
Architectural styles
for software systems

Prof. Paolo Ciancarini
Software Architecture
CdL M Informatica �
Università di Bologna

2

Agenda
n Types of architectural styles
n Basic decomposition techniques

n layering, tiering

n Architectural styles
n Pipes and filters
n Repository

n Passive repository
n Active repository

n Client/Server
n two-tiers;
n three-tiers;
n n-tiers (microservices)

n Peer-To-Peer
n blockchain

Reference architectures and patterns
A Reference Architecture is, in essence, a
predefined architectural pattern, or set of patterns,
possibly partially or completely instantiated

3

From patterns to technologies

4

Architectural elements
n Components

n Processes
n Objects
n Agents
n Services

n Connectors
n Channels
n Protocols (middleware)
n Name systems

5

What is an architectural style?

n A family of systems sharing the configuration (structure,
behaviors) of their architectural elements

n A vocabulary of components and connectors, with constraints
on how they can be combined (Garlan and Shaw)

n A set of design rules that identify the kinds of components and
connectors that may be used to compose a system or
subsystem, together with local or global constraints on the way
the composition is done (Shaw & Clements)

n A set of constraints put on system development, namely a
collection of design decisions applicable in a given context,
specific to a particular system within that context, and choosing
some beneficial qualities in each resulting system (Taylor,
Medvidović and Dashofy)

6

Architectural vegetables

7

Onion: layers Garlic: partitions

8

Layers and tiers (1)

n The architecture of a system is generally achieved
by decomposing it into subsystems, following a
layered and/or a partition based approach

n These are orthogonal approaches:
n A layer is a logical structuring mechanism for the

elements that make up a software solution (e.g., a
kernel is a layer)

n A partition (or tier) is a physical structuring mechanism
for the system infrastructure (e.g., a user interface is a
tier)

9

Layers and tiers (2)

n A complete decomposition of a given system
comes from both layering and partitioning:
n First, the system in divided into top level subsystems

which are responsible for certain functionalities
(partitioning);

n Then, if necessary, each subsystem is organized into
several layers, up to the definition of simple enough
layers

10

Layered approach

n An architecture which has a hierarchical structure,
consisting of an ordered set of layers, is layered

n A layer is a set of subsystems which are able to provide
related services, that can be realized by exploiting
services from other layers

n A layer depends only from its lower layers (i.e., layers
which are located at a lower level into the architecture)
n A layer is only aware of lower layers

11

Example: layers of Virtual Machines

12

Program C

Program A

Program D

Program B

Layer 1

Layer 3

Layer 2

Layers: component diagram

n Connectors for layered
systems are often
procedure calls

n Each level implements a
different virtual machine
with a specific input
language

13

Closed vs. open layers

n Closed Layers Architecture (CLA): the i-th layer
can only have access to the layer (i-1)-th

n Open Layers Architecture (OLA): the i-th layer
can have access to all the underlying layers (i.e.,
the layers lower than i)

14

Closed Layers Architecture

n The i-th layer can only invoke the services and the
operations which are provided by the layer (i-1)-th

n The main goals are the system maintainability and high
portability (eg. Virtualization: each layer i defines a Virtual
Machine - VMi)

15

VM4

VM3

VM2

VM1
C1
attr

op

C1
attr

op

C1
attr

op

C1
attr

op

C1
attr

op

C1
attr

op

C1
attr

op

C1
attr

op

C1
attr

op

Example of CLA: ISO/OSI stack

n The ISO/OSI reference model
defines 7 network layers,
characterized by an increasing
level of abstraction

n Eg: the Internet Protocol (IP)
defines a VM at the network
level able to identify net hosts
and transmit single packets
from host to host

16

Application

Presentation

Session

Transport

Network

DataLink

Physical
Le

ve
l o

f a
bs

tra
ct

io
n

Open Layers Architecture (OLA)

n The i-th layer can invoke the services and the operations
which are provided by all the lower layers (the layers lower
than i)

n The main goals are the execution time and efficiency

17

C1
attr

op

C3
attr

op

C2
attr

op

C4
attr

op

C5
attr

op

C6
attr

op

C7
attr

op

C8
attr

op

C9
attr

op

Xlib

Xt

Motif

Application

Example of OLA: OSF/Motif

n Xlib: provides low-level drawing facilities;
n Xt: provides basic user interface widget management;
n Motif: provides a large number of sophisticated widgets;
n Application: can access each layer independently.

