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Abstract

Decidability and complexity of the satisfiability problem
for the logics of time intervals have been extensively studied
in the last years. Even though most interval logics turn out
to be undecidable, meaningful exceptions exist, such as the
logics of temporal neighborhood and (some of) the logics of
the subinterval relation.

In this paper, we explore a different path to decidability:
instead of restricting the set of modalities or imposing suit-
able semantic restrictions, we take the most expressive in-
terval temporal logic studied so far, namely, Venema’s CDT,
and we suitably limit the nesting degree of modalities.

The decidability of the satisfiability problem for the re-
sulting CDT fragment is proved by embedding it into a
well-known decidable prefix quantifier class of first-order
logic, namely, the Bernays-Schonfinkel’s class. In addition,
we show that such a fragment is in fact NP-complete (the
Bernays-Schonfinkel’s class is NEXPTIME-complete), and
that any natural extension of it is undecidable.

1. Introduction

In the last years, the study of temporal reasoning and
logics via interval-based approaches has been very inten-
sive. Since the seminal work by Halpern and Shoham on
the interval logic HS [17], that features a modality for each
Allen’s relation [1] between pairs of intervals (over a linear
order), and Venema’s work on the very expressive interval
logic CDT [28], a series of papers on interval temporal log-
ics has been published, e.g., [2, 3, 6, 7, 9, 21, 22, 26]. They
study and almost completely solve the problem of classi-
fying all “natural”, genuinely interval-based logics with re-
spect to their expressive and computational power.

One of the most significant decidable fragments of HS is
Propositional Neighborhood Logic (PNL for short), whose
two modalities correspond to Allen’s relations meets and
met by. PNL has been introduced in [15], and further stud-

ied in [4], where it has been shown to be expressively com-
plete with respect to the two-variable fragment of first-order
logic interpreted over a number of classes of linearly or-
dered sets.

Recently, some decidable extensions of PNL have been
identified. In [25], it has been shown that the pair of modal-
ities corresponding to Allen’s relations starts and started
by (or, equivalently, end and ended by) can be added to
PNL preserving decidability over finite linear orders, while
a decidable metric extension of PNL over natural numbers
has been investigated in [5]. Unfortunately, it is possible
to show that the addition of quite simple hybrid or first-
order constructs to PNL immediately leads to undecidabil-
ity [10, 11].

The D fragment of HS featuring a single modality for the
Allen’s relation during is a meaningful example of how easy
is to fall into undecidability: D is decidable over dense lin-
ear orders and undecidable over finite and (weakly) discrete
linear orders. Moreover, the extension of D with modalities
for the inverse relation contains, the pair of relations starts
and started by (or, equivalently, ends and ended by), and
the pair of relations before and later is still decidable over
dense linear orders [24], but the extension of D with any
of the PNL modalities turns out to be undecidable over all
interesting classes of linear orders [8].

Classical first-order logic presents a situation somehow
similar. Ever since it has been shown that the full language
is undecidable, a great effort has been done in order to iden-
tify more and more expressive decidable fragments. At least
three different strategies have been explored: (i) to limit
the number of variables of the language, (ii) to limit the
type of formulas allowed by relativizing the quantification
(guarded fragments), and (iii) to limit the structure and the
shape of the quantifiers prefix.

First-order logics with a limited number of variables
have been already explored in connection with interval tem-
poral logics; most notably, as recalled before, the equiv-
alence in expressive power between the two-variable frag-
ment over linear orders (shown to be NEXPTIME-complete



in [27]) has made it possible to prove decidability of PNL
before specific decision procedures were tailored for the lat-
ter.

Guarded fragments (see, e.g., [16]) of first-order logics
have been shown to be extremely useful to justify and un-
derstand the good computational properties of modal logics,
but, to the best of our knowledge, they turned out to be al-
most useless to tackle interval-based temporal logics, the
main reason being the fact that transitive guards, necessary
to force the linearity of the structures, preserve decidability
only when at most two variables are allowed, while interval
properties (when intervals are interpreted as pairs of points)
are mostly three-variables.

