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Abstract

Unlike the Moon, the dark side of interval temporal log-
ics is the one we usually see: their ubiquitous undecidabil-
ity. Identifying minimal undecidable interval logics is thus
a natural and important item in the research agenda in the
area. The decidability status of a logic often depends on the
class of models (in our case, the class of interval structures)
in which it is interpreted. In this paper, we have identified
several new minimal undecidable logics amongst the frag-
ments of Halpern-Shoham logic HS, including the logic of
the overlaps relation alone, over the classes of all and finite
linear orders, as well as the logic of the meet and subinter-
val relations, over the class of dense linear orders. These,
together with previously obtained undecidability results, de-
lineate quite sharply the border of the dark side of interval
temporal logics.

1. Introduction

Temporal reasoning plays a major role in computer sci-
ence. In the most standard approach, the basic temporal en-
tities are time points and temporal domains are represented
as ordered structures of time points. The interval reasoning
approach adopts another, arguably more natural perspective
on time, according to which the primitive ontological enti-
ties are time intervals instead of time points. The tasks of
representing and reasoning about time intervals arises nat-
urally in various fields of computer science, artificial intel-
ligence, and temporal databases, such as theories of action
and change, natural language processing, and constraint sat-
isfaction problems. Temporal logics with interval-based se-
mantics have also been proposed as a useful formalism for
the specification and verification of hardware [19] and of
real-time systems [11].

Interval temporal logics feature modal operators that
correspond to (binary) relations between intervals usually
known as Allen’s relations [1]. In [13], Halpern and
Shoham introduce a modal logic for reasoning about inter-

val structures (HS), with a modal operator for each Allen’s
relation. This logic, which we denote as HS, turns out to be
undecidable under very weak assumptions on the class of
interval structures [13]. In particular, undecidability holds
for any class of interval structures over linear orders that
contains at least one linear order with an infinite ascend-
ing (or descending) sequence of points, thus including the
natural time flows N,Z,Q, and R.

For a long time, such a sweeping undecidability result
have discouraged attempts for practical applications and
further research on interval logics. A renewed interest in
the area has been recently stimulated by the discovery of
some interesting decidable fragments of HS [6, 7, 8, 9, 10].
Gradually, the quest for expressive decidable fragments of
HS has become one of the main points of the current re-
search agenda for (interval) temporal logic. In this quest,
many fragments of HS have already been shown to be un-
decidable [3, 4, 5, 16].

The main aim of this paper is to contribute to the de-
lineation of the boundary between decidability and unde-
cidability of the satisfiability problem for HS fragments, by
establishing new undecidability results. In particular, here
we exhibit the first known case of a single-modality frag-
ment of HS which is undecidable in the class of all lin-
ear orders, as well as in the class of all finite linear or-
ders, thus also strengthening our previous results [4, 5].
Besides, most undecidability proofs given so far exploit
the existence of a linear ordering with an infinite (ascend-
ing or descending) sequence of points; here we show how
this assumption can be relaxed. For lack of space, proofs
are omitted or only sketched1. Details of the proofs and
a complete picture of the state of the art about the classi-
fication of HS fragments with respect to the satisfiability
problem can be found in [12]. On the web page http:
//itl.dimi.uniud.it/content/logic-hs, it is
also possible to run a collection of web tools, allowing one
to verify the status (decidable/undecidable/unknown) of any
fragment with respect to the satisfiability problem, over var-
ious classes of linear orders (all, dense, discrete, and finite).

1In the submitted version they are put in a technical appendix.



2. Preliminaries

Let D = 〈D,<〉 be a linearly ordered set. An interval
over D is an ordered pair [a, b], where a, b ∈ D and a ≤ b.
Intervals of the type [a, a] are called point intervals; if these
are excluded, the resulting semantics is called strict interval
semantics (non-strict otherwise). Our results hold in either
semantics. There are 12 different non-trivial relations (ex-
cluding the equality) between two intervals in a linear order,
often called Allen’s relations [1]: the six relations depicted
in Table 1 and their inverse relations. One can naturally
associate a modal operator 〈X〉 with each Allen’s relation
RX . For each operator 〈X〉, we denote by 〈X〉 its trans-
pose, corresponding to the inverse relation.

Halpern and Shoham’s logic HS is a multi-modal logic
with formulae built over a set AP of propositional letters,
the propositional connectives ∨ and ¬, and a set of modal
unary operators associated with all Allen’s relations. For
each subset {RX1 , . . . , RXk

} of these relations, we define
the HS fragment X1X2 . . .Xk, whose formulae are defined
by the grammar:

ϕ ::= p | π | ¬ϕ | ϕ ∨ ϕ | 〈X1〉ϕ | . . . | 〈Xk〉ϕ,

where π is a modal constant, true precisely at point inter-
vals. We omit π when it is definable in the language or when
the strict semantics is adopted. The other propositional con-
nectives, like ∧ and →, and the dual modal operators [X]
are defined as usual, e.g., [X]ϕ ≡ ¬〈X〉¬ϕ.

The semantics of an interval-based temporal logic is
given in terms of interval models M = 〈I(D), V 〉, where
I(D) is the set of all intervals over D and the valuation func-
tion V : AP 7→ 2I(D) assigns to every p ∈ AP the set of
intervals V (p) over which it holds. The truth of a formula
over a given interval [a, b] in a modelM is defined by struc-
tural induction on formulae:
• M, [a, b] 
 π iff a = b;
• M, [a, b] 
 p iff [a, b] ∈ V (p), for all p ∈ AP;
• M, [a, b] 
 ¬ψ iff it is not the case that M, [a, b] 
 ψ;
• M, [a, b] 
 ϕ ∨ ψ iff M, [a, b] 
 ϕ or M, [a, b] 
 ψ;
• M, [a, b] 
 〈Xi〉ψ iff there exists an interval [c, d] such

that [a, b] RXi
[c, d], and M, [c, d] 
 ψ,

Satisfiability is defined as usual.
The notion of sub-interval (contains) can be declined

into two variants, namely, proper sub-interval ([a, b] is a
proper sub-interval of [c, d] if c ≤ a, b ≤ d, and [a, b] 6=
[c, d]), and strict sub-interval (when both c < a and b < d).
Both variants will play a central role in our technical results;
notice that by sub-interval we usually mean the proper one.

3. Brief summary of undecidability results

In this section, we first briefly summarize and reference
the main undecidability results for fragments of HS. Then,

〈A〉

〈L〉

〈B〉

〈E〉

〈D〉

〈O〉

[a, b]RA[c, d] ⇔ b = c

[a, b]RL[c, d] ⇔ b < c

[a, b]RB [c, d] ⇔ a = c, d < b

[a, b]RE [c, d] ⇔ b = d, a < c

[a, b]RD[c, d] ⇔ a < c, d < b

[a, b]RO[c, d] ⇔ a < c < b < d

a b

c d

c d

c d

c d

c d

c d

Table 1. Allen’s interval relations and the cor-
responding HS modalities.

we state the main results of this paper, extending the pre-
vious ones in two directions: (i) we prove a number of
new undecidability results for proper sub-fragments of log-
ics that had already been shown to be undecidable, and (ii)
we show how to adapt various undecidability proofs to a
more general class of linear orders.

