
Optimal Tableau Systems for Propositional
Neighborhood Logic over All, Dense, and

Discrete Linear Orders

Davide Bresolin1, Angelo Montanari2,
Pietro Sala1, and Guido Sciavicco34

1 Department of Computer Science, University of Verona, Verona, Italy
{davide.bresolin|pietro.sala}@univr.it

2 Department of Mathematics and Computer Science, University of Udine,
Udine, Italy angelo.montanari@dimi.uniud.it

3 Department of Information, Engineering and Communications,
University of Murcia, Murcia, Spain guido@um.es

4 University of Information Science and Technology, Ohrid, Macedonia
guido.sciavicco@uist.edu.mk

Abstract. In this paper, we focus our attention on tableau systems
for the propositional interval logic of temporal neighborhood (Proposi-
tional Neighborhood Logic, PNL for short). PNL is the proper subset of
Halpern and Shoham’s modal logic of intervals whose modalities corre-
spond to Allen’s relations meets and met by. We first prove by a model-
theoretic argument that the satisfiability problem for PNL over the class
of all (resp., dense, discrete) linear orders is decidable (and NEXPTIME-
complete). Then, we develop sound and complete tableau-based decision
procedures for all the considered classes of orders, and we prove their
optimality. (As a matter of fact, decidability with respect to the class of
all linear orders had been already proved via a reduction to the decidable
satisfiability problem for the two-variable fragment of first-order logic of
binary relational structures over ordered domains.)

1 Introduction

Propositional interval temporal logics play a significant role in computer science,
as they provide a natural framework for representing and reasoning about tem-
poral properties [9]. This is the case, for instance, of natural language semantics,
where significant interval-based logical formalisms have been developed to repre-
sent and reason about tenses and temporal prepositions, e.g., [12,16]. As another
example, the possibility of encoding and reasoning about various constructs of
imperative programming in interval temporal logic has been systematically ex-
plored by Moszkowski in [14]. Unfortunately, for a long time the computational
complexity of most interval temporal logics has limited their systematic inves-
tigation and extensive use for practical applications: the two prominent ones,
namely, Halpern and Shoham’s HS [11] and Venema’s CDT [17], are highly un-
decidable. A renewed interest in interval temporal logics has been stimulated

2

by a number of recent positive results [13]. A general, non-terminating, tableau
system for CDT, interpreted over partially ordered temporal domains, has been
developed in [10]. It combines features of the classical tableau method for first-
order logic with those of explicit tableau methods for modal logics with con-
straint label management, and it can be easily tailored to most propositional
interval temporal logics proposed in the literature, including propositional tem-
poral neighborhood logic. A tableau-based decision procedure for Moszkowski’s
ITL [14], interpreted over finite linearly ordered domains, has been devised by
Bowman and Thompson [2]. As a matter of fact, decidability is achieved by
introducing a simplifying hypothesis, called locality principle, that constrains
the relation between the truth value of a formula over an interval and its truth
values over the initial subintervals of that interval. Decidable tableau systems
have been recently developed for some meaningful fragments of HS, interpreted
over relevant classes of temporal structures, without resorting to any simplifying
assumption. The most significant ones are the interval logics of the subinterval
relation and the interval logics of temporal neighborhood.

In this paper, we focus our attention on the propositional logics of temporal
neighborhood (PNL for short). PNL is the propositional fragment of Neighbor-
hood Logic originally proposed in [7]. It can be viewed as the fragment of HS
that features two modal operators 〈A〉 and 〈A〉, that respectively correspond
to Allen’s relations meets and met-by. Basic logical properties of PNL have
been investigated by Goranko et al. in [8]. The authors first introduce interval
neighborhood frames and provide representation theorems for them; then, they
develop complete axiomatic systems for PNL with respect to various classes of
interval neighborhood frames. The satisfiability problem for PNL has been ad-
dressed by Bresolin et al. in [3]. NEXPTIME-completeness with respect to the
classes of all linearly ordered domains, well-ordered domains, finite linearly or-
dered domains, and natural numbers has been proved via a reduction to the
satisfiability problem for the two-variable fragment of first-order logic of binary
relational structures over ordered domains [15].

Despite these significant achievements, the problem of devising decision pro-
cedures of practical interest for PNL has been only partially solved. In [6], a
tableau system for its future fragment RPNL, interpreted over the natural num-
bers, has been developed; such a system has been later extended to full PNL over
the integers [4]. In this paper, we develop a NEXPTIME tableau-based decision
procedure for PNL interpreted over the class of all linear orders and then we
show how to tailor it to the subclasses of dense linear orders and of (weakly)
discrete linear orders. NEXPTIME-hardness can be proved exactly as in [6], and
thus the proposed procedures turn out to be optimal. From a technical point
of view, the proposed tableau systems are quite different from that for RPNL
over the natural numbers [6]. While models for RPNL formulas over the natural
numbers can be generated by simply adding future points (possibly infinitely
many) to a given partial model, the construction of a model for an PNL formula
over an arbitrary (resp., dense, discrete) linearly ordered domain may require
the addition of points (possibly infinitely many) in between existing ones.

3

The paper is organized as follows. In Section 2 we introduce syntax and se-
mantics of PNL. Then, in Section 3 we introduce the notion of labeled interval
structure (LIS) and we show that PNL satisfiability can be reduced to the ex-
istence of a fulfilling LIS. In Section 4 we prove the decidability of PNL over
different classes of linear orders by a model-theoretic argument. Next, in Section
5, by taking advantage of the results given in the previous section, we develop
optimal tableau-based decision procedures for PNL over the considered classes of
linear orders. Conclusions provide an assessment of the work and outline future
research directions.

2 Propositional Neighborhood Logic

In this section, we give syntax and semantics of PNL interpreted over different
classes of linear orders. Let D be a set of points and D = 〈D,<〉 be a linear order
on it. We say that D is (weakly) discrete if any point having a successor (resp.,
predecessor) has an immediate one and that D is dense if for every pair of points
di < dj there exists a point dk such that di < dk < dj . In the following, we
will focus our attention on the representative classes of all linear orders, dense
linear orders, and (weakly) discrete linear orders. In fact, similar results can be
obtained for other classes of linear orders [3].