In this paper, we explore a novel technique, based on
the third strategy: we analyze the relationships between
interval-based temporal logics and quantifier prefix decid-
able first-order logics. The decidability of the latter family
of logics does not depend only on the shape of the quantifier
prefixes, but also on the number and the arity of predicate
and function symbols that are allowed in the formulas, and
the presence/absence of equality. Seven, intrinsically differ-
ent decidable classes have been identified in the literature
(an up-to-date survey on prefix classes of first-order logic
can be found in [12].

For the purpose of this paper, it is sufficient to focus on
the prefix vocabulary class of fragments identified in 1928
by Bernays and Schonfinkel [12]. Such a class features all
and only formulas in prenex form, where the quantifier pre-
fix is of the form Jz; ... 3z, Vy; . .. Vy,, and the quantifier-
free part of the formula can use any predicate symbol of any
arity, but no function symbols, and, possibly, equality.

We will consider the most expressive (undecidable) in-
terval temporal logic studied so far, namely, Venems’s
CDT [28], and we will tailor a syntactically-defined frag-
ment of it, called CDTgg, in such a way that its standard
translation fits into the above-mentioned prefix vocabulary
class. It is well known that Bernays-Schonfinkel’s frag-
ment of first-order logic is expressive enough to model a
linear order without specific properties such as discreteness
or denseness. Simpler frame properties commonly studied
in interval temporal logic literature, such as unboundedness,
can also be expressed.

Moreover, we take into consideration a well-known,
non-terminating tableau-based deduction system for CDT
developed in [14], and we show that, over this specific frag-
ment, it actually terminates. As a side effect, we prove
that the satisfiability problem for CDTgg is NP-complete, in
sharp contrast with that of the Bernays-Schonfinkel’s frag-
ment, which is NEXPTIME-complete. Finally, we show
that any natural extension of CDTgg immediately steps into
undecidability.
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Figure 1. The ternary relation chop.

2. Preliminaries

The Bernays-Schonfinkel’s prefix vocabulary class is de-
fined by all and only those first-order formulas built with
any relational symbol of any arity and such that they can be
put in prenex form by using a quantifier prefix of the type
JZVy, where £ = 1 ...2, and § = y; ...y, are (possi-
bly empty) vectors of first-order variables. Throughout the
paper we denote this class with FOpg, and with FOpg[=] its
extension with equality. It is well known that the satisfiabil-
ity problem for both classes is NEXPTIME-complete [12].
It is worth to notice that, in general, the class is not closed
by negation; nevertheless, since all our formulas can be
thought of as sentences (free variables can be existentially
quantified), the class is closed under conjunctions and dis-
junctions.

Interval temporal logics are usually interpreted over a
linearly ordered set D = (D, <). In this setting, an interval
on D is any ordered pair [d;, d;] such that d; < d; (in recent
literature, this is referred to as the non-strict semantics, in
contrast with the strict one that excludes degenerate objects
of the type [d;, d;]). The set of all intervals on D is denoted
by I(D). The variety of all possible relations between any
two intervals has been studied by Allen [1], that identified
12 different binary relations (plus the equality). Halpern
and Shoham’s HS is one of the first interval logic proposed
in the literature, and it can be seen as the modal logic that
features exactly one modal operator for each Allen’s rela-
tion. HS is undecidable over most classes of linearly or-
dered sets [17]. In [28], the ternary relation chop, shown
in Fig. 1, has been considered. The corresponding binary
modal operator C, along with its two inverses D and 7', and
the modal constant 7 for point-intervals, gave rise to the
interval logic CDT, that turned out to be undecidable when-
ever HS is, as the former is strictly more expressive than the
latter. More recently, Hodkinson et al. studied in detail the
properties of the three sub-fragments of CDT with only one
binary modal operator, showing their undecidability [18].