The first undecidability result, for full HS, was obtained
in the original paper by Halpern and Shoham [13]. Since
then, several other results have been published, starting
from Lodaya [15], that proved the undecidability of the
fragment BE, when interpreted over dense linear orders,
or, alternatively, over 〈ω,<〉, where infinite intervals are
allowed. In [3], Bresolin at al. proved the undecidabil-
ity of a number of interesting fragments, such as AD∗E∗,
AD∗O, AD∗B∗, AD∗O, BE, BE, and BE, where, for each
X ∈ {A, L,B,E,D,O}, X∗ denotes either X or X. In [4],
the undecidability of all (HS-)extensions of the fragment O
(and thus of O), except for those with the modalities 〈L〉 and
〈L〉, has been proved when interpreted in any class of linear
orders with at least one infinite ascending (or descending)
sequence. In [5], the one-modality fragment O alone has
been proved undecidable, but assuming discreteness. Re-
cently, Marcinkowski et al. have first shown the undecid-
ability of B∗D∗ on discrete and on finite linear orders [17],
and, then, strengthened that result to the one-modality frag-
ments D and D [16].

Here, we extend and complete the results from [4, 5],
by providing an undecidability proof that assumes neither
discreteness nor the presence of any infinite ascending or
descending sequence. Second, we claim that all other unde-
cidability proofs for HS-fragments that required infinity of
the structures (i.e., A∗D∗, B∗E∗), appeared in detail in [12]
for specific cases, can actually be relaxed in a similar way
and, thus, generalized. As a consequence, we depict a very
sharp decidability/undecidability border for the family of
HS-fragments, as the undecidability for the mentioned log-
ics holds over the class of all finite linear orders as well as
over the classical orders based on N, Z−, Z, Q, and R.



Theorem 3.1. The satisfiability problem for the HS frag-
ments O, O, A∗D∗, B∗E∗ is undecidable in any class of lin-
ear orders that contains, for each n > 0, at least one linear
order with length greater than n.

In summary, as far as the (un)decidability classification is
concerned, the above theorem leaves as open only one more
problem, namely, the decidability/undecidability status of D
and/or D in the class of all linear orders, which cannot be
trivially derived neither from the undecidability in the finite
and discrete cases, nor from the decidability in the dense
case [18].

Due to space constraints we only show in detail the case
of O. First, we show how to relax the discreteness hypoth-
esis, and, then, we provide the necessary changes required
to relax also the hypothesis of having at least one infinite
sequence in the model. We refer the reader to [12] for full
details.

4. Undecidability of O

4.1. Intuition

As in [4, 5], our undecidability proof is based on a reduc-
tion from the so-called Octant Tiling Problem (OTP). This
is the problem of establishing whether a given finite set of
tile types T = {t1, . . . , tk} can tile the second octant of
the integer plane O = {(i, j) : i, j ∈ N ∧ 0 ≤ i ≤ j}.
For every tile type ti ∈ T , let right(ti), left(ti), up(ti),
and down(ti) be the colors of the corresponding sides of
ti. To solve the problem, one must find a function f :
O → T such that right(f(n,m)) = left(f(n + 1,m))
and up(f(n,m)) = down(f(n,m + 1)). By exploiting an
argument similar to the one used in [2] to prove the unde-
cidability of the Quadrant Tiling Problem, it can be shown
that the Octant Tiling Problem is undecidable too. Given
an instance OTP (T ), where T is a finite set of tiles types,
we build an O-formula ΦT in such a way that ΦT is satis-
fiable if and only if T tiles O. The proof is structured as
follows. First, we focus on the (sub)set G[a,b] of all and only
those intervals that are reachable in the language of O from
a given starting interval [a, b], by defining a suitable global
operator [G]. Then, we set the tiling framework by forcing
the existence of a unique infinite chain of u-intervals (i.e.,
intervals satisfying a designated proposition u) on the un-
derlying linear ordering; the elements of such u-chain will
be used as cells to arrange the tiling, and we will define in
the language a derived modality to capture exactly the next
u-interval from the current one. Third, we encode the octant
by means of a unique infinite sequence of Id-intervals (Id-
chain), each one of them representing a row of the octant.
An Id-interval is composed by a sequence of u-intervals;
each u-interval is used either to represent a part of the plane

or to separate two consecutive rows; in the former case it is
labelled with tile, while in the latter case it is labelled with
∗; fourth, by setting suitable propositions, we encode the
above-neighbor and right-neighbor relations, which con-
nect each tile in a row of the octant with, respectively, the
one immediately above it and the one immediately at its
right, if any. The encoding of such relations must be done in
such a way to respect the commutativity property (Def. 4.1
below). Throughout, if two tiles t1 and t2 are connected
by the above-neighbor (resp., right-neighbor) relation, we
say that t1 is above-connected (resp., right-connected) to
t2, and similarly for tile-intervals (when they encode tiles of
the octant that are above- or right-connected, respectively).

Definition 4.1 (commutativity property). Given two tile-
intervals [c, d] and [e, f ], if there exists a tile-interval
[d1, e1], such that [c, d] is right-connected to [d1, e1] and
[d1, e1] is above-connected to [e, f ], then there exists also
a tile-interval [d2, e2] such that [c, d] is above-connected to
[d2, e2] and [d2, e2] is right-connected to [e, f ].

4.2. Technical details in the infinite case

Let [a, b] be any interval of length at least 2 (i.e., such
that there exists at least one point c with a < c < b). We
define G[a,b] as the set of all and only those intervals [c, d]
of length at least 2 such that c > a, d > b. Accordingly, the
modality [G] defined as [G]p ≡ p ∧ [O]p ∧ [O][O]p refers
to all, and only those intervals that are in G[a,b]. Because all
formulae that we will use in the encoding will be prefixed
with 〈O〉, [O], or [G], hereafter we only refer to intervals in
G[a,b]; all others will be irrelevant.

Definition of the u-chain. The definition of the u-chain
is the most difficult step in our construction, due to the
extreme weakness of the language. It involves three, re-
lated, aspects: (i), the existence of an infinite sequence of
u-intervals [b0, b

′
0], [b1, b

′
1], . . . , [bi, b

′
i], . . ., with b ≤ b0 and

b′i = bi+1 for each i ∈ N; the existence of an interleaved
auxiliary chain [c0, c

′
0], [c1, c

′
1], . . . , [ci, c

′
i], . . ., where bi <

ci < b′i, bi+1 < c′i < b′i+1, and c′i = ci+1 for each i ∈ N,
composed by k-intervals (each one of them overlapping ex-
actly one u-chain), used to make it possible for us to reach
the ‘next’ u-interval from the current one (see Fig. 1); (iii)
guaranteeing that both chains are unique. This third aspect
is the most difficult one. To obtain uniqueness, we show
that under certain conditions, the language of O can express
properties of proper sub-intervals; in particular, we show
that whenever p is a so-called disjointly-bounded proposi-
tion (see Def. 4.3 below), it is possible to express properties
such as “for each interval [a, b], if [a, b] satisfies p then no
proper sub-interval of [a, b] satisfies p”.

Let M be a model over the set AP of propositional let-
ters – hereafter called just ‘propositions’, for short – and let



u u u u u u u
b0 b1 b2 b3 b4 b5 b6 b7

k k k k k k k
c0 c1 c2 c3 c4 c5 c6 c7

Figure 1. Encoding of the u-chain.

[a, b] be our starting interval (which automatically defines
the universe G[a,b]).

Definition 4.2. The propositions p, q ∈ AP are said to be
disjoint if, for every pair of intervals 〈[c, d], [e, f ]〉 such that
[c, d] satisfies p and [e, f ] satisfies q, either d ≤ e or f ≤ c.
The proposition q is called disjoint consequent of p if p and
q are disjoint and any p-interval is followed by a q-interval,
that is, for each interval [c, d] ∈ G[a,b] that satisfies p, there
exists an interval [e, f ] ∈ G[a,b], with e ≥ d, that satisfies q.