18
http://motif.ics.com

Mixed open-closed layers

19

https://www.oreilly.com/ideas/contrasting-architecture-patterns-with-design-patterns

Creating layers: Façade (1)

20

Creating layers: Façade (2)

21

Tiered approach

n Another approach to managing complexity
consists of partitioning a system into sub-systems
(tiers), which are responsible for a class of
services maintained as independent modules

n These modules are separated from each other by
physical boundaries:
n machine boundaries
n process boundaries
n corporate boundaries

22

Tiers and computing evolution

23

1-tier, 2-tiers, 3-tiers

n A 1-tier model (monolithic) describes a single-tiered
application in which the user interface and data access
code are combined into a single program from a single
platform

n A 2-tiers model (client/server) represents a split
monolithic model composed by a client tier that interacts
directly with a server tier

n A 3-tiers model (n-tiers) is a client/server model in which
the presentation, the application processing, and the data
management are logically (ad often physically) separate
processes

24

1-tier model: Monolithic

n The presentation, application logic and resource manager
are built as a monolithic entity (no modularity)

n Users/programs access the system through “dumb”
terminals managed by an information system

n Typical model for mainframes

Copyright © 2004 Springer-Verlag Berlin Heidelberg

25

http://www.cs.colorado.edu/~kena/classes/7818/f06/lectures/02/index.html

2-tiers model: Client/Server

n This model allows to move the presentation tier to the
client (fat client)

n It introduces the concept of API, an interface to invoke the
system from the outside

26
Copyright © 2004 Springer-Verlag Berlin Heidelberg Copyrigth © 2012 Microsoft Corporation

http://www.cs.colorado.edu/~kena/classes/7818/f06/lectures/02/index.html
http://www.microsoft.com/belux/msdn/fr/community/columns/hyatt/ntier1.mspx

3-tiers model: Multitiered (1)

n In this approach, the user interface runs on a desktop PC
or workstation and uses a standard graphical user
interface (thin client)

n The functional process logic may consist of one or more
separate modules running on a workstation or application
server

n An RDBMS on a database server or mainframe contains
the computer data storage logic

n This is a specialization (the most widespread) of the n-
tiers model

27

3-tiers model: Multitiered (2)

n Concept of middleware, that introduces an additional tier of
business logic encompassing all the underlying systems

28

Copyright © 2004 Springer-Verlag Berlin Heidelberg
Copyrigth © 2012 Microsoft Corporation

http://www.cs.colorado.edu/~kena/classes/7818/f06/lectures/02/index.html
http://www.microsoft.com/belux/msdn/fr/community/columns/hyatt/ntier1.mspx

Middleware as a glue

n Middleware systems also enable the integration of systems
built using other architecture models

29

Copyright © 2004 Springer-Verlag Berlin Heidelberg

http://www.cs.colorado.edu/~kena/classes/7818/f06/lectures/02/index.html

Do not
confuse
layers

and tiers!

30msdn.microsoft.com/en-us/library/ee658124.aspx

Basic architectural styles

n Several architectural styles have been defined in
the literature of software engineering

n They can be used as the basis for configuring
software architectures

n The basic styles which follow include:
n Pipe & Filter
n Shared-data
n Client-Server
n Peer-To-Peer

31

Pipe & Filter style

Pipe & Filter: Overview

n A component reads streams of data as input and
produces streams of data as output

n Suitable for applications that require a sequence
of computations to be performed on data

n This architectural style focuses on the dynamics
(interaction) rather than the structure

33

filter

pipe

read input file process file

Pipe & Filter: Overview

n Filter 1 is a Source:
n may only send data to Filter 2
n may not receive data

n Filter 2 is a Sink:
n may only receive data from Filter 1
n may not send data

34

Filter 1
(Source)

Filter 2
(Sink)

Pipe

Pipe & Filter example: Batch Sequential

n A transformation subsystem or module cannot start its
process until the previous module completes its
computation

35

 222 U
 111 I
 333 D
 -123 U

Validate
 222 U
 111 I
 333 D

sort
111 I
 222 U
 333 D

Update100 ----
111 ----
200 ----
222 ----
444 ----

100 ---
200 ---
222 ---
333 ---
444 ---

Generate Report

Sorted
transaction

Validated
transaction

 Updated
 Master file

Rejected
transaction

-123 U

 Master file

Reports

 Transaction File

Pipe & Filter example: Unix Shell

n Unix shell command line processing of the pipe symbol “|”:
n the output from the command to the left of the symbol “|”, is

to be sent as input to the command to the right of the pipe
n this mechanism got rid of specifying a file as std output of

a command and then specifying that same file as the std
input to another command, including possibly removing this
intermediate file afterwards

n Example: counting occurrences in a mailing list file
called “swarch.txt”:

n Does this break any assumption of the “pure” Pipe &
Filter style?