3. The logic CDTgg over all linear orders and
its standard translation

Formulas of the logic CDT are built over a set of propo-
sitional letters AP = {p,q,...}, the classical connectives
-, V, three binary modal operators C, D, and T, and one



modal constant 7, by the following abstract grammar [28]:
pu=plr[-pleVeleColeDeo|eT .

The other classical connectives can be thought of as short-
cuts, as standard. Universal modalities do not have a spe-
cial notation, and can be defined using the negation opera-
tion. The semantics of CDT-formulas can be expressed in
terms of concrete models of the type M = (I(D), V'), where
V : AP — 2'®) is a valuation function:

e M,[d;,d;] IF pif and only if [d;, d;] € V(p),

e M,[d;,d;] IF 7 if and only if d; = d;,

o M,[d;,d;] IF = if and only if M, [d;, d;] I} ¢,

e M,[d;,d;] IF ¢V 4 if and only if M, [d;, d;] IF ¢ or
M, [d;,d;] I o,

o M,[d;,d;] I ¢ C ¢ if and only if there exists

d; < dp < d; such that M, [d;,dy] |- ¢ and that
M, [dk,d;] IF 1,

e M, [d;,d;] IF ¢ D1 if and only if there exists dj, < d;
such that M, [dy, d;] I+ ¢ and that M, [dy,, d;] IF 1,

o M,[d;,d;] IF o T if and only if there exists dj, > d;
such that M, [d;, di] IF ¢ and that M, [d;, di] IF ¢.

Standard translation is the classical tool used to express
the semantics of a modal/temporal formula into first-order
logic. The clauses for the standard translation ST'(¢)[z, y],
over a pair of points x, y, are defined as follows:

ST(p)[z,y] = p(z,y)
ST (m)[z,y] = (x = y)
ST(~p)[z,y] = ~ST(p)[x, y]
ST(pV)z,yl = ST(p)[z,y] vV ST(¥)[z,y]
ST(p C )|z, y] = Fz(x < 2 <y AST(p)[x, 2]A
NST()[z,y])
ST (e D)[z,y] = Fz(z <z AST(p)[z, x]A
NST()[z,y])
ST (e T )|z, y] = F2(y < 2 AST(p)[y, 2]A
NST())[, 2])

Notice that the satisfiability problem for a generic modal
logic is itself a first-order satisfiability problem: a formula ¢
is satisfiable if and only if there exists a model M and a pair
of points x, y such that the standard translation of ¢ evalu-
ated on z, y is (first-order) satisfiable. Now, we can ask our-
selves the question: which CDT-formulas are such that their
satisfiability problem is a first-order problem in Bernays-
Schonfinkel’s class? To answer this question we devise an
abstract grammar that produces only CDT-formulas suitably

limited in the nesting of modal operators:

pu=a|-m|p|lpleneleVel
pColeDp|lpT ] (1)
(3 C ¢3) | ~(p3 D ¢3) | ~(p3 T p3)

| =m | p|l-p|leaApalwaVes]

©3C 3|3 D3| 3T 3

@3 (2)

The above grammar generates a fragment of CDT that
we call CDTgg and that is characterized by the fact that
the modal operators C, D, and T can occur in the scope
of at most one negation. By exploiting this limitation we
will show that the standard translation of every formula of
CDTgg is in Bernays-Schonfinkel’s first-order class. It is
easy to see that the syntactic limitations of CDTgg do not
prevent the logic to simulate every modal operator corre-
sponding to an Allen’s relation. For example, we have that:
(B)¢ = ¢ C —, and similarly for the other cases [28].

In order to prove our main theorem, we need the fol-
lowing observation: the linear ordering relation < can
be axiomatized in Bernays-Schonfinkel’s class with equal-
ity [12]. Indeed, consider the following classical properties:

1. Va—(z < z);

2. Vo ylx <y — -y < x);

3.Vr,y, 2z <yhy<z—x<z2);
4. Ve,y(xr=yVr<yVy<z).