Definition 4.3. The proposition p is said to be disjointly-
bounded in G[a,b] (w.r.t. a disjoint consequent q) if: (i)
[a, b] neither satisfies p nor overlaps a p-interval, that is,
p (possibly) holds only over intervals [c, d], with c ≥ b;
(ii) p-intervals do not overlap each other, that is, there exist
not two intervals [c, d] and [e, f ] satisfying p and such that
c < e < d < f ; (iii) p has a disjoint consequent q.

Now, whenever we can prove that a certain proposition p is
is disjointly-bounded in G[a,b] w.r.t. a disjoint consequent
q, we may set an auxiliary proposition insidep in such a
way that it is true over all proper sub-intervals (in G[a,b])
of p-intervals; after that, by simply asserting that insidep-
intervals and p-intervals cannot overlap each other, we will
be able to guarantee that p-intervals are never proper sub-
intervals of other p-intervals. To define insidep for the (dis-
jointly bounded) letter p, we exploit the existence of its dis-
joint consequence q, plus an auxiliary proposition−→p , which
we make true over a suitable subset of interval starting in-
side a p-interval and ending outside it.

[G](p→ [O](〈O〉q → −→p )) (1)
[G](¬p ∧ [O](〈O〉q → −→p )→ insidep) (2)
[G]((insidep → ¬〈O〉p) ∧ (p→ ¬〈O〉insidep)) (3)

Lemma 4.4. Let M be a model, [a, b] be an interval
over M , and p, q ∈ AP two propositions such that p is
disjointly-bounded in G[a,b] w.r.t. q. If M, [a, b] 
 (1) ∧
(2) ∧ (3), then, in G[a,b], there are no p-intervals properly
contained in other p-intervals.

From now on, for any given disjointly-bounded proposi-
tion p, we will use non-sub(p) to denote the (global) prop-
erty that no p-interval is sub-interval of another p-interval.
By means of the following formulae, we force the letter u1,

u2, k1, and k2 to be disjointly-bounded.

¬u ∧ ¬k ∧ [O](¬u ∧ ¬k) (4)

[G]((u↔ u1 ∨ u2) ∧ (k↔ k1 ∨ k2)

∧ (u1 → ¬u2) ∧ (k1 → ¬k2))
(5)

[G]((u1 → [O](¬u ∧ ¬k2))∧(u2 → [O](¬u ∧ ¬k1))) (6)
[G]((k1 → [O](¬k ∧ ¬u1))∧(k2 → [O](¬k ∧ ¬u2))) (7)
[G]((〈O〉u1 → ¬〈O〉u2) ∧ (〈O〉k1 ∧ ¬〈O〉k2)) (8)

[G]((u1 → 〈O〉k1) ∧ (k1 → 〈O〉u2)

∧ (u2 → 〈O〉k2) ∧ (k2 → 〈O〉u1))
(9)

(4) ∧ . . . ∧ (9) (10)

Lemma 4.5. LetM be a model, and [a, b] and interval over
M such that M, [a, b] 
 (10). Then u1, u2, k1, and k2 are
disjointly-bounded.

Thanks to the above lemma, we are justified to
use the formulae non-sub(u1), non-sub(u2), non-sub(k1),
non-sub(k2). Finally, to build the u-chain, we state the fol-
lowing formulae.

〈O〉〈O〉(u1 ∧ first) (11)
[G](u ∨ k→ [O]¬first ∧ [O][O]¬first) (12)
[G]((first→ u1) ∧ (first→ [O][O]¬first)) (13)
non-sub(u1)∧non-sub(u2)∧non-sub(k1)∧non-sub(k2) (14)
[G](u ∨ k→ [O]〈O〉(u ∨ k)) (15)
(11) ∧ . . . ∧ (15) (16)

Lemma 4.6. Let M be a model and [a, b] and interval over
M such that M, [a, b] 
 (10) ∧ (16). Then:

(a) there exists an infinite sequence of u-intervals
[b0, b

′
0], [b1, b

′
1], . . . , [bi, b

′
i], . . ., with b ≤ b0, b′i = bi+1

for each i ∈ N, and such that M, [b0, b
′
0] 
 first,

(b) there exists an infinite sequence of k-intervals
[c0, c

′
0], [c1, c

′
1], . . . , [ci, c

′
i], . . . such that bi < ci < b′i,

bi+1 < c′i < b′i+1, and c′i = ci+1 for each i ∈ N, and
(c) every other interval [c, d] ∈ G[a,b] satisfies neither of u,

k, or first, unless c > bi for every i ∈ N.

Within this framework, an operator 〈Xu〉, used to step
from any given u-interval to the next one in the sequence,
becomes now definable:

〈Xu〉ϕ≡(¬u∧〈O〉〈O〉(first∧ϕ))∨(u∧〈O〉(k∧〈O〉(u∧ϕ)))

Definition of the Id-chain. In order to define the Id-chain,



we make use of the following set of formulae:

¬Id ∧ ¬〈O〉Id ∧ [G](Id→ ¬〈O〉Id) (17)
〈Xu〉(∗ ∧ 〈Xu〉(tile ∧ Id ∧ 〈Xu〉∗
∧ [G](∗ → 〈Xu〉(tile ∧ 〈Xu〉tile))))

(18)

[G]((u↔ ∗ ∨ tile) ∧ (∗ → ¬tile)) (19)
[G](∗ → 〈O〉(k ∧ 〈O〉Id)) (20)
[G](Id→ 〈O〉(k ∧ 〈O〉∗)) (21)
[G]((u→ ¬〈O〉Id) ∧ (Id→ ¬〈O〉u)) (22)
[G](〈O〉∗ → ¬〈O〉Id) (23)
non-sub(Id) (24)
(17) ∧ . . . ∧ (24) (25)

Lemma 4.7. Let M, [a, b] 
 (10) ∧ (16) ∧ (25) and let
b ≤ b01 < c01 < b11 < . . . < bk1−11 < ck1−11 < bk11 = b02 <
c02 = ck11 < b12 < . . . < bk22 = b03 < . . . be the sequence of
points, defined by Lemma 4.6, such that [bij , b

i+1
j ] satisfies u

and [cij , c
i+1
j ] satisfies k for each j ≥ 1, 0 ≤ i < kj . Then,

for each j ≥ 1, we have:
(a) M, [b0j , b

1
j ] 
 ∗;

(b) M, [bij , b
i+1
j ] 
 tile for each 0 < i < kj;

(c) M, [b1j , b
0
j+1] 
 Id;

(d) k1 = 2, kl > 2 for each l > 1;
and no other interval [c, d] ∈ G[a,b] satisfies ∗ (resp., tile,
Id), unless c > bij for each i, j > 0.

