
The business of software

Prof. Paolo Ciancarini
Software Architecture
CdL M Informatica �
Università di Bologna

Agenda
• Software as a product vs sw as a service
• The software industry
• Software standards
• Architectural and engineering issues

The economy depends on sw
• Software allows a boy in Bologna to call a girl in NewYorkCity
• Software drives the imaging systems that allow the early

detection of breast cancer and other illnesses
• Software controls the antilock breaking systems that save

people lives in automobiles
• Software powers digital TV and MP3 players
• Software allows to study the human genome
• Software supports teaching and learning activities
• Software allows us to explore and understand our universe

Software can kill people?

http://www.wired.com/software/coolapps/news/2005/11/69355?currentPage=all
http://www.zdnet.com/the-top-10-it-disasters-of-all-time-3039290976/

Software and cathedrals
are much the same—
first we build them, then
we pray

[Sam Redwine]

Why is software important?

• The economy depends on software
• Software is a key component in modern

products, especially when they include
innovative, emerging technologies

• In the next few slides we report the
Gartner hype cycle for the emerging
technologies from 2005 to 2018

Hype Cycle of emerging technologies
(according to Gartner)

Hype Cycle of emerging technologies
(how to read the diagram)

Hype cycles
2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

Discuss

Identify in the Gartner diagrams the
technologies which are software-intensive

24

“digital life” in 2020

Source:http://www.globaltelecomsbusiness.com/article/2985699/Connected-devices-will-be-worth-45t.html

Digital life includes all connected devices,

and needs digital transformation of businesses and people

NY Times: A Messenger for the Internet of Things
Wall Street Journal: IBM Tackles Machine to Machine Big Data Deluge

1 Connected Car $600 billions

2 Clinical Remote Monitoring $350 billions

3 Assisted Living $270 billions

4 Home and Building Security $250 billions

5 Pay-As-You-Drive Car Insurance $245 billions

6 New Business Models for Car Usage $225 billions

7 Smart Meters $105 billions

8 Traffic Management $100 billions

9 Electric Vehicle Charging $75 billions

10 Building Automation $40 billions

http://www.globaltelecomsbusiness.com/article/2985699/Connected-devices-will-be-worth-45t.html
http://bits.blogs.nytimes.com/2013/04/25/a-messenger-for-the-internet-of-things/
http://allthingsd.com/20130429/ibm-tackles-machine-to-machine-data-deluge/?KEYWORDS=messagesight

25

No car No houseNo store

DT and the API economy

26

API economy?

Photo service
increases x6
the revenues
wrt the shops

Sensors and
API's open for
all trash
containers to
share info of
when to pick
up trash

90% of
revenues from
API

60% of
revenues from
API

Transformation = strategy + platform

27

Digital
transformation

Digital
platform

Digital
strategy

Extending and exposing
business processes

outside the organization

System to achieve digital
operating status

Organization’s digital
positioning, operating
model, competitors,
customer needs and

behavior.

Platforms
• Technology Platforms: eg. Amazon WS
• Computing Platforms: eg. Google Android
• Utility Platforms: eg. Google search
• Interaction Networks: eg. Facebook, Telegram
• Marketplaces: eg. Amazon, Ethereum
• On-demand Service Platforms: eg. Uber
• Content Crowdsourcing Platforms: eg. Youtube, Yelp
• Data Harvesting Platforms: eg. Waze
• Content Distribution Platforms: eg. Google AdSense

https://medium.com/platform-hunt/the-8-types-of-software-platforms-473c74f4536a

Software platforms are huge
• In 2007 the Windows operating system scales to 60

million lines of code from 15 million lines in 1995
• in 2011, the size of software in BMW 7 Series

reaches 200 million lines of code;
• 2011 the size of sw in Airbus 380 reaches 1 billion

lines of code.
• 2015 Google is 2 billions lines of code

The software industry

• According to Gartner, the value of the global software market in
2013 was about 407 G$, an increase of 4.8% compared to 2012

• Americas account for more than the 40% of the global software
market's value

Software (was) a good

• You pay, you get “something”, i.e. a software
product, that you can use (or lend, or resell,
but not reuse in another product)

• Examples:

– Microsoft Office
– Adobe Acrobat

– IOS or Android apps
– Console videogames

– …

Software as a service
Service: the immaterial equivalent of a good

• Software is a service at heart, albeit an automated
one, but it is sold much like a manufactured good.
Customers have to pay large sums of money up
front, bear much of the risk that a program may not
work as promised, and cannot readily switch vendors.