It is immediate to see that the conjunction ® of the four
axioms above is in FOgg[=].

Lemma 1. For every formula ¢ of CDTgg, its standard
translation is of the type AZVW a(x,y), where a(x,y) is
quantifier-free and x,y & Z0.

Proof. We proceed by structural induction. We start with
the set of formulas generated by the sub-grammar for @3,
and we show that their standard translations are of the
form 3Z«a(x,y) with z,y ¢ Z. As base case, assume
3 = p for some propositional letter p. Then ST (p)[z, y] =
p(z,y) and the claim holds trivially. The case —p is simi-
lar, as well as the cases of @ and —7w. Consider now the
case of o3 A 5. By definition, ST (v3 A ¢5)[z,y] =
ST (p3)[x, y] A ST(¢5)[x, y]. By inductive hypothesis, we
have that ST (¢3)[z,y] = FZa(x,y) and ST (5)[z,y] =
JwB(x,y), for some o and § quantifier-free and such that
x,y € Zw. We can assume that 2N w = () (otherwise we
proceed to a suitable variables substitution), and therefore
we have that ST (p3 A ¢h) [z, y] = F2W(a(z,y) A B(z, y)).
The case of disjunction is similar. Consider now the case
of p3C¢4. By definition, ST (3 C ¢5)[z,y] = Fz(x <
z < y A ST(p3)[z, 2] A ST(¥5)[z,y]). By inductive
hypothesis, we have that ST (¢3)[x, 2] = Jwa(z, z) and
ST(5)[2,y] = IB(2, y), with a and 3 quantifier-free and



such that =, y, z & Wi. As in the previous case, we assume
@ Nt = and we can conclude that ST (¢35 C ¢5)[z,y] =
Jz(z < z < y A Ida(z,y) AIHB(z,y)) = 2T (x <
z < yAa(z,y) A B(z,y). The remaining two cases are
similar.

We can now consider a generic formula generated by
the grammar. The only interesting cases are those corre-
sponding to negation of modalities. Therefore, consider
the case of —=(¢3 C' ¢5). By definition, we have that
ST(=(p3Ch))[w,y] = ~Fz(x < 2 < yAST(p3)[z, 2] A
ST(¢5)[z,y]). By the previous argument, we can as-
sume that ST(=(yp3 C ©5))[z,y] = "Fz(z < z < y A
Jwa(z, z) A IHB(z,y)), that is equivalent to the formula
in prenex form VzVuvi(—(z < z < y) V —a(z,z) V
—(z,y)). The two remaining cases can be proved in a sim-
ilar way. O

Theorem 1. The satisfiability problem for CDTgg in the
class of all linear orders is decidable.

Proof. By the above lemma, if ¢ is a CDTpg-formula, then
ST (p)[x,y] is such that the formula 3z, y ST (¢)[z, y] is in
the Bernays-Schonfinkel’s class. Therefore, satisfiability of
¢ can be reduced to satisfiability of ® A 3z, yST(p)[z, y],
where, possibly, we have changed the variables in such a
way that ® and ST'(p)[x, y] have no variables in common.
Since the satisfiability problem for FOpg[=] is decidable,
decidability of CDTgpg trivially follows. O

4. A tableau method for CDTgg

In [14], Goranko et al. propose a tableau method for
BCDTT, a generalization of Venema’s CDT logic to partial
orders with linear interval property. Since the considered
logic is undecidable, the method is not guaranteed to termi-
nate, and it is only a semi-decision procedure. In this sec-
tion we show how to tailor it to CDTgg, and how to exploit
the syntactic restriction of this logic to guarantee termina-
tion and obtain an NP-complete decision procedure for it.