An interval on D is an ordered pair [di, dj] such that di, dj ∈ D and di < dj
(strict semantics)5. The set of all intervals over D will be denoted by I(D).
The pair 〈D, I(D)〉 is called an interval structure. For every pair of intervals
[di, dj], [d

′
i, d
′
j] ∈ I(D), we say that [d′i, d

′
j] is a right (resp., left) neighbor of

[di, dj] if and only if dj = d′i (resp., d′j = di).

The language of PNL consists of a set AP of propositional letters, the con-
nectives ¬ and ∨, and the modal operators 〈A〉 and 〈A〉. The other connectives,
as well as the logical constants > (true) and ⊥ (false), can be defined as usual.
Formulae of PNL, denoted by ϕ,ψ, . . ., are recursively defined by the following
grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈A〉ϕ | 〈A〉ϕ.

We denote by |ϕ| the length of ϕ, that is, the number of symbols in ϕ (in the
following, we shall use | | to denote the cardinality of a set as well). A formula of
the form 〈A〉ψ, ¬〈A〉ψ, 〈A〉ψ, or ¬〈A〉ψ is called a temporal formula (from now
on, we identify ¬〈A〉¬ψ with [A]ψ and ¬〈A〉¬ψ with [A]ψ).

A model for a PNL formula is a pair M = 〈〈D, I(D)〉,V〉, where 〈D, I(D)〉
is an interval structure and V : I(D) −→ 2AP is a valuation function assigning
to every interval the set of propositional letters true over it. Given a model
M = 〈〈D, I(D)〉,V〉 and an interval [di, dj] ∈ I(D), the semantics of PNL is
defined recursively by the satisfiability relation
 as follows:

5 As an alternative, one may assume a non-strict semantics which admits point inter-
vals, that is, intervals of the form [di, di]. It is not difficult to show that all results
in the paper can be adapted to the case in which non-strict semantics is assumed.

4

– for every propositional letter p ∈ AP , M, [di, dj]
 p iff p ∈ V([di, dj]);

– M, [di, dj]
 ¬ψ iff M, [di, dj] 6
 ψ;

– M, [di, dj]
 ψ1 ∨ ψ2 iff M, [di, dj]
 ψ1 or M, [di, dj]
 ψ2;

– M, [di, dj]
 〈A〉ψ iff ∃dk ∈ D such that dk > dj and M, [dj , dk]
 ψ;

– M, [di, dj]
 〈A〉ψ iff ∃dk ∈ D such that dk < di and M, [dk, di]
 ψ.

We place ourselves in the most general (and difficult) setting and we do not
impose any not constraint on the valuation function. As an example, given an
interval [di, dj], it may happen that p ∈ V([di, dj]) and p 6∈ V([d′i, d

′
j]) for all

intervals [d′i, d
′
j] (strictly) contained in [di, dj].

It can be shown that PNL is expressive enough to distinguish between satisfi-
ability over the class of all linear orders and the class of discrete (resp., dense)
linear orders. As a matter of fact, PNL also allows one to distinguish between
satisfiability over the class of all (resp., dense, discrete) linear orders and over
the integers. To this end, it suffices to exhibit a formula that is satisfiable over
the former and unsatisfiable over the latter. The formulae are the following:

– Let ImmediateSucc be the PNL formula 〈A〉〈A〉p ∧ [A][A][A]¬p. It is pos-
sible to show that ImmediateSucc is satisfiable over the class of all (resp.,
discrete) linear orders, but it is not satisfiable over dense linear orders.

– Let NoImmediateSucc be the PNL formula (〈A〉>∧ [A](p∧ [A]¬p∧ [A]p))∧
〈A〉〈A〉[A]([A]p ∨ 〈A〉〈A〉¬p). It is possible to show that NoImmediateSucc
is satisfiable over the class of all (resp., dense) linear orders, but it is not
satisfiable over discrete linear orders.

– Let [G] be the universally-in-the-future operator defined as follows: [G]ψ =
ψ ∧ [A]ψ ∧ [A][A]ψ and let seqp be a shorthand for p → 〈A〉p. Consider
the formula AccPoints = 〈A〉p ∧ [G]seqp ∧ 〈A〉[G]¬p. It is possible to show
that AccPoints is unsatisfiable over Z, while it is satisfiable whenever the
temporal structure in which it is interpreted has at least one accumulation
point, that is, a point which is the right bound of an infinite (ascending)
chain of points, thus including all, dense, and discrete linear orders.

Detailed proofs of these statements are given in the Appendix.

3 Labeled Interval Structures and Satisfiability

In this section, we introduce preliminary notions and we state basic results on
which our tableau method for PNL relies. Let ϕ be a PNL formula to be checked
for satisfiability and let AP be the set of its propositional letters. The closure
CL(ϕ) of ϕ is the set of all subformulae of ϕ and of their negations (we identify
¬¬ψ with ψ). Moreover, the set of temporal formulae of ϕ is the set TF(ϕ) =
{〈A〉ψ, [A]ψ, 〈A〉ψ, [A]ψ ∈ CL(ϕ)}. Finally, a maximal set of requests for ϕ is a
set S ⊆ TF(ϕ) that satisfies the following conditions: (i) for every 〈A〉ψ ∈ TF(ϕ),
〈A〉ψ ∈ S iff ¬〈A〉ψ 6∈ S; (ii) for every 〈A〉ψ ∈ TF(ϕ), 〈A〉ψ ∈ S iff ¬〈A〉ψ 6∈ S.
By induction on the structural complexity of ϕ, we can easily prove that, for

5

every formula ϕ, |CL(ϕ)| is less than or equal to 2 · (|ϕ| + 1), while |TF(ϕ)| is
less than or equal to 2 · |ϕ|. We are now ready to introduce the notion of ϕ-atom.

Definition 1. A ϕ-atom is a set A ⊆ CL(ϕ) such that (i) for every ψ ∈ CL(ϕ),
ψ ∈ A iff ¬ψ 6∈ A, and (ii) for every ψ1 ∨ ψ2 ∈ CL(ϕ), ψ1 ∨ ψ2 ∈ A iff ψ1 ∈ A
or ψ2 ∈ A.