Above-neighbor relation. We proceed now with the en-
coding of the above-neighbor relation (Fig. 2), by means of
which we connect each tile-interval with its vertical neigh-
bor in the octant (e.g., t22 with t23 in Fig. 2). For technical
reasons, we need to distinguish between backward and for-
ward rows of O using the propositions bw and fw: we label
each u-interval with bw (resp., fw) if it belongs to a back-
ward (resp., forward) row (formulae (26)-(27)). Intuitively,
the tiles belonging to forward rows of O are encoded in
ascending order, while those belonging to backward rows
are encoded in descending order (the tiling is encoded in a
zig-zag manner). In particular, this means that the left-most
tile-interval of a backward level encodes the last tile of that
row (and not the first one) in O. Let α, β ∈ {bw, fw}, with
α 6= β:

〈Xu〉bw ∧ [G]((u↔ bw ∨ fw) ∧ (bw→ ¬fw)) (26)
[G]((α∧¬〈Xu〉∗ → 〈Xu〉α)∧(α∧〈Xu〉∗ → 〈Xu〉β)) (27)
(26) ∧ . . . ∧ (27) (28)

Lemma 4.8. If M, [a, b] 
 (10) ∧ (16) ∧ (25) ∧ (28), then
the sequence of points defined in Lemma 4.7 is such that
M, [bij , b

i+1
j ] 
 bw if and only if j is an odd number, and

M, [bij , b
i+1
j ] 
 fw if and only j is an even number. Further-

more, we have that no other interval [c, d] ∈ G[a,b] satisfies
bw or fw, unless c > bij for each i, j > 0.

a)

t11

t12 t22

t13 t23 t33

t14 t24 t34 t44

t15 t25 t35 t45 t55

bw

fw

bw

fw

bw

b)

last last last last

∗ t11 ∗ t12 t22 ∗ t33 t23 t13 ∗ t14 t24 t34 t44

︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷bw fw bw fw

Figure 2. Encoding of the above-neighbor re-
lation.

We make use of such an alternation between backward
and forward rows to use the operator 〈O〉 in order to cor-
rectly encode the above-neighbor relation. We constrain
each up rel-interval starting from a backward (resp., for-
ward) row not to overlap any other up rel-interval starting
from a backward (resp., forward) row. The structure of the
encoding is shown in Fig. 2, where up rel-intervals starting
inside forward (resp., backward) rows are placed one inside
the other. Consider, for instance, how the 3rd and 4th level
of the octant are encoded in Fig. 2b. The 1st tile-interval
of the 3rd level (t33) is connected to the second from last
tile-interval of the 4th level (t34), the 2nd tile-interval of the
3rd level (t23) is connected to the third from last tile-interval
of the 4th level (t24), and so on. Notice that, in forward
(resp., backward) level, the last (resp., first) tile-interval has
no tile-intervals above-connected to it, in order to constrain
each level to have exactly one tile-interval more than the
previous one (these tile-intervals are labeled with last).

Formally, we define the above-neighbor relation as fol-
lows. If [bij , b

i+1
j ] is a tile-interval belonging to a for-

ward (resp., backward) row, then we say that it is above-
connected to the tile-interval [bj+2−i

j+1 , bj+2−i+1
j+1 ] (resp.,

[bj+2−i−1
j+1 , bj+2−i

j+1 ]). To do so, we label with up rel the
interval [cij , c

j+2−i
j+1 ] (resp., [cij , c

j+2−i−1
j+1 ]). Moreover, we

distinguish between up rel-intervals starting from forward
and backward rows and, within each case, between those
starting from odd and even tile-intervals. To this end, we
use a new proposition, namely, up relbwo (resp., up relbwe ,
up relfwo , up relfwe ) to label up rel-intervals starting from
an odd tile-interval of a backward row (resp., even tile-
interval/backward row, odd/forward, even/forward). More-
over, to ease the reading of the formulae, we group up relbwo
and up relbwe in up relbw (up relbw ↔ up relbwo ⊕ up relbwe ),
and similarly for up relfw. Finally, up rel is exactly



one among up relbw and up relfw (up rel ↔ up relbw ⊕
up relfw). In such a way, we encode the correspondence
between tiles of consecutive rows of the plane induced by
the above-neighbor relation. Let α, β ∈ {bw, fw} and
γ, δ ∈ {o, e}, with α 6= β and γ 6= δ:

¬up rel ∧ ¬〈O〉up rel (29)

[G]((up rel↔ up relbw ∨ up relfw)

∧ (up relα ↔ up relαo ∨ up relαe ))
(30)

[G]((k ∨ ∗ → ¬〈O〉up rel) ∧ (up rel→ ¬〈O〉k)) (31)

[G](u ∧ 〈O〉up relαγ → ¬〈O〉up relαδ ∧ ¬〈O〉up relβ) (32)

[G](up relα → ¬〈O〉up relα) (33)
[G](up rel→ 〈O〉Id) (34)
[G](〈O〉up rel→ ¬〈O〉first) (35)

[G](up relαγ → 〈O〉(tile ∧ 〈O〉up relβγ )) (36)

(29) ∧ . . . ∧ (36) (37)

Lemma 4.9. IfM, [a, b] 
 (10)∧(16)∧(25)∧(28)∧(37),
then the sequence of points defined in Lemma 4.7 is such
that, for each i ≥ 0, j > 0, the following properties hold:

a) if [c, d] satisfies up rel, then c = cij and d = ci
′

j′ for
some i, i′, j, j′ > 0; that is, each up rel-interval starts
and ends inside a tile-interval. More precisely, it starts
(resp., ends) at the same point in which a k-interval
starts (resp., ends);

b) [cij , c
i′

j′ ] satisfies up rel if and only if it satisfies exactly
one between up relbw and up relfw and [cij , c

i′

j′ ] satisfies
up relbw (resp., up relfw) if and only if it satisfies ex-
actly one between up relbwo and up relbwe (resp., between
up relfwo and up relfwe );

c) for each α, β ∈ {bw, fw} and γ, δ ∈ {o, e}, if [cij , c
i′

j′ ]
satisfies up relαγ , then there is no other interval starting
at cij satisfying up relβδ such that up relαγ 6= up relβδ ;

d) each up relbw-interval (resp., up relfw-interval) does not
overlap any other up relbw-interval (resp., up relfw-
interval);

e) if [cij , c
i′

j′ ] satisfies up relbwo (resp., up relbwe , up relfwo ,
up relfwe ), then there exists an up relfwo -interval (resp.,
up relfwe -interval, up relbwo -interval, up relbwe -interval)
starting at ci

′

j′ .

Now, we constrain each tile-interval, apart from the ones
representing the last tile of some level, to have a tile-interval
above-connected to it. To this end, we label each tile-
interval representing the last tile of some row of the octant
with the new proposition last (formulae (43)-(45)). Next,
we force all and only those tile-intervals not labelled with
last to have a tile-interval above-connected to them (formu-

lae (46)-(49)):

[G](tile→ 〈O〉up rel) (38)
[G](α→ [O](up rel→ up relα)) (39)
[G](up relα → 〈O〉β) (40)

[G](〈O〉∗ → ¬(〈O〉up relbw ∧ 〈O〉up relfw)) (41)

[G](tile ∧ 〈O〉up relαγ ∧ 〈Xu〉tile

→ 〈Xu〉(tile ∧ 〈O〉up relαδ ))
(42)

[G](last→ tile) (43)
[G]((∗ ∧ bw→ 〈Xu〉last) ∧ (fw ∧ 〈Xu〉∗ → last)) (44)
[G]((last ∧ fw→ 〈Xu〉∗) ∧ (bw ∧ 〈Xu〉last→ ∗)) (45)

[G](∗ ∧ fw→ 〈Xu〉(tile

∧ 〈O〉(up rel ∧ 〈O〉(tile ∧ 〈Xu〉∗))))
(46)

[G](last ∧ bw→ 〈O〉(up rel

∧ 〈O〉(tile ∧ 〈Xu〉(tile ∧ 〈Xu〉∗))))
(47)

[G](k ∧ 〈O〉(tile ∧ 〈O〉up relαγ )

→ [O](〈O〉up relαγ ∧ 〈O〉(k ∧ 〈O〉(tile

∧ 〈O〉up relβδ ∧ ¬last))→ 〈O〉up relαδ ))

(48)

[G](up rel→ ¬〈O〉last) (49)
(38) ∧ . . . ∧ (49) (50)