The tableau construction generates a tree, whose nodes
are decorated with (1, [d;, d;], D, p, u), where D = (D, <
) is a finite partial order (with linear interval property),
[d;,d;] € I(D), p € {0,1}, and w is a local flag function
which associates the values 0 or 1 with every branch B con-
taining the node. Intuitively, the value 1 for a node n in a
branch B means that n can be expanded on B. The auxiliary
flag p distinguishes between formulas generated by rule (1)
and formulas generated by rule (2) of the CDTgg grammar,
and it is added to simplify the termination and complexity
proofs. If B is a branch, then B - n is the result of expanding
B with the node n, while B - nq]| ... |ny is the result of ex-
panding B with k£ immediate successor nodes ni,...,nk.
With Dp we denote the finite partial ordering in the leaf

of B. Since in CDTgg negation can occur only in front of
propositional letters or modal operators, we need to intro-
duce the notion of dual formula of a formula ¢, denoted by
© and inductively defined as follows:

P = —pand =p = p, forevery p € AP U {r};
PV =FAY;
PN =PV

p Ry =-(pRy), for Re {C,D,T};
(¢ RY) =9 R, for R e {C,D,T}.

Notice that the dual of a generic formula of CDTgg does not
necessarily belong to CDTgg: this is the case, for instance,
of the formula pC'—(¢C'r). However, it can be easily proved
(by induction on the above production rules) the dual of a
formula generated by the sub-grammar for (3 is always a
formula of CDTgg. This observation will be crucial for the
correctness of the tableau method.

The construction of a tableau for CDTgg starts from a
three-node initial tree built up from an empty-decorated
root and two leaves with decorations (¢, [do, do], {do},1,1)
and (o, [do, d1],{do < di},1,1), respectively, where ¢ is
the formula to check for satisfiability. The procedure ex-
ploits a set of expansion rules to add new nodes to the tree.
Notice that the rules and other concepts are very similar
to [14], which we refer to for further explanations.

Definition 1. Given a tree T, a branch B in T, and a
node n € B decorated with (1, [d;,d;], D, pn, un) such
that u,(B) = 1, the branch expansion rule for B and n
is defined as follows. In all considered cases, u,/ (B') =1
for all new nodes n' and branches B'.

R1 If ¢ = & A &4, then expand B to B - ng - n1, where
ng is decorated with (£, [d;, d;],Dp, pn, Un,) and nq
is decorated with (&1, [d;, d;],Dp, Dn, Un, ).

R2 Ifp =&y V&, expand B as in [14].

R3 Ify = (& C &) and d is an element of D such that
d; < d < dj and d has not been used yet to expand n in
B, then expand B to B - ng|ny, where ng is decorated
with (€9, [d;,d),Dg,0,u,,) and ny is decorated with
<£1a [d7 djL Dg, 0, un1>'

R4 Ifvp = (& D &1), the rule is analogous to R3.

R5 Ifyp = —(&0 T &), the rule is analogous to R3.

R6 If ) = & C &, then expand the branch B to B - (n; -

mi)| .. (g omg)|(ng-my)] ... [(nf_y-m)_y), where:

(a) for all i < k < j, ng is decorated with
(€0, [di, di), DB, Dryup, ) and my, is decorated
with <§1, [dka dj]; DB;pna umk>;

(b) for all i« < k < j — 1, Dy is the lin-
ear ordering obtained by inserting a new ele-
ment d between di, and dy41, n; is decorated
with (&, [di,d],ID)k,pn,unQ and m), is deco-
rated with (€1, [d, d;], Dy, pn, um;9>.



R7 Ify = &y D &, the rule is analogous to R6.
R8 Ifv = & T &4, the rule is analogous to R6.

Finally, let u,(B) = 0 and, for every node m # n in B
and any branch B’ extending B, let u,,(B’') = un,(B),
while for every branch B’ extending B, u,(B’) = 0, unless
¥ = (&C&), ¥ = ~(§DE&), or b = —(§T'€1) (in such

cases u,(B') = 1).