36

cat swarch.txt | grep studio | wc

Pipe & Filter example: Compiler

37

Pipe: CRC

Class Pipe

Responsibilities
•Connector: connects a filter with another filter
•Flows data from its input end to its output end
•It might be passive (data buffer) or active (object)

Collaborators

• Filter

Filter: CRC

Class Filter
Subclasses: Source, Sink

Responsibilities
•Component (computes a transformation function)
•Transforms data from its input port to its output port
•Sources are special filters without inputs
•Sinks are special filters without outputs

Collaborators

• Pipe

Pipe & Filter: Architecture

nComponents:
n Filter

n reads data from its input stream, processes it, and writes it over
a pipe for next filter to process

n only knows its connected pipes, does not know what are at the
other end of the pipe

n Is independent from other filters
n Its output can begin before knowing all input

nConnectors:
n Pipe

n Is stateless and used to move streams of data between filters

40

Pipe & Filter: Metamodel and Model

41

Pipe & Filter: Data Flow types

n There are three ways to make the data flow:
n Push only (Write only)

n A data source may pushes data in a downstream
n A filter may push data in a downstream

n Pull only (Read only)
n A data sink may pull data from an upstream
n A filter may pull data from an upstream

n Pull/Push (Read/Write)
n A filter may pull data from an upstream and push transformed

data in a downstream

42

Pipe & Filter: active or passive filters (1)

n Active filter:
n An active filter pulls in data and push out the

transformed data
n It works with a passive pipe which provides read/write

mechanisms for pulling and pushing
n Pull/Push data flow type

n Examples:
n The UNIX Pipe&Filter mechanism
n The PipedWriter and PipedReader classes in Java

are also passive pipes that active filters must use to
drive the data stream forward

43

Pipe & Filter: active or passive filters (2)

n Passive filter:
n Lets connected pipes to push data in and pull data out
n It works with active pipes that pull data out from a filter

and push data into the next filter
n The filter must provide the read/write mechanisms in

this case
n Examples:

n Very similar to the data flow hardware architecture

44

Active Filter: Sequence Diagram

45

Active Filter:
Class and Component Diagram

46

Passive Filter: Sequence Diagram

47

Passive Filter:
Class and Component Diagram

48

Pipe&filter and Chain of Responsibility
n The style Pipe&filter is inspired by the GoF design

pattern Chain of Responsibility

49

Pipe & Filter: Pro & Cons (1)

n Benefits:
n Filters are self containing processing services that

perform a specific function thus the style is cohesive
n Filters communicate (pass data most of the time)

through pipes only, thus the style results in low coupling
n They naturally support concurrent execution: each filter

can be implemented as a separate task and potentially
executed in parallel with other filters

50

Pipe & Filter: Pro & Cons (2)

n Pitfalls:
n The architecture is static (no dynamic reconfiguration)
n Filter processes which send streams of data over pipes

is a solution that fits well with heavy batch processing,
but may not do well with any kind of user-interaction

n Anything that requires quick and short error processing
is still restricted to sending data through the pipes,
possibly making it difficult to interactively react to error
events

51

Pipe & filter

52

https://docs.microsoft.com/en-us/azure/architecture/patterns/pipes-and-filters

Lambda architecture

53

Lambda architecture

54

http://lambda-architecture.net

All data entering the system is
dispatched to both the batch layer
and the speed layer for processing.
The batch layer has two functions:
(i) managing the master dataset (an
immutable, append-only set of raw
data), and (ii) to pre-compute the
batch views.
The serving layer indexes the
batch views so that they can be
queried in low-latency, ad-hoc way.
The speed layer compensates for
the high latency of updates to the
serving layer and deals with recent
data only.
Any incoming query can be
answered by merging results from
batch views and real-time views

Lambda piper

55

http://arjunkomath.github.io/lambda-piper/

Shared-data style

Shared-data: Overview

n A number of agents (data consumers/producers)
communicate via a centralized data store

n The primary goal of this style is total decoupling
among agents, that can be added or detached at
runtime without knowing each other

n Architectures based on data sharing have the goal
of achieving data integration

n The agents are relatively independent of each
other (interact only through the data store)

n The data store independent from the agents
57

Shared-data: control flow

n The control flow within a system based on a shared data
store can be managed either by the data store itself or by
the agents

n These two kinds of control flow distinguish the two
substyles:
n Repository (passive): an agent sends a request to the

data store to perform some action (e.g. insert data)
n Blackboard (active): the data store notifies and sends

data to subscribing agents when something changes

58

Data store: CRC

Class DataStore

Responsibilities
•Connector: connects agents
•Stores data using some schema
•Allows writing or modifying or deleting data
•Allows reading data