We denote the set of all ϕ-atoms by Aϕ. It can be easily checked that |Aϕ| ≤
2|ϕ|+1. Atoms are connected by the following binary relation.

Definition 2. Let LRϕ be a relation such that for every pair of atoms A1, A2 ∈
Aϕ, A1 LRϕ A2 if and only if (i) for every [A]ψ ∈ CL(ϕ), if [A]ψ ∈ A1 then
ψ ∈ A2 and (ii) for every [A]ψ ∈ CL(ϕ), if [A]ψ ∈ A2 then ψ ∈ A1.

We now introduce a suitable labeling of interval structures based on ϕ-atoms.

Definition 3. A ϕ-labeled interval structure (LIS for short) is a pair L =
〈〈D, I(D)〉,L〉, where 〈D, I(D)〉 is an interval structure and L : I(D)→ Aϕ is a la-
beling function such that, for every pair of neighboring intervals [di, dj], [dj , dk] ∈
I(D), L([di, dj]) LRϕ L([dj , dk]).

We say that a LIS L = 〈〈D, I(D)〉,L〉 is discrete (resp., dense) if D is discrete
(resp., dense). If we interpret the labeling function as a valuation function, LISs
represent candidate models for ϕ. The truth of formulae devoid of temporal
operators indeed follows from the definition of ϕ-atom; moreover, universal tem-
poral conditions, imposed by [A]/[A] operators, are forced by the relation LRϕ.
However, to obtain a model for ϕ, we must also guarantee the satisfaction of
existential temporal conditions, imposed by 〈A〉/〈A〉 operators. To this end, we
introduce the notion of fulfilling LIS.

Definition 4. A LIS L = 〈〈D, I(D)〉,L〉 is fulfilling iff (i) for every temporal
formula 〈A〉ψ ∈ TF(ϕ) and every interval [di, dj] ∈ I(D), if 〈A〉ψ ∈ L([di, dj]),
then there exists dk > dj such that ψ ∈ L([dj , dk]) and (ii) for every temporal
formula 〈A〉ψ ∈ TF(ϕ) and every interval [di, dj] ∈ I(D), if 〈A〉ψ ∈ L([di, dj]),
then there exists dk < di such that ψ ∈ L([dk, di]).

The next theorem proves that for any given formula ϕ, the satisfiability of ϕ
is equivalent to the existence of a fulfilling LIS with an interval labeled by ϕ.

Theorem 1. A PNL formula ϕ is satisfiable iff there exists a fulfilling LIS
L = 〈〈D, I(D)〉,L〉 with ϕ ∈ L([di, dj]) for some [di, dj] ∈ I(D).

The implication from left to right is straightforward; the opposite implication is
proved by induction on the structural complexity of the formula (see the proof
in the Appendix). From now on, we say that a fulfilling LIS L = 〈〈D, I(D)〉,L〉
satisfies ϕ if and only if there exists an interval [di, dj] ∈ I(D) such that ϕ ∈
L([di, dj]).

6

Definition 5. Given a LIS L = 〈〈D, I(D)〉,L〉 and a point d ∈ D, we define the
set of future temporal requests of d as the set REQL

f (d) = {〈A〉ξ/[A]ξ ∈ TF(ϕ) :
∃d′ ∈ D(〈A〉ξ/[A]ξ ∈ L([d′, d]))} and the set of past temporal requests of d as
the set REQL

p (d) = {〈A〉ξ/[A]ξ ∈ TF(ϕ) : ∃d′ ∈ D(〈A〉ξ/[A]ξ ∈ L([d, d′]))}. The

set of temporal requests of d is defined as REQL(d) = REQL
p (d) ∪ REQL

f (d).

Definition 6. Given a LIS L = 〈〈D, I(D)〉,L〉 for a PNL formula ϕ, d ∈ D,
and 〈A〉ψ ∈ REQL(d) (resp., 〈A〉ψ ∈ REQL(d)), we say that 〈A〉ψ (resp., 〈A〉ψ)
is fulfilled for d in L if there exists d′ ∈ D, with d′ > d (resp., d′ < d), such that
ψ ∈ L([d, d′]) (resp., ψ ∈ L([d′, d])). We say that d is fulfilled in L if for every
〈A〉ψ ∈ REQL(d) (resp., 〈A〉ψ ∈ REQL(d)) 〈A〉ψ (resp., 〈A〉ψ ∈ REQL(d)) is
fulfilled for d in L.

Definition 7. Given a LIS L = 〈〈D, I(D)〉,L〉 for a PNL formula ϕ and d ∈ D,
we say that d (resp., REQ(d)) is unique in L if for every d̃ ∈ D, with d̃ 6= d,
REQ(d̃) 6= REQ(d).

Given a formula ϕ, we denote by REQϕ the set of all possible sets of requests.

It is not difficult to show that |REQϕ | is equal to 2
|TF(ϕ)|

2 .

Definition 8. Given a LIS L = 〈〈D, I(D)〉,L〉, D′ ⊆ D, and R ∈ REQϕ, we say
that R occurs n times in D′ iff there exist exactly n distinct points di1 , . . . , din ∈
D′ such that REQL(dij) = R, for all 1 ≤ j ≤ n.

4 Decidability of PNL

In this section, we prove that the satisfiability problem for PNL over the classes
of all linear orders is decidable. Moreover, we explain how to tailor the proof to
the cases of dense and discrete linear orders.

Definition 9. Let ϕ be a PNL formula, A be a ϕ-atom, and S1, S2 ⊆ TF(ϕ)
be two maximal sets of requests. The triplet 〈S1, A, S2〉 is an interval-tuple iff
(i) for every [A]ψ ∈ S1, ψ ∈ A, (ii) for every [A]ψ ∈ S2, ψ ∈ A, (iii) for
every 〈A〉ψ ∈ TF(ϕ) (resp., 〈A〉ψ ∈ TF(ϕ)), 〈A〉ψ ∈ A (resp., 〈A〉ψ ∈ A) iff
〈A〉ψ ∈ S2 (resp., 〈A〉ψ ∈ S1), and (iv) for every ψ ∈ A such that 〈A〉ψ ∈ TF(ϕ)
(resp., 〈A〉ψ ∈ TF(ϕ)), 〈A〉ψ ∈ S1 (resp., 〈A〉ψ ∈ S2).