We briefly explain the expansion rules for £, C' £; and
—(&oC¢&) (similar considerations can be made for the cases
of the temporal operators D and 7). The rule for the for-
mula &y C &; deals with two possible cases: either there
exists dp, € Dp such that & holds over [d;,d;] and &
holds over [dy,d;], or such an element must be added to
Dp. On the converse, the formula —(&y C &;) states that,
forall d; < d < d;, either &o holds over [d;, d] or &; holds
over [d, d;]. The expansion rule imposes such a condition
for a single element d and keeps the flag equal to 1. In this
way, all elements of Dp are eventually considered, includ-
ing those elements that will be added in some subsequent
steps of the tableau construction.

Intuitively, a branch is closed if there are two nodes n, n’
in B such that n is decorated with (p, [d;, d;], D, py, un)
and n' is decorated with (—p,[d;,d;],D', pp/, ups), for
some p € AP, or if 7 (resp., —m) is in the decoration of
a node where d; # d; (resp., d; = dj). Otherwise, the
branch is open. The expansion strategy for the tableau ex-
pands a branch B only if it is open and it applies the branch
expansion rule to the closest-to-the-root node for which the
branch expansion rule is applicable and generates at least
one node with a new decoration. It is easy to adapt the re-
sult in [14] to obtain the following theorem.

Theorem 2. The tableau method for CDTgg is sound and
complete.

To prove that the method is terminating, and to establish
its computational complexity, we need to fix some prelimi-
nary results. First of all, we define the counting function on
B as follows:

Count(B) = Z [V - Pr - un(B),

neB

where v, and p,, are the formula and the p-flag in the dec-
oration of n, respectively. The following lemma proves that
Count(B) is non-increasing with respect to the expansion
strategy.

Lemma 2. Let B be a branch in a tableau for ¢, and let B’
be an expansion of B that respects the expansion strategy.
Then Count(B’) < Count(B). Moreover, if the expansion
strategy applied either R1, R2, R6, R7, or R8 rule to a node
n such that p,, = 1, then Count(B’) < Count(B).

Proof. Let T be a tableau for ¢, B a branch on it and n
the closest to the root node for which the branch expansion
rule is applicable. Let B’ a branch obtained by applying the
expansion strategy on B. We proceed by induction on the
expansion rule applied to n. The missing rules are similar
to other cases, and skipped.

e Rule R1 is applied to n. Then, n is decorated with
(€oN&1,[di,d;), D, py, uy,) and B' = B-n/-m/ is such
that n’ is decorated with £, and m’ is decorated with
€1~ Since pp/ = pm/ = Pn. un’(B/> = um’(B,) =1,
un(B’) = 0, and u,,(B’) = uy,(B) for every m &
{n,n’,m'}, we have that Count(B’) = Count(B) —
€0 A &1l + €0l + [&1] < Count(B), when p,, = 1, and
that Count(B’) = Count(B) when p,, = 0.

e Rule R3 is applied to B. Then, n is decorated with
<_'(§0 C 51), [di,dj],ID),pn,un) and B = B-n'is
such that either n’ is decorated with &, or with &;. In
both cases n’ is decorated with p,,, = 0. This implies
that Count(B’) = Count(B).

e Rule R6 is applied to B. Then, n is decorated with
(€0 C&,[d;, d;], D, pp,up) and B’ = B-n’-m’ where
n' is decorated with & and m' with &;. Since p,,, =
Pm’ = DPn, un’(B/) = um/(B/) =1, Un(B/) = 0,
and u,,(B') = up,(B) for every m & {n,n',m'},
we have that Count(B’) = Count(B) — |, C &1| +
|€o| + |&1] < Count(B) when p, = 1, and that
Count(B’) = Count(B) when p,, = 0.

In every case, we have that Count(B’) < Count(B).
Moreover, in the cases of rules R1, R2, R6, R7, and RS,
applied to a node n such that p, = 1, we have that
Count(B’) < Count(B). Hence, the thesis is proved. ]

Let L£(y3) be the language of all formulas that can be
generated by the grammar rule (2) for CDTgg. Another cru-
cial property of the tableau method is that the p flag in the
decoration correctly marks formulas that belong to £(p3).