The Economist, 2003

Software is a service

We get software services in many ways
• on the Internet
• on telephone carriers
• by radio (eg. DTV, SatelliteTV, etc)

Unicorns (major startups services)

https://www.cbinsights.com/research-unicorn-companies

Many kinds of software
• Middleware
• Embedded
• Open source
• Web Services
• Mobile (eg. applet)
• Data mining (eg. Search engine)
• Agents
• Social software (eg. Web 2.0)
• Software Ecosystems
• …

Embedded software
• Within only 30 years the amount of software in

cars went from 0 to more than 10,000,000 lines
of code

• More than 2000 individual functions are realized
or controlled by software in premium cars, today

• 50-70% of the development costs of the
software/hardware systems are software costs

• (M.Broy, “Challenges in Automotive Software Engineering”,
ICSE2006, pp33-42,2006)

Embedded software
Code Size Evolution of High End TV Software

2
4

8
16

32
64

256
512

1024
2048

12000

3000
4096

32000

100000

64000

1

10

100

1000

10000

100000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2009

Year of Market Introduction

K
b

yt
es

Software components

• COTS: “component off the shelf”
• Building software systems by component integration
• Software component markets. Examples:

– Enterprise Java Beans
– Microsoft .NET

• Component containers: eg. Docker
• Microservices

Service Oriented Architectures
• SOA compose different

services for complementary
domains

• They are often based on
stacks of service layers

• SOA services feature loose
coupling that can be
“orchestrated” according to
some rules of “choreography”

Software standards

Standards

• Many institutions define international
product or process standards for the
global software industry

• Their goal is usually to improve the
quality of software products and their
development processes

SWEBOK: the Body of Knowledge
of Software Engineering

Standard ISO/IEC TR 19759:2005
2013: Version 3
Main Knowledge areas:

• Requirements
• Design

• Construction
• Testing
• Maintenance

• Configuration management
• Process

• Tools and methods
• Quality

Software standards

• Standard IEEE: development methods
• Standard OMG: UML and CORBA
• Standard W3C: Web technologies
• Standard OASIS: Business Process

IEEE Standards on Software

• IEEE 610 - Standard for Glossary of Sw Eng Terminology
• IEEE 830 - Practice for Sw Reqs Specifications
• IEEE 1016 - Practice for Sw Design Descriptions

• IEEE 1012 - Sw Verification and Validation
• IEEE 1062 - Sw Acquisition

• IEEE 1063 - Sw User Documentation
• IEEE 1233 - Developing System Reqs Specifications
• IEEE 12207 - Standard for Sw Life Cycle Processes

• IEEE 1471 - Practice for Architectural Descriptions

www.computer.org/standards

Software engineering
and architecting

The production of software
in the contemporary world

• Single system vs product families
• Centralized vs distributed production

(offshore)
• Code centric vs data intensive
• Use in lab vs use in the large
• Long planned vs continuous release
• Model driven vs test driven

Main problems

• Building software is expensive and error-prone
• Software-intensive systems are larger and larger
• Sw systems become part of systems of systems
• Methods to design software are still immature
• Economic issues, like quality or cost estimates
• Effectiveness of product and process standards
• Effectiveness of tools and languages

Software Engineering

• The discipline of Software Engineering studies the
methods to build software systems and products,
the theories at their basis, and the tools useful to
develop and measure the qualities of software