Proposition 1. Let L = 〈〈D, I(D)〉,L〉 be a LIS for a PNL formula ϕ. For every
d, d′ ∈ D, the triplet 〈REQL(d),L([d, d′]), REQL(d′)〉 is an interval-tuple.

Proof. It easily follows from Definition 2, Definition 3, and Definition 5. ut

Definition 10. Let 〈R,A,R′〉 be an interval-tuple. We say that 〈R,A,R′〉 oc-
curs in L if there exists [d, d′] ∈ I(D) such that L([d, d′]) = A, REQL(d) = R,
and REQL(d′) = R′. If 〈R,A,R′〉 occurs in L and there exists [d, d′] such that
L([d, d′]) = A, REQL(d) = R, REQL(d′) = R′, and both d and d′ are fulfilled in
L, then we say that 〈R,A,R′〉 is fulfilled in L (via [d, d′]).

7

Definition 11. Given a finite LIS L = 〈〈D, I(D)〉,L〉 for a PNL formula ϕ, we
say that L is a pseudo-model for ϕ if every interval-tuple 〈R,A,R′〉 that occurs
in L is fulfilled.

From the fact that all interval-tuples are fulfilled in L, that is, L is a pseudo-
model for ϕ, it does not follow that L is fulfilling, since in L there can be multiple
occurrences of the same interval-tuple, associated with different intervals. Thus,
to turn a pseudo-model into a fulfilling LIS (for ϕ) some additional effort is
needed. The next definition introduces an important ingredient of such a process.

Definition 12. Let ϕ be a PNL formula and L = 〈〈D, I(D)〉,L〉 be a fulfilling
LIS that satisfies it. For any d ∈ D, we say that:

(future) a set ESdf ⊆ D is a future essential set for d if (i) for every 〈A〉ψ ∈
REQL(d), there exists d′ ∈ ESdf such that ψ ∈ L([d, d′]) (fulfilling condition)

and (ii) for every d′ ∈ ESdf there exists a formula 〈A〉ψ ∈ REQL(d) such

that, for every d′′ ∈ (ESdf \ {d′}), ¬ψ ∈ L([d, d′′]) (minimality);

(past) a set ESdp ⊆ D is a past essential set for d if (i) for every 〈A〉ψ ∈
REQL(d), there exists d′ ∈ ESdp such that ψ ∈ L([d′, d]) (fulfilling condition)

and (ii) for every d′ ∈ ESdp there exists a formula 〈A〉ψ ∈ REQL(d) such

that, for every d′′ ∈ (ESdp \ {d′}), ¬ψ ∈ L([d′′, d]) (minimality).

Let d ∈ D. By Definition 12, we have that for all d′ ∈ ESdf (resp., d′ ∈ ESdp),
there exists at least one formula ψ belonging to L([d, d′]) (resp., L([d′, d]) only.
On the contrary, we cannot exclude the existence of formulas ψ that belong to
the labeling of more than one interval [d, d′] (resp., [d′, d]), with d′ ∈ ESdf (resp.,

d′ ∈ ESdp).

Definition 13. Given a PNL formula ϕ, a fulfilling LIS L = 〈〈D, I(D)〉,L〉 that
satisfies it, and d ∈ D, we define the sets FutureL(d) = {REQL(d′) | d′ > d}
and PastL(d) = {REQL(d′) | d′ < d}.

The decidability of the satisfiability problem for PNL over the class of all
linear orders rests on the following lemma.

Lemma 1. Given a pseudo-model L = 〈〈D, I(D)〉,L〉 for a PNL formula ϕ,
there exists a fulfilling LIS L′ that satisfies ϕ.

Proof. We show how to obtain a fulfilling LIS L′ starting from the pseudo-
model L as the limit of a possibly infinite sequence of pseudo-models L0(=
L),L1,L2, In the following, we describe how to obtain the pseudo-model
Li+1 from the pseudo-model Li, for any i ≥ 0. Let Qi be the queue of all points
d ∈ Di that must be checked for fulfillment (for i = 0, Qi consists of all and only
the points d ∈ D such that d is not fulfilled in L). If Qi is empty, then we stop the
procedure by putting L′ = Li. Otherwise, Li+1 is built as follows. Let d be the
first element of the queue Qi. If d is fulfilled, we remove it from the queue and put
Li+1 = Li (every point in the queue is not fulfilled at insertion time; however, it

8

may happen that subsequent expansions of the domain make it fulfilled before
the time at which it is taken into consideration). Otherwise, either there exists
〈A〉ψ ∈ REQLi(d) which is not fulfilled, or there exists 〈A〉ψ ∈ REQLi(d) which
is not fulfilled, or both.
Suppose that there exists a 〈A〉-formula in REQLi(d) which is not fulfilled. Two
cases may arise:

1) There exists d′ > d such that REQLi(d′) = REQLi(d) and d′ is fulfilled. Let
ESd

′

f = {d1, ..., dk}. For j = 1, . . . , k, we proceed as follows:
a) If dj is unique, then we put Li+1([d, dj]) = Li([d′, dj]). We prove that

such a replacement does not introduce new defects for dj . Suppose by
contradiction that it is not the case. Then, there must exists a formula
〈A〉θ ∈ REQLi(dj) that is fulfilled only by the interval [d, dj] (in Li).

Since the interval-tuple 〈REQLi(d), Li([d, dj]),REQLi(dj)〉 is fulfilled
in Li, there exists an interval [d′′, d′′′] such that 〈REQLi(d),Li([d, dj]),
REQLi(dj)〉 is fulfilled in Li via [d′′, d′′′]. Since dj is unique, d′′′ = dj .
However, since d in not fulfilled in Li, d

′′ 6= d, and thus the interval
[d′′, dj] fulfills 〈A〉θ, in contradiction with the hypothesis that 〈A〉θ causes
a defect for dj . This case is depicted in Figure 1.

d′′ d d′ dj

Li([d
′′, dj])

Li([d, dj])

Li([d
′, dj])

d′′ d d′ dj

Li+1([d′′, dj]) = Li([d
′′, dj])

Li+1([d, dj]) = Li([d
′, dj])

Li+1([d′, dj]) = Li([d
′, dj])

Fig. 1. Relabeling of the interval [d, dj] in Case 1a.

b) If dj is not unique, then there exists d 6= dj , with REQLi(d) = REQLi(dj).