Lemma 4.10. If M, [a, b] 
 (10) ∧ (16) ∧ (25) ∧ (28) ∧
(37) ∧ (50), then the sequence of points defined in Lemma
4.7 is such that the following properties hold:
a) for each up rel-interval [cij , c

i′

j′ ], connecting the tile-

interval [bij , b
i+1
j ] to the tile-interval [bi

′

j′ , b
i′+1
j′ ], if

[cij , c
i′

j′ ] satisfies up relbw (resp., up relfw), then [bij , b
i+1
j ]

satisfies bw (resp., fw) and [bi
′

j′ , b
i′+1
j′ ] satisfies fw (resp.,

bw);
b) (strict alternation property) for each tile-interval [bij ,

bi+1
j ], with i < kj − 1, such that there exists an

up relbwo -interval (resp., up relbwe -interval, up relfwo -in-
terval, up relfwe -interval) starting at cij , there exists
an up relbwe -interval (resp., up relbwo -interval, up relfwe -
interval, up relfwo -interval) starting at ci+1

j ;
c) for every tile-interval [bij , b

i+1
j ] satisfying last, there is

no up rel-interval ending at cij;
d) for each up rel-interval [cij , c

i′

j′ ], with 0 < i < kj , we
have that j′ = j + 1.

Lemma 4.11. Each tile-interval [bij , b
i+1
j ] is above-

connected to exactly one tile-interval and, if it does not sat-
isfy last, then there exists exactly one tile-interval which is
above-connected to it.

Right-neighbor relation. The right-neighbor relation con-
nects each tile with its horizontal neighbor in the octant, if
any (e.g., t23 with t33 in Fig. 2). Again, in order to encode



the right-neighbor relation, we must distinguish between
forward and backward levels: a tile-interval belonging to
a forward (resp., backward) level is right-connected to the
tile-interval immediately to the right (resp., left), if any. For
example, in Fig. 2b, the 2nd tile-interval of the 4th level
(t24) is right-connected to the tile-interval immediately to the
right (t34), since the 4th level is a forward one, while the 2nd
tile-interval of the 3rd level (t23) is right-connected to the
tile-interval immediately to the left (t33), since the 3rd level
is a backward one. Therefore, we define the right-neighbor
relation as follows: if [bij , b

i+1
j ] is a tile-interval belonging

to a forward (resp., backward) Id-interval, with i 6= kj − 1
(resp., i 6= 1), then we say that it is right-connected to the
tile-interval [bi+1

j , bi+2
j ] (resp., [bi−1j , bij ]).

Lemma 4.12 (Commutativity property). If M, [a, b] 

(10) ∧ (16) ∧ (25) ∧ (28) ∧ (37) ∧ (50), then the commu-
tativity property holds over the sequence defined in Lemma
4.7.

Tiling the plane. The following formulae constrain each
tile-interval (and no other interval) to be tiled by exactly
one tile (formula (51)) and constrain the tiles that are right-
or above-connected to respect the color constraints (from
(52) to (54)):

[G]((

k∨
i=1

ti ↔ tile) ∧ (

k∧
i,j=1,i6=j

¬(ti ∧ tj)) (51)

[G](tile→
∨

up(ti)=down(tj)

(ti ∧ 〈O〉(up rel ∧ 〈O〉tj))) (52)

[G](tile ∧ fw ∧ 〈Xu〉tile→
∨

right(ti)=left(tj)

(ti ∧ 〈Xu〉tj)) (53)

[G](tile ∧ bw ∧ 〈Xu〉tile→
∨

left(ti)=right(tj)

(ti ∧ 〈Xu〉tj)) (54)

(51) ∧ . . . ∧ (54) (55)

Given the set of tile types T = {t1, t2, . . . , tk}, let ΦT be
the formula (10)∧ (16)∧ (25)∧ (28)∧ (37)∧ (50)∧ (55).

Lemma 4.13. The formula ΦT is satisfiable if and only if
T can tile the second octant O.

4.3. Extending undecidability to finite lin-
ear orders

In this section, we show how to adapt the construction
of the previous section in order to encode the Finite Tiling
Problem. This provides us with an undecidability proof for
the fragment O that works in any class of strongly discrete
linear orders – that is, linear orders satisfying the property
that every interval contains only finitely many points – that
contains arbitrarily (finitely) long orders. In particular, this

allow us to conclude that O is undecidable when interpreted
in the class of all finite linear orders.

The Finite Tiling Problem is formally defined as the
problem of establishing if a finite set of of tile types T , con-
taining a distinguished tile type t$ (blank) with the same
color on all sides, can tile the entire Z × Z plane, under
the restriction that at least one, but only finitely many tiles
are not blank. This problem has been first introduced and
shown to be undecidable in [14]. In this section we concen-
trate on an equivalent variation of it, defined as the prob-
lem of establishing if T can tile a finite rectangular area (of
unknown size) whose edges are colored by blank, using at
least one non-blank tile. Indeed, if this is the case then we
can extend the tiling to the entire plane by putting the blank
tile on all the remaining cells. Conversely, if we can tile the
entire plane using only finitely many non-blank tiles, then
we can identify a finite rectangular portion of it containing
all non-blank tiles and whose edges are blank.

Definition of the u-chain. The main difference from the
reduction of the octant tiling problem described in the pre-
vious section is the finiteness of the rectangular area. This
requires the existence of an arbitrarily long, but not infi-
nite, u-chain. Hence, we introduce an auxiliary propositions
lastu to denote the last u-interval of the (finite) u-chain. The
properties of lastu are defined as follows.

〈O〉〈O〉lastu (56)
[G](lastu → ∗ ∧ [O](¬u ∧ ¬k) ∧ [O][O](¬u ∧ ¬k)) (57)

Now, we analyze the formulae used in the previous sec-
tion, showing only those that need to be changed for the
finite case. Formula (9) is replaced by (58) in order to guar-
antee the existence of the u- and k-chains.

[G]((u1 ∧ ¬lastu → 〈O〉k1) ∧ (k1 → 〈O〉u2)

∧ (u2 ∧ ¬lastu → 〈O〉k2) ∧ (k2 → 〈O〉u1))
(58)

Since u1- and u2-intervals (resp., k1- and k2-intervals) do
not infinitely alternate with each other in the finite case, we
introduce the new proposition cons, and we force it to be a
disjoint consequent of u and k. In this way, we can force u1,
u2, k1, and k2 to be disjointly-bounded.

¬cons ∧ [O]¬cons ∧ [G](u ∧ k→ 〈O〉〈O〉cons) (59)
[G](〈O〉u ∨ 〈O〉k→ ¬〈O〉cons) (60)
[G]((u ∨ k→ ¬〈O〉cons) ∧ (cons→ [O](¬u ∧ ¬k))) (61)

Finally, we replace formula (15) with (62).

[G](u ∨ k→ [O](〈O〉〈O〉lastu → 〈O〉(u ∨ k))) (62)

Notice that formulae (56), . . . , (62) guarantees the ex-
istence of the u-chain also when interpreted over arbitrary
linear orders, but that the strong discreteness assumption is



crucial to guarantee the finiteness of the chain. As a coun-
terexample, consider the model over Q depicted in Figure 3,
where u1 holds over every interval [2− 1

2n , 2−
1

2n+1 ] such
that n is even, u2 holds over every interval [2− 1

2n , 2−
1

2n+1 ]
such that n is odd, the sequence of k1- and k2-intervals
are defined consistently, and lastu holds over the interval
[2, 2+ 1

2 ]. Such a model satisfy formulae (56), . . . , (62), but
contains an infinite u-chain.

u1 u2 u1

k1 k2 k1
u1, lastu

1 1
2

3
4

7
8 2 2 + 1

2

Figure 3. Infinite u-chain counterexample.