Collaborators

• Agent

Agent: CRC

Class Agent

Responsibilities
•Component (computes a transformation function)
•Reads data from DataStore
•Writes or modifies or deletes data from DataStore

Collaborators

• DataStore

Shared-data: control flows

61

Copyright © Yaodong Bi – Software Architecture - 1

http://www.facebook.com/l.php?u=http://www.cs.scranton.edu/~bi/2011f-html/se510/sw-architecture-1.ppt&h=2AQHFvaHb

Shared-data: Architecture
The substyles share two kinds of components:

n a shared data store representing the current state
n a collection of independent agents operating on the

data store

62
Copyright © Emad Shihab, Architecture Styles

http://research.cs.queensu.ca/~emads/teaching/slides/CISC322_06_ArchitectureStyles_sep20.pdf

Style Repository: Overview

n Data store is passive
n Agents read and write in the data store
n The style supports interactive data processing
n Agents control the computation flow

63

Repository: Architecture

n Components:
n Agents

n Independent modules that collectively contain the knowledge
needed to solve a problem

n They all have a direct connection with the Repository
n Repository

n Central store containing the shared data
n Communication among agents mediated by the Repository
n Communication may be initiated by any agent

n Connectors:
n Procedure calls or direct memory accesses

n C.R.U.D. (Create – Read – Update – Delete) Data

64

Repository: Component Diagram

65

Repository: Class Diagram

66

Agent

Repository

createData()
setData()
getData()
searchData()

Repository: Sequence Diagram

67

Repository example: Tuple Space

n A Tuple Space is a repository where agents (workers) read
or write tuples by pattern matching

n Main primitives:
n out(tuple) non blocking, creates new tuple
n rd(tuple pattern) blocking, does not delete matching tuple
n in(tuple pattern) blocking, deletes matching tuple
n eval(tuple) non blocking, creates new worker

68

Blackboard: Overview

n A number of Knowledge Sources (KS) have access to a
shared data store called “blackboard”

n The Blackboard provides an interface to inspect and
update its content

n The Control module/object activates the KSs following
some strategy

n Upon activation, a KS inspects that blackboard to see if it
can contribute to solving the problem

n If it can, the Control object can allow the KS to put its
partial (or final) solution on the board

n Particularly suited to solve nondeterministic problems
(decision support, signal processing, speech recognition…)

69

Blackboard: components
Components:

n Knowledge Sources
n Independent modules that contain the knowledge needed to

solve the problem
n Control

n Makes runtime decisions about the course of problem solving
and the expenditure of problem-solving resources

n Provide a mechanism (needed by Knowledge Sources) to
organize their use in the most effective and coherent fashion

n Blackboard
n Global database containing input data, partial solutions, and

other data that are in various problem-solving states

70

Blackboard: connectors
Connectors:

n Procedure calls
n Triggered by the current state of the blackboard, rather than by

external inputs

71
Copyright © Daniel D. Corkill, Blackboard Technology Group, Inc.

http://www.google.it/url?sa=t&rct=j&q=blackboard%20system&source=web&cd=3&sqi=2&ved=0CHkQFjAC&url=http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.137.7801&rep=rep1&type=pdf&ei=RCC2T4PwC8fKsgaw7sjaBw&usg=AFQjCNFwc7L-XKVWx35PcT6xz8rZtglGmQ

Blackboard: Component Diagram

72

Blackboard: Class Diagram

73

Control

+ loop()
+ nextSource()

Knowledge Source

+ updateBlackBoard()
+ execCondition()
+ execAction()

Blackboard

+ inspect()
+ update()

- solutions
- controlData

+activates
+o
pe
ra
te
s_
on

1

1..*

1

1

1

1..*

Copyright © Nguyễn Ngân, Blackboard Architecture

http://www.slideshare.net/NguynNgn/blackboard-architecture?src=related_normal&rel=940972
http://www.slideshare.net/NguynNgn
http://www.slideshare.net/NguynNgn/blackboard-architecture?src=related_normal&rel=940972

Blackboard: Sequence Diagram (1)

74

Copyright © Nguyễn Ngân, Blackboard Architecture

http://www.slideshare.net/NguynNgn/blackboard-architecture?src=related_normal&rel=940972
http://www.slideshare.net/NguynNgn
http://www.slideshare.net/NguynNgn/blackboard-architecture?src=related_normal&rel=940972