In such a case, we introduce a new point d̂ immediately after dj with the

same requests as dj , that is, we put Di+1 = Di ∪ {d̂}, with dj < d̂

and for all d̃, if d̃ > dj , then d̃ > d̂, and we force REQLi+1(d̂) to

be equal to REQLi(dj). To this end, for every d′′ /∈ {d, dj , d′}, we

put Li+1([d′′, d̂]) = Li([d′′, dj]) (when d′′ < d̂) and Li+1([d̂, d′′]) =

Li([dj , d′′]) (when d′′ > d̂). Moreover, we put Li+1([d, d̂]) = Li([d′, dj])
and Li+1([d′, d̂]) = Li([d, dj]), as depicted in Figure 2. In such a way, d

satisfies over [d, d̂] the request that d′ satisfies over [d′, dj]. At the same

9

time, we guarantee that d̂ satisfies the same past requests that dj satis-

fies: d̂ satisfies over [d, d̂] (resp., [d′, d̂]) the request that dj satisfies over
[d′, dj] (resp., [d, dj]) and it satisfies the remaining past requests over in-
tervals that start at the same point where the intervals over which dj sat-

isfies them start. Finally, if d > dj , we put Li+1([dj , d̂]) = Li([dj , d]), and

Li+1([dj , d̂]) = Li([d, dj]) otherwise. For all the remaining pairs dr, ds the
labeling remains unchanged, that is, Li+1([dr, ds]) = Li([dr, ds]). Now,

we observe that, by definition of Li+1, if dj is fulfilled (in Li), then d̂ is

fulfilled (in Li+1), while if dj is not fulfilled (in Li), being d̂ fulfilled or

not (in Li+1) depends on the labeling of the interval [dj , d̂]. If d̂ is not
fulfilled (in Li+1), we insert it into the queue Qi+1.

d
. . .

d′
. . .

dj d̂

Li([d
′, dj])

Li+1([d, d̂]) = Li([d
′, dj])

Li([d, dj])

Li+1([d′, d̂]) = Li([d, dj])

Fig. 2. Labeling of the intervals [d, d̂] and [d′, d̂] in Case 1b.

2) For every d′ > d, with REQLi(d′) = REQLi(d), d′ is not fulfilled. Let d′ < d
such that REQLi(d′) = REQLi(d), d′ is fulfilled, and, for every d′ < d′′ < d,
if REQLi(d′′) = REQLi(d), then d′′ is not fulfilled.
As a preliminary step, we prove that PastLi(d′) = PastLi(d). Suppose,
by contradiction, that there exists d′ < d′′ < d such that REQLi(d′′) /∈
PastLi(d′). Since Li is a pseudo-model, there exist d, d

′ ∈ Di such that the

interval-tuple 〈REQLi(d′′), Li([d′′, d]),REQLi(d)〉 is fulfilled in Li via [d, d
′
].

By definition, both d and d
′
are fulfilled; moreover, REQLi(d) = REQLi(d′′),

REQLi(d
′
) = REQLi(d), and Li([d, d

′
]) = Li([d′′, d]). Since REQLi(d′′) /∈

PastLi(d′), d′ < d and thus d′ < d
′
. However, since d′ is the largest fulfilled

element in Di with REQLi(d′) = REQLi(d), d
′

cannot be greater than d′

(contradiction). Hence, PastLi(d′) = PastLi(d).
Let ESd

′

f = {d1, ..., dk}. For every j = 1, ..., k, we proceed as follows:

a) If dj is unique, then dj > d, since PastLi(d′) = PastLi(d). We proceed
as in Case 1a.

b) If dj is not unique and dj > d, then we proceed as in Case 1b.

10

c) If dj is not unique and d′ < dj < d, then we introduce a new point

d̂ immediately after d with the same requests as dj , that is, we put

Di+1 = Di ∪ {d̂}, with d < d̂ and for all d̃, if d̃ > d, then d̃ > d̂, and we

force REQLi+1(d̂) to be equal to REQLi(dj). To this end, for every d′′,

with d′′ < dj (resp., d′′ > d̂), we put Li+1([d′′, d̂]) = Li([d′′, dj]) (resp.,

Li+1([d̂, d′′]) = Li([dj , d′′])). Since PastLi(d′) = PastLi(d), for all dj ≤
d′′ < d there exists d′′′ < d′ such that REQLi(d′′′) = REQLi(d′′). Hence,

we put Li+1([d′′, d̂]) = Li([d′′′, dj]). Moreover, we put Li+1([d, d̂]) =

Li([d′, dj]). Finally, if d̂ is not fulfilled, we insert it into the queue Qi+1.
This case is depicted in Figure 3.

d′′′ d′′ d′ dj d′′ d d̂ d′′

Fig. 3. Labeling of intervals starting/ending in d̂ in Case 2c.

The case in which there exists a 〈A〉-formula in REQLi(d) which is not fulfilled
is completely symmetric, and thus its description is omitted. This concludes the
construction of Li+1. Since all points which are fulfilled in Li remain fulfilled
in Li+1, it is immediate to conclude that Li+1 is a pseudo-model. Moreover,
as d is fulfilled in Li+1, it can be safely removed from the queue. As it can be
easily checked, the proposed construction does not remove any point, but it can
introduce new ones, possibly infinitely many. However, the use of a queue to
manage points which are (possibly) not fulfilled guarantees that the defects of
each of them sooner or later will be fixed.