Definition of the Id-chain. To guarantee that Id is a
disjointly-bounded proposition, we exploit the fact that, by
definition, cons is also a disjoint consequent of Id. More-
over, as for the u-chain, we have to make sure that the chain
is finite: to this end, we introduce the proposition lastId to
denoting the last Id-interval of the (finite) Id-chain.

[G]((lastId → Id)∧(Id∧〈O〉(k∧〈O〉lastu)→ lastId)) (63)

Finally, we redefine formulae (18) and (20) as follows.

〈Xu〉 ∗ ∧[G](∗ → 〈Xu〉tile) (64)
[G](∗ ∧ ¬lastu → 〈O〉(k ∧ 〈O〉Id)) (65)

Above-neighbor relation. In the finite case, every row has
exactly the same number of tiles; therefore, the formulae
(43), (44), (45), (47), and (49) can be dismissed. Formulae
(36), (38), and (48) are replaced by the following ones.

[G](up relαγ → (〈O〉tile ∧ (〈O〉〈O〉(∗ ∧ ¬lastu)

→ 〈O〉(tile ∧ 〈O〉up relβγ ))))
(66)

[G](tile ∧ 〈O〉〈O〉(∗ ∧ ¬lastu)→ 〈O〉up rel) (67)

[G](k ∧ 〈O〉(tile ∧ 〈O〉up relαγ )

→ [O](〈O〉up relαγ ∧ 〈O〉(k ∧ 〈O〉(tile

∧ 〈O〉up relβδ ))→ 〈O〉up relαδ ))

(68)

Finally, it is not difficult to complete the construction by
adding the color constraints on the border of the region and
the existence of at least one non-blank tile. Therefore, un-
decidability of O is proven also for finite linear orders.
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A. Proof details

A.1. Proof of Lemma 4.4

Proof. Suppose, by contradiction, that there exist two in-
tervals [c, d] and [e, f ] (belonging to G[a,b]) satisfying p and
such that [e, f ] is sub-interval of [c, d]. By definition of sub-
interval, we have that c < e or f < d. Without loss of
generality, let us suppose that c < e (the other case is anal-
ogous). Since [e, f ] ∈ G[a,b], then there exists a point in be-
tween e and f , say it e′. The interval [c, e′] is a sub-interval
of [c, d]. Moreover, it cannot satisfy p, since it overlaps the
p-interval [e, f ] (and p is a propositional letter disjointly-
bounded in 〈M, [a, b]〉). By (1) and by the fact that q is a
disjoint consequent of p, each interval starting in between
c and d, and ending inside a q-interval, satisfies −→p . Thus,
[c, e′] satisfies ¬p and [O](〈O〉q → −→p ). By (2), it must
also satisfy insidep. But this contradicts (3), hence the the-
sis.

A.2. Proof of Lemma 4.6

Proof. For the sake of simplicity, we will first prove a vari-
ant of points (a) and (b), that is, respectively,
(a’) there exists an infinite sequence of u-intervals

[b0, b
′
0], [b1, b

′
1], . . . , [bi, b

′
i], . . ., with b ≤ b0, b′i ≤

bi+1 for each i ∈ N, and such that M, [b0, b
′
0] 
 first,

(b’) there exists an infinite sequence of k-intervals
[c0, c

′
0], [c1, c

′
1], . . . , [ci, c

′
i], . . . such that bi < ci < b′i,

bi+1 < c′i < b′i+1, and c′i ≤ ci+1 for each i ∈ N.
Then, we will prove point (c). Finally, we will force b′i =
bi+1 and c′i = ci+1 for each i ∈ N, actually proving the
original version of points (a) and (b).

As for the proof of points (a’) and (b’), it is simple to
see that formulae (4), (5), (6), (7), (9), and (11) are enough
to guarantee the existence of the u- and k-chains with the
desired properties. We must show, now, that each other in-
terval satisfies neither u nor k. As a preliminary step, it
is useful to show that an u-interval (resp., k-interval) be-
longing to G[a,b] cannot be sub-interval of u-intervals or
k-intervals. Formula (8) guarantees that it cannot exist an
u1-interval (resp., k1-interval) that is sub-interval of an u2-
interval (resp., k2-interval) or, vice versa, an u2-interval
(resp., k2-interval) that is sub-interval of an u1-interval
(resp., k1-interval). Moreover, since, by Lemma 4.5, u1,
u2, k1, and k2 are disjointly bounded, then (14) guaran-
tees that no u1-interval (resp., u2-interval, k1-interval, k2-
interval) can be sub-interval of another u1-interval (resp.,
u2-interval, k1-interval, k2-interval). So far, we have shown
that no u-interval (resp., k-interval) can be sub-interval of
any u-interval (resp., k-interval). It remains to show that
no u-interval can be sub-interval of any k-interval, and vice
versa. Suppose, by contradiction, that the u-interval [c′, d′]

is sub-interval of the k-interval [c′′, d′′]. By (9), there must
exist a k-interval, say it [c′′′, d′′′], starting in between c′ and
d′. Then, we either have (i) d′′′ ≤ d′′ and the k-interval
[c′′′, d′′′] is sub-interval of the k-interval [c′′, d′′], contra-
dicting the previous statement, or (ii) d′′′ > d′′ and the
k-interval [c′′, d′′] overlaps the k-interval [c′′′, d′′′], contra-
dicting (7). With a similar argument, one can show that
no k-interval can be sub-interval of a u-interval. Thus, we
can state that u-intervals (resp., k-intervals) cannot be sub-
intervals of u- or k-intervals. Now, let us focus on the
point (c) of the lemma. Suppose, by contradiction, the ex-
istence of the u-interval [c, d], belonging to G[a,b] and such
that [c, d] 6= [bi, b

′
i] for any i ∈ N. By (4), it must be c ≥ b.

Now, let us distinguish the following cases:
• if b ≤ c < b0, then one of the following:

– if d < b′0, then (12) is contradicted,
– if d ≥ b′0, then the u-interval [b0, b

′
0] is sub-

interval of the u-interval [c, d],
• if c = bi for some i ∈ N, then one of the following:

– if d < b′i, then the u-interval [c, d] is sub-interval
of the u-interval [bi, b

′
i],

– if d = b′i, then we are contradicting the hypoth-
esis “per absurdum” that [c, d] 6= [bi, b

′
i] for any

i ∈ N,
– if d > b′i, then the u-interval [bi, b

′
i] is sub-

interval of the u-interval [c, d],
• if bi < c < b′i for some i ∈ N, then one of the follow-

ing:
– if d ≤ b′i, then the u-interval [c, d] is sub-interval

of the u-interval [bi, b
′
i],

– if d > b′i, then the u-interval [bi, b
′
i] overlaps the

u-interval [c, d], contradicting (6),
• if b′i ≤ c < bi+1 for some i ∈ N, then one of the

following:
– if d ≤ bi+1, then the u-interval [c, d] is sub-

interval of the k-interval [ci, c
′
i],

– if bi+1 < d < b′i+1, then the u-interval [c, d]
overlaps the u-interval [bi+1, b

′
i+1], contradicting

(6),
– if d ≥ b′i+1, then the u-interval [bi+1, b

′
i+1] is

sub-interval of the u-interval [c, d].
Thus, there cannot exist an u-interval [c, d] ∈ G[a,b] such
that [c, d] 6= [bi, b

′
i] for any i ∈ N. A similar argument

can be exploited to prove that there cannot exist a k-interval
[c, d] ∈ G[a,b] such that [c, d] 6= [ci, c

′
i] for any i ∈ N. In

addition, suppose, by contradiction, the existence of the in-
terval [c, d], belonging to G[a,b], satisfying first, and such
that [c, d] 6= [b0, b

′
0]. By the first conjunct of (13), it must

be [c, d] = [bi, b
′
i] for some i ∈ N, with i 6= 0. Thus, the

second conjunct of (13) is contradicted.
Finally, suppose, by contradiction, that it is the case that

b′i < bi+1 for some i ∈ N. By the previous argument, there
must be bi, ci, c′i, b

′
i+1 such that bi < ci < b′i, bi+1 < c′i <



b′i+1, and [ci, c
′
i] satisfies k. By point (c), there cannot exist

an u- or k-interval starting in between ci and bi+1. Then, the
interval [bi, b

′
i] contradicts (15), since it overlaps the interval

[ci, bi+1] that, in turn, does not overlap any u- or k-interval.
Thus, it must be b′i = bi+1 for each i ∈ N. In a very similar
way, it is possible to show that it must also be c′i = ci+1 for
each i ∈ N.

