Mozilla/4.73 [en] (X11; U; Linux 2.0.35 i686)
Host: www.yahoo.com
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, image/png,

/
Accept-Language: en
Accept-Charset: iso-8859-1,*,utf-8

n Server’s reply:
HTTP/1.0 200 OK
Content-Length: 16018
Set-Cookie: B=2vsconq5p0h2n
Content-Type: text/html

<html><head><title>Yahoo!</title><base href=http://www.yahoo.com/>
<img width=230 height=33
…etc…

19

HTTP method & URI

Cookie data:
up to 4KiB

MIME content type

CS 2-tiers: Pro & Cons (1)

n Benefits (towards a Monolithic Architecture):
n Good security, because the users usually cannot see

the database directly and can only access the data by
starting the client

n More scalable, because allows multiple users to access
the database at the same time as long as they are
accessing data in different parts of the database

n Faster execution due to a shared workload

20

CS 2-tiers: Pro & Cons (2)
n Pitfalls:

nExhibits a heavy message traffic since the front-ends
and the servers communicate intensively
nThe Application Logic is not managed by an ad-hoc
component, but it’s “shared” by front-end and back-end

n Client and server depend one from each other
n It’s difficult to reuse the same interface to access different data
n It’s difficult to interact with databases which have different

front-ends
n The business logic is encapsulated into the user interface, thus

if the logic changes, the interface has to change as well

21

CS 3-tiers: Overview (1)

n In 3-tiers CS architecture, there is an intermediary
tier, meaning the architecture is generally split up
between:
n A client, which requests the resources through a user

interface (i.e. web browser) for presentation purposes
n The application server, whose task it is to provide the

requested resources, but by calling on another server
n The data server, which provides the application server

with the data it requires

22

Generic 3-tiers software architecture

23

CS 3-tiers: Overview (2)

n Tiers work as they were not part of a single application:
n Applications are conceived as collections of interacting

components
n Each component can take part to several applications at the

same time
n Each server component is specialised with a certain task:

n web server, database server, etc…

n Tiers 1 and 3 do not communicate:
n The user interface neither receives any data from data

management, nor it can write data
n Information passing (in both the directions) are filtered by the

Application Logic

24

CS 3-tiers: Architecture (1)
n Components:

n Client
n Active entity
n “Thin” client containing only the Presentation Logic subsystem

(session, text input, dialog, and display management services)

n Application Server
n Contains the Application Logic subsystem providing process

management such as queuing, application execution, and
database staging

n Data Server
n Passive entity
n Contains the Database Management subsystem (such as data

and file services)

25

CS 3-tiers: Architecture (2)

n Connectors:
n Remote Procedure Calls (RPC)

n Protocol: The client calls for the business logic on the server, the
business logic on the behalf of the client accesses the database

26

CS 3-tiers: Component Diagram

27

CS 3-tiers: Class Diagram

28

Client

Application Server
**

requester provid
er

Data Server

select()
insert()
delete()
update()

session()
doService()

≪interface≫	
Middleware

+ GET()
+ PUT()
+ POST()
+ DELETE()

≪call≫

- sessions
- services

≪use≫

CS 3-tiers: Sequence Diagram

29

CS 3-tiers example: Web Mail

30

CS 3-tiers example: Struts framework

n The browser sends a request to an Action servlet
n The Action servlet instantiates a Java bean that is connected to a database
n The Action servlet communicates with a JSP file
n The JSP file communicates with the Form bean
n The JSP file responds to the browser

31

Copyright © IBM – Struts framework

http://publib.boulder.ibm.com/infocenter/iadthelp/v6r0/index.jsp?topic=/com.ibm.etools.struts.doc/topics/cstrdoc001.html

CS 3-tiers: Pro & Cons (1)

n Benefits:
n High flexibility and high modifiability:

n Components can be used in several systems
n New functionalities can be added to the system by only

modifying the components which are in charge of realizing
them, or by plugging new components

n More scalability and performance because we can add
as many middle tiers as needed

n “Thin” client, because only little communication is
needed between the client and the middleware which
implements the Application Logic

32

CS 3-tiers: Pro & Cons (2)

n Pitfalls:
n The additional tier increases the complexity and cost of

the system:
n Ad hoc software libraries have to be used to allow the

communication among components
n Heavy network traffic

n Legacy software:
n Many companies make use of preexisting (often monolithic)

software systems to manage data
n Adapters have to be implemented to interoperate with the

legacy software

33

CS n-tiers: Overview (1)

n In the 3-tier applications, the middle tier is
generally not a monolithic program but is
implemented as a collection of components that
are initiated by several client-initiated business
transaction

n Thus, one component can call other components
to help it implement a request
n Generally, a server can use services from other servers

in order to provide its own service

34

CS n-tiers: Overview (2)

n Fundamental items:
n User Interface (UI): a browser, a WAP mini browser, a

graphical user interface (GUI)
n Presentation logic, which defines what the UI has to

show and how to manage users’ requests
n Business logic, which manages the application

business rules
n Infrastructure services:

n They provides further functionalities to the application
components (messaging, transactions support)

n Data tier:
n Application Data level

35

CS n-tiers: Architecture (1)

n Typical components:
n Client

n Same as 3-tiers Architecture
n Web Server

n Session management
n Content creation, format and delivery

n Application Server
n Data access objects
n Transactions
n Business logic
n Resources adapters

n Data Server
n Same as 3-tiers Architecture

36

CS n-tiers: Architecture (2)

n Connectors:
n Remote Procedure Calls (RPC)

n Many protocols

37
Copyright © etutorials.com – Architectural solutions

http://publib.boulder.ibm.com/infocenter/iadthelp/v6r0/index.jsp?topic=/com.ibm.etools.struts.doc/topics/cstrdoc001.html

Logic Presentation

Application
Client

Browser

Clients

Data

Legacy App

Mainframes

Databases

Identity/
Policy

Process

Portal

WSRP

WSRP

Process Web
Services

Web
Services

Data

Data

Data

Web
App

Process
Web

Services

Mobile

Example: 5 tiers

Service Infrastructure

Messaging
Services

Data
Services

Security
Services

User
Interaction
Services

Business
Process
Services

Meta-data
Repository

Service
Registry

Service Management

M
onitoring

Com
position Tools

Custom
Services

Web
Services

Semantic
Services:

•Mediation
•Text Analytics
• Inferencing
•Event Processing

39

Client server middleware

References

n Fowler et al., Patterns of Enterprise Application Architecture, AW
2002

n Clemens et al., Documenting Software Architectures, Addison
Wesley, 2010

Questions?