To complete the proof, it suffices to show that the fulfilling LIS L′ for ϕ we
were looking for is the limit of this (possibly infinite) construction. Let L−i be
equal to Li devoid of the labeling of all intervals consisting of a (non-unique)
point in Qi and a unique point (in Di \Qi). We define L′ as the limit of ∪i≥0L−i
when i tends to infinity (if Qi turns out to be empty for some i, then L′ is
simply equal to ∪i≥0L−i (= Li). It is trivial to check that for every pair Di, Di+1,

11

Di ⊆ Di+1. To prove that for every pair L−i , L−i+1, it holds that L−i ⊆ L
−
i+1, we

observe that: (i) the labeling of intervals whose endpoints are both non-unique
points (resp., unique points) never changes, that is, it is fixed once and for all,
and (ii) for every pair of point d, d′ ∈ Di \Qi such that d is a non-unique point
and d′ is a unique one, if d < d′ (resp., d′ < d), then Lj([d, d′]) = Li([d, d′])
(resp., Lj([d′, d]) = Li([d′, d])) for all j ≥ i, that is, the labeling of an interval
consisting of a non-unique point and a unique one may possibly change when
the non-unique point is removed from the queue and then it remains unchanged
forever (notice that non-unique points which are fulfilled from the beginning
never change “their labeling”). Finally, to prove that all points are fulfilled in
∪i≥0L−i , it is sufficient to observe that: (i) all unique points belong to D0 and
are fulfilled in the restriction of L0 to D0 \ Q0 (and thus in L−0), and (ii) for
every i ≥ 0, all points in Di \Qi are fulfilled in L−i and the first element of Qi
may be not fulfilled in Li (and thus in L−i), but it is fulfilled in L−i+1. Every
point is indeed either directly inserted into Di \Qi or added to Qi (and thus it
becomes the first element of Qj for some j > i) for some i ≥ 0. ut

Lemma 2. Given a PNL formula ϕ and a fulfilling LIS L = 〈〈D, I(D)〉,L〉 that
satisfies it, there exists a pseudo-model L′ for ϕ, with |D′| ≤ 2 · |ϕ| · 23·|ϕ|+1.

Decidability of PNL over the class of all linear orders immediately follows.

Theorem 2. The satisfiability problem for PNL over the class of all linear or-
ders is decidable.

We conclude the section by explaining how to tailor the above proofs to the
cases of dense and discrete linear orders (details can be found in [5]).

To cope with dense linear orders, we introduce the notion of covering.

Definition 14. Let L = 〈〈D, I(D)〉,L〉 be a pseudo-model for a PNL formula ϕ
and d ∈ D. We say that d is covered if either d is not unique or (d is unique and)
both its immediate predecessor (if any) and successor (if any) are not unique.
We say that L is covered if every d ∈ D is covered.

The construction of Lemma 1 is then revised to force each point in a pseudo-
model for ϕ to be covered so that we can always insert a point in between any
pair of consecutive points, thus producing a dense model for ϕ.

To deal with discrete orders, we make us of the notion of safe pseudo-model.

Definition 15. Let L = 〈〈D, I(D)〉,L〉 be a pseudo-model for a PNL formula ϕ
and d ∈ D. We say that d is safe if either d is not unique or (d is unique and)
both its immediate predecessor (if any) and successor (if any) are fulfilled. We
say that L is safe if every d ∈ D is safe.

Such a safety condition guarantees that the building procedure of Lemma 1 can
be done in such a way that all points added during the construction get their
(definitive) immediate successor and immediate predecessor in at most one step.

As for complexity, it is possible to show that forcing covering (resp., safety)
does not cause any exponential blow-up in the maximum size of a pseudo-model.

12

More formally, by suitably adapting Lemma 2, we can prove that if ϕ is satisfiable
over dense (resp., discrete) linear orders, then there exists a covered (resp., safe)
pseudo-model L = 〈〈D, I(D)〉,L〉l for it with |D| ≤ 4 · |ϕ| · 23·|ϕ|+1 (resp., |D| ≤
2 · |ϕ| · 24·|ϕ|+1). It easily follows that the satisfiability problem for PNL over
all (resp., dense, discrete) linear orders belongs to the NEXPTIME complexity
class. NEXPTIME-hardness immediately follows from [6], where a reduction of
the exponential tiling problem, which is known to be NEXPTIME-complete [1],
to the satisfiability problem for the future fragment of PNL is provided (as it can
be easily verified, the reduction is completely independent from the considered
linear order). This allows us to conclude that the satisfiability problem for PNL
over all (resp., dense, discrete) linear orders is NEXPTIME-complete.

5 Tableau systems for PNL

In this section, we develop tableau-based decision procedures for PNL over all,
dense, and discrete linear orders. We describe in detail the tableau system for
the general case (all linear orders), and then we briefly explain how to specialize
it to deal with the dense and discrete cases. The presentation is organized as
follows. First, we give the rules of the tableau system; then, we describe expansion
strategies and blocking conditions; finally, we state termination, soundness, and
completeness of the method. We conclude the section by proving the optimality
of all the proposed tableau-based decision procedures.

We preliminarily introduce basic concepts and notation. A tableau for a
PNL formula ϕ is a special decorated tree T . We associate a finite linear order
DB = 〈DB , <〉 and a request function REQB : DB 7→ REQϕ with every branch
B of T . Every node n in B is labeled with a pair 〈[di, dj], An〉 such that the
triple 〈REQB(di), An, REQB(dj)〉 is an interval-tuple. The initial tableau for ϕ
consists of a single node (and thus of a single branch B) labeled with the pair
〈[d0, d1], Aϕ〉, where DB = {d0 < d1} and ϕ ∈ Aϕ.

Given a point d ∈ DB and a formula 〈A〉ψ ∈ REQB(d), we say that 〈A〉ψ
is fulfilled in B for d if there exists a node n′ ∈ B such that n′ is labeled
with 〈[d, d′], An′〉 and ψ ∈ An′ . Similarly, given a point d ∈ DB and a formula
〈A〉ψ ∈ REQB(d), we say that 〈A〉ψ is fulfilled in B for d if there exists a node
n′ ∈ B such that n′ is labeled with 〈[d′, d], An′〉 and ψ ∈ An′ . Given a point
d ∈ DB , we say that d is fulfilled in B if every 〈A〉ψ (resp., 〈A〉ψ) in REQB(d)
is fulfilled in B for d.