• Software Engineering deals with limited resources
• It is a discipline strongly empirical, that is based

on experience and past projects

Software Architecture
• The discipline of Software Architecture studies the

decisions which rule the design of software systems
• It is centered on the idea of reducing the complexity of

software through abstraction, separation of concerns, and
reuse

• Wrong decisions in crafting the software architecture of a
system are a major cause of project cancellation

• Unfortunately, the discipline is still quite immature: it is hard
to find two software architects who agree on the right way
to design a software system

Producing software is difficult
• Complexity derives from

– Fast technical innovation
– Strong international competition
– Psychological issues
– Organizational issues
– Lack of professionals trained on sw design and

development
• Typical failures: bad project management, wrong

requirements, mediocre design, excessive costs
• Stakeholders with contrasting interests
• New projects start with high risks, scarcely

analyzed

Chaos Report 2003,
by the Standish Group

Productivity is *historically* low

2003: analysis of 13.522 sw development projects in USA:
– 66% out all projects failed (no useful result)
– 82% out all projects needed more time than initially

planned
– 48% out all projects produced products lacking some

function required by the customers
– 55 G$ wasted in one year

Standish 2011-2015

Caper Jones on sw project failures

• “As to project cancellations, we cover a wider range than Standish
Group because they show only IT projects. We include embedded,
systems software, web applications, IT, etc. There are some gaps
because have no data from the game industry. Our data resembles
Standish for IT cancellations, but the embedded and systems worlds
are a bit better than the IT world due to more effective quality controls

• 10 function points = 1.86% cancels 100 function points = 3.21%
1000 function points = 10.14% 10000 function points = 31.27%
100000 function points = 47.57%

• The canceled projects are usually late and over budget when the plug
is pulled. On average a canceled project is about 10% more expensive
than a successful project of the same size and type”

The solution: software reuse

Main techniques for software reuse
• Design patterns
• Open source
• Software cloning
• Component-based sw engineering
• Software product lines
• Software architectures

Design patterns

• Reuse the idea, not the code
• Reusable solutions
• Goal: avoid or manage the

dependencies among the components
(classes, objects) of a software system

Open source

• Let everybody contribute to improving
the source code

• Reusable applications
• Goal: source code more tested and

extensible

Software cloning

• Sw clones are the result of ad-hoc
reuse by copying and pasting, from
simple statements to methods, classes,
models, even architectures.

• Problem: intellectual property
• Problem: maintainability

Component-based sw engineering
(CBSE)

• A reuse-based approach to defining, implementing,
and composing loosely coupled independent
components into systems

• COTS: Component-Off-The-Shelf
• Components are substitutable, so that a component

can replace another (at design time or run-time), if
the successor component meets the requirements of
the initial component (expressed via the interfaces)

Software product lines

• A sw product line is a family of products
which share a basic common set of
reusable assets, and whose variable
part can be modeled as a range of
possible additional assets

• Goal: produce a new member of the
family focussing on the variable part

Software architectures

• The set of structures needed to reason
about a software system, including its
basic elements, the relations between
them, and the properties of both
elements and relations

• Goal: To provide a basis for reuse of
elements, their relations, and the related
decisions

Reusing sw architectures

• The reuse of a software architecture
includes:
– Reusing its requirements and tests
– Reusing its structure
– Reusing its components
– Reusing its rationale

• A software architecture has always to be
evaluated, even when mostly reused

Summary
• Software is a business, but it is not like other

businesses
• Software products are both the programs and

their documentation, included process
documentation

• Software reuse encompasses a variety of
techniques and methods that should be chosen
carefully

• Software architecture is the discipline which
studies software reuse methods

A quotation

Software is the invisible thread and
hardware is the loom on which computing
weaves its fabric, a fabric that we have
now draped across all of life

Grady Booch

Self test questions

• What categories of “software” you know”?
• What are they differences?
• What are the main problems in the

production of software?
• Where can I find a specific paper on a

specific software architecture topic?

Useful references
• Cusumano, The business of software, 2004
• http://www.gartner.com/newsroom/id/3412017
• http://www.ambysoft.com/surveys/success2013.html

Questions?