Lemma 3. Let T be a tableau for v and let n be a node
in T decorated with (1, [d;, d;], D, pn, un). Then, p, =0
implies that v € L(p3).

Proof. Let n be a node in 7T decorated with
(¥, [d;, d;], D, pp,up), and let B be the branch con-
necting the root of the tableau with n. We prove the claim
by induction on the length of B. If | B| < 2 then n is either
the root or one of the leaves of the initial tableau. In both
cases the claim follows trivially. Now, let [B| > 2 and
suppose by inductive hypothesis that the claim holds for
every ancestor of n in B. Consider the node n’ to which the
expansion rule has been applied in the construction of T to
obtain the node n; as before, only conceptually different
cases are shown.



e Rule R1 was applied to n’. Then, n’ is decorated with
(&o N &1, [di, dj], D, pps, ups ) and m is decorated either
with &y or with &;. Suppose n decorated with &, (the
opposite case is analogous) and p,, = 0. By rule R1
we have that p,,» = 0. By inductive hypothesis we have
that §o A& = & V & € L(yp3). From the grammar
rules it follows that &, € L(¢3).

e Rule R3 is applied to B. Then, n' is decorated with
(=(&0C&1), [di,d;],D, pps, ups) and n is decorated ei-
ther with &, or with &. Suppose n decorated with &,
(the opposite case is analogous). By rule R3 we have
that p,, = 0. From the grammar for CDTpg it follows
that &y € L(i3). Since & = &, the claim is proved.

e Rule R6 is applied to B. Then, n’ is decorated with
(&0 C &1, [ds, d;], D, ppr, wyr) and n is decorated ei-
ther with &y or with &;. Suppose p,» = 0: by induc-
tive hypothesis this implies that £,C&; = —(§,CE;) €
L(p3), a contradiction. Hence, p,,» = 1 and thus, by
rule R6, p,, = 1. O

By exploiting Lemma 2 and Lemma 3 we can prove that
the length of any branch B of any tableau for ¢ is polyno-
mially bounded by the length of the formula.

Theorem 3. Let T be a tableau for @, and let B be a branch
in T. Then |B| < 2|¢]3 + 8|¢|? + 8|¢|.

Proof. Let B be a branch in a tableau 7 for ¢. By the
expansion rules and the expansion strategy, we have that
there cannot be two nodes in B decorated with the same
formula and the same interval. Since the formula in the
decoration of a node is either a subformula of ¢ or the dual
of a subformula of ¢, we have that |B| < 2 - |¢| - (|Dg])2.

To give a bound on the number of points in Dp, it is
sufficient to notice that:

1. only rules R6, R7, and R8 adds new points to Dp,

2. by Lemma 3, they can be applied only to nodes where
the p flag is equal to 1, and

3. by Lemma 2, every application of them strictly de-
creases the value of Count(B).

Now, let By be the two-node prefix of B made by the
root and one of its successor labelled with ¢. Since
Count(By) = |¢|, we have that |Dg| < |¢| + 2 and
thus we can conclude that |B| < 2 - |p| - (o] + 2)? <
2||* + 8||* + 8| 4. O

From Theorem 3 it follows that the tableau method for
CDTgg is terminating and that its computational complex-
ity is in NP. Since satisfiability for propositional logic is
NP-hard, the following result trivially holds.

Corollary 1. The satisfiability problem for CDTgg is NP-
complete.

5. Undecidable extensions of CDTgg

In the previous sections we have shown that the satis-
fiability problem for CDTgg is decidable and, more pre-
cisely, it is NP-complete. Since it fits into the Bernays-
Schonfinkel’s class, which is NEXPTIME-complete, one
may ask whether we can extend CDTgg preserving decid-
ability. In this section, we show that the most natural exten-
sion of CDTgg is already undecidable.