Let T be a tableau and B be a branch of T , with DB = {d0 < . . . < dk}. We
denote by B · n the expansion of B with an immediate successor node n and by
B · n1| . . . |nh the expansion of B with h immediate successor nodes n1, . . . , nh.
To possibly expand B, we apply one of the following expansion rules:

1. 〈A〉-rule. If there exist dj ∈ DB and 〈A〉ψ ∈ REQB(dj) such that 〈A〉ψ is not
fulfilled in B for dj , we proceed as follows. If there is not an interval-tuple
〈REQB(dj), Aψ, S〉, with ψ ∈ Aψ, we close the branch B. Otherwise, let
〈REQB(dj), Aψ, S〉 be such an interval-tuple. We take a new point d and we
expand B with h = k−j+1 immediate successor nodes n1, . . . , nh such that,

13

for every 1 ≤ l ≤ h, DB·nl
= DB ∪{dj+l−1 < d < dj+l} (for l = h, we simply

add a new point d, with d > dk, to the linear order), nl = 〈[dj , d], Aψ〉, with
ψ ∈ Aψ, REQB·nl

(d) = S, and REQB·nl
(d′) = REQB(d′) for every d′ ∈ DB .

2. 〈A〉-rule. It is symmetric to the 〈A〉-rule and thus its description is omitted.

3. Fill-in rule. If there exist two points di, dj , with di < dj , such that there
is not a node in B decorated with the interval [di, dj] and there exists an
interval-tuple 〈REQB(di), A,REQB(dj)〉, then we expand B with a node
n = 〈[di, dj], A〉 If such an interval-tuple does not exist, then we close the
branch B.

The application of any of the above rules may result in the replacement of
the branch B with one or more new branches, each one featuring one new node
n. However, while the Fill-in rule decorates such a node with a new interval
whose endpoints already belong to DB , the 〈A〉-rule (resp., 〈A〉-rule) adds a
new point d to DB which becomes the ending (resp., beginning) point of the
interval associated with the new node.

We say that a node n = 〈[di, dj], A〉 in a branch B is active if for every prede-
cessor n′ = 〈[d, d′], A′〉 of n in B, the interval-tuples 〈REQB(di), A,REQB(dj)〉
and 〈REQB(d), A′,REQB(d′)〉 are different. Moreover, we say that a point d ∈
DB is active if and only if there exists an active node n in B such that n =
〈[d, d′], A〉 or n = 〈[d′, d], A〉, for some d′ ∈ DB and some atom A. Given a
non-closed branch B, we say that B is complete if for every di, dj ∈ DB , with
di < dj , there exists a node n in B labeled with n = 〈[di, dj], A〉, for some atom
A. It can be easily seen that if B is complete, then the tuple 〈DB , I(DB),LB〉
such that, for every [di, dj] ∈ I(DB), LB([di, dj]) = A if and only if there exists
a node n in B labeled with 〈[di, dj], A〉, is a LIS. Given a non-closed branch B,
we say that B is blocked if B is complete and for every active point d ∈ B we
have that d is fulfilled in B.

We start from an initial tableau for ϕ and we apply the expansion rules to
all the non-blocked and non-closed branches B. The expansion strategy is the
following one:

1. Apply the Fill-in rule until it generates no new nodes in B.
2. If there exist an active point d ∈ DB and a formula 〈A〉ψ ∈ REQB(d) such

that 〈A〉ψ is not fulfilled in B for d, then apply the 〈A〉-rule on d. Go back
to step 1.

3. If there exist an active point d ∈ DB and a formula 〈A〉ψ ∈ REQB(d) such
that 〈A〉ψ is not fulfilled in B for d, then apply the 〈A〉-rule on d. Go back
to step 1.

A tableau T for ϕ is final if and only if every branch B of T is closed or blocked.

Theorem 3 (Termination). Let T be a final tableau for a PNL formula ϕ and
B be a branch of T . We have that |B| ≤ (2 · |ϕ| ·23·|ϕ|+1) · (2 · |ϕ| ·23·|ϕ|+1−1)/2.

Theorem 4 (Soundness). Let T be a final tableau for a PNL formula ϕ. If T
features one blocked branch, then ϕ is satisfiable over all linear orders.

14

Theorem 5 (Completeness). Let ϕ be a PNL formula which is satisfiable
over the class of all linear orders. Then, there exists a final tableau for ϕ with
at least one blocked branch.

The above tableau system can be tailored to the dense and discrete cases. As
for the dense case, it suffices to apply the following rule immediately after the
〈A〉/〈A〉-rules:

Dense rule: If there exist two consecutive non-covered points di, di+1, we pro-
ceed as follows. If there is not an interval-tuple 〈REQB(di), A, S〉 for some
S ∈ REQϕ and A ∈ Aϕ, we close the branch B. Otherwise, let 〈REQB(di),
A, S〉 be such an interval-tuple. We expand B with a node n, labeled with
〈[di, d], A〉, such that REQB·n(d) = S and DB·n = DB ∪ {di < d < di+1}.

The discrete case is more complex. First, we partition nodes (intervals) in
two classes, namely, free and unit nodes. Free nodes are labeled with triples
of the form 〈[d, d′], A, free〉, meaning that a point can be added in between d
and d′; unit nodes, labeled with triples of the form 〈[d, d′], A, unit〉, denote unit
intervals (insertions are forbidden). The set of expansion rules is then updated
as follows. The Fill-in rule remains unchanged. The 〈A〉/〈A〉-rules are revised
to prevent the insertion of points inside unit-intervals. The introduction of unit
intervals is managed by two additional rules, (Predecessor and Successor rules)
to be applied immediately after the 〈A〉/〈A〉-rules.