A.3. Proof of Lemma 4.7

Proof. First of all, we show that Id is a disjointly-bounded
propositional letter. By (17), it is easy to see that Id meets
the first two requirements of Definition 4.3. By (22) and
(23), ∗ and Id are disjoint, and, by (21), ∗ is a disjoint con-
sequent of Id. Thus, Id is a disjointly-bounded propositional
letter. The proof proceeds case by case.
(a) Observe that there exists an infinite sequence of ∗-

intervals, thanks to (18), (20), and (21). Let us denote
by [b01, b

1
1], [b02, b

1
2], . . . , [b0j , b

1
j ], . . . such a sequence. By

the first conjunct of (19), we can assume that, for each
j > 0, there is no ∗-interval between [b0j , b

1
j ] and

[b0j+1, b
1
j+1].

(b) By (19), each interval satisfying ∗ or tile is an u-interval
and each u-interval satisfies either ∗ or tile. Then, the
u-intervals between two consecutive ∗-intervals (if any)
must be tile-intervals.

(c) By (20), for each k-interval [c0j , c
1
j ] overlapped by a ∗-

interval, there exists an Id-interval [c, d], with c0j < c <

c1j < d. We show that c = b1j and d = b0j+1. Suppose
that c < b1j . Then, the u-interval [b0j , b

1
j ] overlaps the

Id-interval [c, d], contradicting (22). On the other hand,
if c > b11, then we distinguish two cases.
• j = 1. In this case, by (18), we have that [b1j , b

2
j ]

is the Id-interval representing the first level of the
octant. Now, if d > b21, then the u-interval [b11, b

2
1]

overlaps the Id-interval [c, d], contradicting (22);
otherwise, if d ≤ b21, then the Id-interval [c, d]
is a sub-interval of the Id-interval [b11, b

2
1], contra-

dicting (24) (recall that Id is a disjointly-bounded
propositional letter).

• j > 1 ([b1j , b
2
j ] is not the last tile-interval of the

jth level). In this case, the k-interval [c1j , c
2
j ] does

not overlap a ∗-interval (since [b2j , b
3
j ] is a tile-

interval). Thus, due to (21), it must be d > c2j ,
and the u-interval [b1j , b

2
j ] overlaps the Id-interval

[c, d], contradicting (22).
Hence, it must be c = b1j . Now, we have to show that
d = b0j+1, that is, the Id-interval starting immediately
after the ∗-interval [b0j , b

1
j ] ends at the point in which

the next ∗-interval starts. Suppose, by contradiction,
that d 6= b0j+1. Suppose that j = 1. In this case, if
d < b02 (resp., d > b02), then the Id-interval [c, d] (resp.,

[b11, b
2
1]) is a sub-interval of the Id-interval [b11, b

2
1] (resp.,

[c, d]), contradicting (24). So, let us suppose j > 1, and
consider the following cases:
• if d ≤ c

kj−1
j , then (21) is contradicted, since

either [c, d] does not overlap any k-interval or it
overlaps a k-interval that does not overlap any ∗-
interval;

• if ckj−1j < d < b0j+1, then the Id-interval [c, d]

overlaps the u-interval [b
kj−1
j , b

kj
j ], contradicting

(22);
• if b0j+1 < d < b1j+1, then the Id-interval [c, d]

overlaps the u-interval [b0j+1, b
1
j+1], contradicting

(22);
• if d ≥ b1j+1, then (23) is contradicted, since the

interval [a′, c0j+1], where a′ is a generic point
in between a and b, overlaps both the ∗-interval
[b0j+1, b

1
j+1] and the up rel-interval [c, d].

Hence, it must be d = b0j+1.
(d) By (18), it immediately follows that k1 = 2 and kl > 2

when l > 1.
Finally, suppose, by contradiction, that there exists an Id-
interval [c, d] ∈ G[a,b] such that [c, d] 6= [b1j , b

0
j+1] for each

j > 0 and that c ≤ bij for some i, j > 0. By (17), the
interval [a, b] neither satisfies Id nor overlaps an interval that
satisfies Id, thus c ≥ b, and one of the following cases arise.

1. If b ≤ c < b01, then, by (21), it must be d > c01, and
(23) is contradicted.

2. If b0j ≤ c < c0j for some j > 0, then (23) is contra-
dicted.

3. If c0j ≤ c < b1j for some j > 0, then, due to (21), it
must be d > c1j and the u-interval [b0j , b

1
j ] overlaps the

Id-interval [c, d], contradicting (22).
4. If c = b1j for some j > 0, then we have already shown

that it must be d = b0j+1.
5. If b1j < c < b0j+1 for some j > 0, then:

(a) if d ≤ b0j+1, then the Id-interval [c, d] is sub-
interval of the Id-interval [b1j , b

0
j+1], contradicting

(24),
(b) if d > b0j+1, then the Id-interval [b1j , b

0
j+1] over-

laps the Id-interval [c, d], contradicting (17).
The fact that no other interval [c, d] ∈ G[a,b] satisfies ∗ or
tile, unless c > bij for each i, j > 0 can be proved by a
similar argument.

A.4. Proof of Lemma 4.9

Proof. We only proof point a), that is the less intuitive. Let
[c, d] be an up rel-interval. First, we show that it must be
c = cij , for some i, j > 0. Then, we prove that d = ci

′

j′ , for
some i′, j′ > 0. Notice that we want to exclude also the case
in which c = c0j (resp., d = c0j′ ) for some j > 0 (resp., j′ >
0), since this would imply the existence of an up rel-interval



starting (resp., ending) inside a ∗-interval. This is done by
means of (31) (first conjunct) and (36). Now, we show that
c = cij , for some i, j > 0. By (29), it must be c ≥ b and, by
(35) and (36), it follows c ≥ c01. Moreover, by (31) and (36),
it cannot be the case that bij ≤ c < cij for any i ≥ 0, j > 0.
It only remains to exclude the case in which cij < c < bi+1

j

for some i ≥ 0, j > 0. Thus, suppose, by contradiction, that
cij < c < bi+1

j for some i ≥ 0, j > 0. If d > ci+1
j , then (31)

is contradicted; otherwise, if d ≤ ci+1
j , then, by (34), [c, d]

overlaps an Id-interval. As a consequence, there should be
an Id-interval starting at bi+1

j , that means that [bij , b
i+1
j ] is a

∗-interval. This lead to a contradiction with (31), since the
∗-interval [bij , b

i+1
j ] overlaps the up rel-interval [c, d]. Thus,

we have that c = cij for some i, j > 0. Now, we want to
prove that d = ci

′

j′ for some i′, j′ > 0. It is easy to see that,
if d 6= ci

′

j′ for any j′, i′ > 0, then there would be an up rel-
interval overlapping a k-interval, contradicting (31), hence
the thesis.