As we have seen, CDTgg allows one to build formulas
in modal prenex form and such that modal operators can
occur in the scope of at most one negation. Therefore, the
most natural extension is to allow one more nesting of nega-
tions and modal operators, obtaining formulas of the type
—(=(pCq)Cq) or ~(pC—(qCr)). In [18] it has been shown
that CDT is undecidable over the class of all linearly or-
dered sets even if only one binary modal operator and 7 are
allowed in the formulas. Undecidability has been proven
by reducing the problem of finding a solution to the Octant
Tiling Problem to the satisfiability problem of the logic. The
following theorem is based on the simple observation that
the entire construction exploits formulas where modal op-
erators occur in the scope of at most two negations.

Theorem 4. The satisfiability problem for any extension of
CDTgs where modal operators occur in the scope of two
negations is undecidable.

sketch. The octant tiling problem is the problem of es-
tablishing whether a given finite set of tile types 7 =
{t1,...,t;} can tile the second octant of the integer plane
O = {(,5) : i, € NAO < i < j}. For every tile
type t; € T, let ri(t;) (resp., le(t;), up(t;), do(t;)) be the
color of the right (resp., left, up, down) side of ;. To solve
the problem, one must find a function f : @ — 7T such
that 7i(f(n,m)) = le(f(n + 1,m)) and up(f(n,m)) =
do(f(n,m + 1)). Given an instance 7 = {t1,...,t;} of
the octant tiling problem, we will assume that AP contains
the following propositional letters: wu, t1,..., tx. G is the
universal operator, defined in such a way that G is true
over an interval [d;, d;] if and only if ¢ is true over every
interval [dy,, d;], with d;, > d;. It is defined as follows:

Gy = ~(TT(—¢TT)). 3)

Consider now the following formulas:

uTT AG(u — uT—u), 4
G(u — \/ t;), (5)
t; €T
G /\ —\(ti /\tj), (6)
titt;



G N (ti— —(ul-
t, €T

G(u%

V t), (D

t; €T up(ts)=do(t,)

A ~(6T;)). ®)

ti,tj 67—, ’r'i(tj);éle(ti)

It is easy to see that, in formulas (4), (5), and (6), modal
operators occur in the scope of at most two negations. Also,
formulas (7) and (8) can be rewritten in such a way that
modal operators occur in the scope of at most two negations.
In [18] it has been shown that ¢ is satisfiable if and only
if 7 tiles the second octant. Using Konig’s lemma, one
can prove that a tiling system tiles the second octant if and
only if it tiles arbitrarily large squares if and only if it tiles
N x N if and only if it tiles Z x Z. Undecidability of the first
problem immediately follows from that of the last one [12].

O

6. Conclusions and future work

In this paper, we studied a syntactic fragment of Ven-
ema’s CDT logic, that we called CDTpg, whose stan-
dard translation to first-order logic fits into the Bernays-
Schonfinkel’s class of prefix quantified formulas. Decid-
ability of CDTgg is thus a direct consequence of the one of
the Bernays-Schonfinkel’s class. We analyzed the computa-
tional complexity of the logic by developing a terminating
tableau method and proving its NP-completeness. Finally,
we showed that any natural relaxation of the syntactic re-
strictions we imposed on CDTgg leads to an interval logic
which is expressive enough to encode the octant tiling prob-
lem, and thus turns out to be undecidable.

Given that the proposed translation uses binary predi-
cates only, the following question naturally arises: can ev-
ery formula in Bernays-Schonfinkel’s class of first-order
logic, interpreted over linear orders and limited to binary
predicates, be turned into a CDTpg-formula? Expressive
completeness issues have been dealt with in [13, 19, 20]
(for point-based temporal logics) and in [4, 28] (for interval-
based temporal logics). We conjecture that an analogous
result can be given for CDTpg with respect to the Bernays-
Schonfinkel’s class of first-order logic, interpreted over lin-
ear orders, by limiting the language to binary predicates.
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