Blackboard: Sequence Diagram (2)

75

Copyright © Nguyễn Ngân, Blackboard Architecture

http://www.slideshare.net/NguynNgn/blackboard-architecture?src=related_normal&rel=940972
http://www.slideshare.net/NguynNgn
http://www.slideshare.net/NguynNgn/blackboard-architecture?src=related_normal&rel=940972

Blackboard: Sequence Diagram (3)

n The main loop of Control started
n Control calls nextSource() to select the next knowledge source
n nextSource() looks at the blackboard and determines which

knowledge sources to call
n For example, nextSource() determine that Segmentation, Syllable

Creation and Word Creation are candidate
n nextsource() invokes the condition-part of each candidate knowledge

source
n The condition-parts of candidate knowledge source inspect the blackboard to

determine if and how they can contribute to the current state of the solution
n The Control chooses a knowledge source to invoke and a set of

hypotheses to be worked on (according to the result of the condition parts
and/or control data)

n Apply the action-part of the knowledge source to the hypothesis
n New contents are updated in the blackboard

76

Blackboard example: Hearsay II

77

Shared data: Publish/Subscribe
n The original blackboard system Hersay was

sequential
n In a distributed system agents are concurrent and

interact by broadcast or multicast messages
n Each agent notifies a state change via a message

(it “raises an event”)
n All agents interested to the event (“observers”)

receive a copy of the message
n Event generators do not know the observers

(decoupling)
n This variant makes use of the Observer Pattern

78

Observer pattern

79

Publish/Subscribe as observer

80

Pub/Sub example: Spotify

81Setty et al., The Hidden Pub/Sub of Spotify, Proc. ACM DEBS 2013

Pub/Sub example: Data Distribution Service (DDS)

n DDS for Real Time systems is a OMG
specification of a publish/subscribe middleware
architecture which standardizes a data centric
model for programming distributed systems

n The standard is used in applications such as
smartphone operating systems, transportation
systems and vehicles, software defined radio,
healthcare, Internet of Things

DDS

n The DDS publish-subscribe model avoids complex network
programming for distributed applications

n DDS supports mechanisms that go beyond the basic
publish-subscribe model. The key benefit is that
applications that use DDS for their communications are
entirely decoupled. The applications never need
information about the other participating applications,
including their existence or locations.

n DDS automatically handles all aspects of message
delivery, without requiring any intervention from the user
applications, including:
n determining who should receive the messages
n where recipients are located
n what happens if messages cannot be delivered

DDS: example

Data distribution services
(OMG)

Publish/Subscribe: variants

88

Variety or real time constraints

Shared-data: Pro & Cons (1)

n Benefits:
n It is an effective way to share huge amounts of data:

write once for all to read
n Each subsystem has not to take care of how data are

produced/consumed by other subsystems
n It allows a centralized management of system backups,

as well as of security and recovery procedures
n The data sharing model is available as the shared-data

schema, hence it is easy to plug new subsystems

90

Shared-data: Pro & Cons (2)

n Pitfalls:
n Subsystems have to agree on a data model, thus impacting

on performance
n Data evolution: it is “expensive” to adopt a new data model

since:
n it has to be applied on the entire shared data
n all the subsystems have to be updated

n Not for all the subsystems’ requirements in terms of backup
and security are always supported by the shared data

n It is tricky to deploy the shared data on several machines,
preserving the logical vision of a centralized entity, due to
redundancy and data consistency matters

91

Architectural styles and design patterns
n A design pattern solves a design problem
n An architetctural style is not intended to solve a

problem: it is a way of organizing the structure and
behavior of a system

n Most architectural styles include some design
patterns

92

Summary
n The basic architectural styles are few and their

properties should be studied and exploited
n Their descriptions and properties are better

understood using a modeling notation
n The architectural models and descriptions can be

exploited by a technology like UML via automatic
transformations: see the Model Driven Architecture

Self test
n What is the relationship between style and

architecture?
n What is an active pipe?
n Which are the main differences between the

repository and blackboard styles?

94

References

n Clemens et al., Documenting Software Architectures, Addison
Wesley, 2010

n Qian et al., Software Architecture and Design Illuminated, Jones
and Bartlett, 2009

Useful sites
n www.softwarearchitectureportal.org
n www.dossier-andreas.net/software_architecture/
n www.bredemeyer.com/links.htm
n www.opengroup.org/architecture/
n www.iasahome.org
n alistair.cockburn.us

Questions?