A.5. Proof of Lemma 4.10

Proof. a) Let [cij , c
i′

j′ ] be an up rel-interval connecting

the tile-interval [bij , b
i+1
j ] to the tile-interval [bi

′

j′ , b
i′+1
j′ ].

Suppose that [cij , c
i′

j′ ] satisfies up relbw (the other case is
symmetric) and that [bij , b

i+1
j ] satisfies fw. Then, (39) is

contradicted. Similarly, if [bi
′

j′ , b
i′+1
j′ ] satisfies bw, then

(40) is contradicted.
b) Straightforward, by (42);
c) Straightforward, by (49);
d) Let [cij , c

i′

j′ ] be an up rel-interval, with 0 < i < kj , and
suppose, by contradiction, that j′ 6= j + 1. Suppose that
[cij , c

i′

j′ ] is an up relbw-interval (the other case is symmet-
ric). By point a) of this lemma, we have that [bij , b

i+1
j ]

satisfies bw and that [bi
′

j′ , b
i′+1
j′ ] satisfies fw. Two cases

are possible:
(i) if j′ = j, then [bij , b

i+1
j ] and [bi

′

j′ , b
i′+1
j′ ] belong to

the same Id-interval. By Lemma 4.8, they must be
both labelled with bw or fw, against the hypothesis;

(ii) if j′ > j + 1, then consider a tile-interval [bhj+1,

bh+1
j+1 ] belonging to the (j + 1)-th level. By

Lemma 4.8, we have that [bhj+1, b
h+1
j+1 ] satisfies

fw (since [bij , b
i+1
j ] satisfies bw) and, by (38) and

(39), we have that there is an up relfw-interval
starting at chj+1 and ending at some point ch

′

j′′ for
some j′′ > j + 1, (by point (i)). Consider the
∗-interval [b0j+2, b

1
j+2]. We have that the inter-

val [a′, c0j+2], where a′ is a generic point in be-
tween a and b, overlaps the ∗-interval [b0j+2, b

1
j+2],

the up relfw-interval [chj+1, c
h′

j′′ ], and the up relbw-

interval [cij , c
i′

j′ ], contradicting (41).
Hence, the only possibility is j′ = j + 1.

A.6. Proof of Lemma 4.11

Proof. First of all, we observe that each tile-interval is
above-connected with at least one tile-interval, by (38) and
by Lemma 4.9, item a). Now, suppose, by contradiction,
that there exists a tile-interval [bij , b

i+1
j ] not satisfying last

and such that there is no tile-interval above-connected to it.
The proof proceeds by induction.
Base case. If [bij , b

i+1
j ] is the rightmost interval of the j-

th Id-interval not satisfying last and it satisfies fw (resp.,
bw), then we have that i = kj − 2 (resp., i = kj − 1).
Formula (47) (resp., (46)) guarantees the existence of an
up rel-interval ending at cij , leading to a contradiction.
Inductive step. Otherwise, if [bij , b

i+1
j ] is not the right-

most interval of the j-th Id-interval not satisfying last, then
the inductive case applies. So, we can assume the in-
ductive hypothesis, that is, there is an up rel-interval end-
ing at ci+1

j and starting at some point ci
′

j−1. We want to
show that there exists also an up rel-interval ending at cij .
Without loss of generality, suppose that [ci

′

j−1, c
i+1
j ] satis-

fies up relfwo . Then, by Lemma 4.9, item e), there exists
an up relbwo -interval starting at ci+1

j and, by the strict al-
ternation property (Lemma 4.10, item b)), there exists an
up relbwe -interval starting at cij . We show that, by applying
(48) to the k-interval [ci

′−1
j−1 , c

i′

j−1], we get a contradiction.

Indeed, [ci
′−1
j−1 , c

i′

j−1] satisfies k ∧ 〈O〉(tile ∧ 〈O〉up relfwo )

and it overlaps [bi
′

j−1, b
i
j ], which satisfies the following for-

mulae:
• 〈O〉up relfwo : [ci

′

j−1, c
i+1
j ] satisfies up relfwo ;

• 〈O〉(k ∧ 〈O〉(tile ∧ 〈O〉up relbwe ∧ ¬last)): the inter-
val [ci−1j , cij ] satisfies k and overlaps the tile-interval
[bij , b

i+1
j ], which does not satisfy last (by hypothesis)

and overlaps an up relbwe -interval (that one starting at
cij).

We show that [bi
′

j−1, b
i
j ] does not satisfy the formula

〈O〉up relfwe , getting a contradiction with (48). Suppose that
there exists an interval [e, f ] satisfying up relfwe and such
that bi

′

j−1 < e < bij < f . We distinguish the following
cases:
• if f > ci+1

j and e > ci
′

j−1, then the up relfwo -interval
[ci

′

j−1, c
i+1
j ] overlaps the up relfwe -interval [e, f ], con-

tradicting Lemma 4.9, item d);
• if f > ci+1

j and e = ci
′

j−1, then there are an up relfwo -
and an up relfwe -interval starting at ci

′

j−1, contradicting
Lemma 4.9, item c);
• if f = ci+1

j , then there are an up relfwo - and an up relfwe -
interval ending at ci+1

j and, by Lemma 4.9, item e),



there are an up relbwo - and an up relbwe -interval starting
at ci+1

j , contradicting Lemma 4.9, item c);
• finally, if f = cij , we have a contradiction with the

hypothesis.
Thus, there exists no such an interval, contradicting (48).

This proves that each tile-interval is above-connected to
at least one tile-interval and, if it does not satisfy last, then
there exists at least one tile-interval above-connected to it.
Now, we show that such connections are unique. Suppose,
by contradiction, that for some [cij , c

i′

j+1] and [cij , c
i′′

j+1],
with ci

′

j+1 < ci
′′

j+1 (the case ci
′

j+1 > ci
′′

j+1 is symmet-
ric), we have that both [cij , c

i′

j+1] and [cij , c
i′′

j+1] are up rel-
intervals. By Lemma 4.9, we have that they both sat-
isfy the same propositional letter among up relfwo , up relfwe ,
up relbwo , and up relbwe , say up relfwo (the other cases are
symmetric). Then, both ci

′

j+1 and ci
′′

j+1 start an up relbwo -
interval by Lemma 4.9, item e). By the strict alternation
property, an up relbwe -interval starts at the point ci

′+1
j+1 . Since

[bi
′+1
j+1 , b

i′+2
j+1 ] does not satisfy last (it is neither the rightmost

nor the leftmost tile-interval of the (j + 1)-th Id-interval),
then, as we have already shown, there exists a point c such
that [c, ci

′+1
j+1 ] is an up rel-interval. By Lemma 4.9, items e)

and c), we have that [c, ci
′+1
j+1 ] is an up relfwe -interval. We

show that the existence of such an interval leads to a contra-
diction:
• if c < cij , then the up relfwe -interval [c, ci

′+1
j+1 ] over-

laps the up relfwo -interval [cij , c
i′′

j+1], contradicting
Lemma 4.9, item d);
• if c = cij , then cij starts both an up relfwo - and an

up relfwe -interval, contradicting Lemma 4.9, item c);
• if c > cij , then the up relfwo -interval [cij , c

i′

j+1]

overlaps the up relfwe -interval [c, ci
′+1
j+1 ], contradicting

Lemma 4.9, item d).
In a similar way, we can prove that two distinct up rel-
intervals cannot end at the same point.