Successor rule. If there exists dj ∈ DB such that dj is unique in DB , its
immediate successor dj+1 in DB is not fulfilled, there exists a node n la-
beled by 〈[dj , dj+1], An, free〉, for some atom An, in B, and there exists no
node n′ labeled by 〈[dj , dj+1], An′ , unit〉, for some atom An′ , in B, then
we proceed as follows. We expand B with 2 immediate successor nodes
n1, n2 such that n1 = 〈[dj , dj+1], An, unit〉 and n2 = 〈[dj , d], A′, unit〉, with
dj < d < dj+1 and there exists an interval-tuple 〈REQB(dj), A

′, S〉, for
some A′ and S (the existence of such an interval tuple is guaranteed by
the existence of a node n with label 〈[dj , dj+1], An, free〉). We have that
DB·n1

= DB and DB·n2
= DB∪{dj < d < dj+1}. Moreover, REQB·n2

(d) = S
and REQB·n2

(d′) = REQB(d′) for every d′ ∈ DB .
Predecessor rule. Symmetric to the successor rule and thus omitted.

As for the complexity, in both cases (dense and discrete), no exponential blow-
up in the maximum length of a branch B (with respect to the general case)
occurs. More formally, following the reasoning path of Theorem 3, we can prove
that the maximum length of a branch B in the dense (resp., discrete) case is
|B| ≤ (4 · |ϕ| · 23·|ϕ|+1 − 1) · (4 · |ϕ| · 23·|ϕ|+1 − 2)/2 (resp., |B| ≤ (2 · (3 · |ϕ|+ 1) ·
23·|ϕ|+1) · (2 · (3 · |ϕ|+ 1) · 23·|ϕ|+1 − 1)/2). Optimality easily follows.

6 Conclusions and future work

In this paper, we have developed an optimal tableau system for PNL interpreted
over the class of all linear orders, and we have shown how to adapt it to deal

15

with the subclasses of dense and (weakly) discrete linear orders. We are currently
working at the implementation of the three tableau systems.

References

1. E. Börger, E. Grädel, and Y. Gurevich. The Classical Decision Problem. Perspec-
tives of Mathematical Logic. Springer, 1997.

2. H. Bowman and S. Thompson. A decision procedure and complete axiomatization
of finite interval temporal logic with projection. Journal of Logic and Computation,
13(2):195–239, 2003.

3. D. Bresolin, V. Goranko, A. Montanari, and G. Sciavicco. Propositional inter-
val neighborhood logics: Expressiveness, decidability, and undecidable extensions.
Annals of Pure and Applied Logic, 161(3):289–304, 2009.

4. D. Bresolin, A. Montanari, and P. Sala. An optimal tableau-based decision algo-
rithm for Propositional Neighborhood Logic. In Proc. of 24th Int. Symposium on
Theoretical Aspects of Computer Science, volume 4393 of LNCS, pages 549–560.
Springer, 2007.

5. D. Bresolin, A. Montanari, P. Sala, and G. Sciavicco. Tableau-based decision pro-
cedures for Propositional Neighborhood Logic. Technical Report 01, Dipartimento
di Matematica e Informatica, Università di Udine, Italy, 2010.

6. D. Bresolin, A. Montanari, and G. Sciavicco. An optimal decision procedure for
Right Propositional Neighborhood Logic. Journal of Automated Reasoning, 38(1-
3):173–199, 2007.

7. Z. Chaochen and M. R. Hansen. An adequate first order interval logic. In W.P.
de Roever, H. Langmaak, and A. Pnueli, editors, Compositionality: the Significant
Difference, number 1536 in LNCS, pages 584–608. Springer, 1998.

8. V. Goranko, A. Montanari, and G. Sciavicco. Propositional interval neighborhood
temporal logics. Journal of Universal Computer Science, 9(9):1137–1167, 2003.

9. V. Goranko, A. Montanari, and G. Sciavicco. A road map of interval temporal
logics and duration calculi. Journal of Applied Non-Classical Logics, 14(1–2):9–54,
2004.

10. V. Goranko, A. Montanari, G. Sciavicco, and P. Sala. A general tableau method
for propositional interval temporal logics: theory and implementation. Journal of
Applied Logic, 4(3):305–330, 2006.

11. J. Halpern and Y. Shoham. A propositional modal logic of time intervals. Journal
of the ACM, 38(4):935–962, 1991.

12. H. Kamp and U. Reyle. From Discourse to Logic: Introduction to Model-theoretic
Semantics of Natural Language, Formal Logic and Discourse Representation The-
ory, Volume 42 of Studies in Linguistics and Philosophy. Springer, 1993.

13. A. Montanari. Back to interval temporal logics. In Proc. of 24th Int. Conference
on Logic Programming, volume 5366 of LNCS, pages 11–13. Springer, 2008.

14. B. Moszkowski. Reasoning about digital circuits. Tech. rep. stan-cs-83-970, Dept.
of Computer Science, Stanford University, Stanford, CA, 1983.

15. M. Otto. Two variable first-order logic over ordered domains. Journal of Symbolic
Logic, 66(2):685–702, 2001.

16. I. Pratt-Hartmann. Temporal prepositions and their logic. Artificial Intelligence,
166(1-2):1–36, 2005.

17. Y. Venema. A modal logic for chopping intervals. Journal of Logic and Computa-
tion, 1(4):453–476, 1991.

16

Appendix

Proposition 2. The PNL formula ImmediateSucc is satisfiable over the class
of all (resp., discrete) linear orders, as well as over Z, but it is not satisfiable
over dense linear orders.

d0
...

d1 d2
...

d3

d

〈A〉〈A〉p 〈A〉p p

[A][A][A]¬p ¬p[A][A]¬p [A]¬p

Fig. 4. A model for ImmediateSucc (top), which is unsatisfiable over dense linear
orders (bottom).

Proof. We first show that the formula ImmediateSucc is unsatisfiable over dense
linear orders. The proof is by contradiction (a graphical account of the argument
is given in Figure 4 - bottom). Let us assume that there exists an interpretation
M, based on a dense linear order, such that M, [d0, d1] |= ImmediateSucc for
some d0, d1. From M, [d0, d1] |= 〈A〉〈A〉p, it follows that there exist two points
d1 and d2, with d1 < d2 < d3, such that M, [d1, d2] |= 〈A〉p and M, [d2, d3] |= p.
Since M is based on a dense linear order, there exists a point d between d1 and
d2. Hence, from M, [d0, d1] |= [A][A][A]¬p, it follows that M, [d1, d] |= [A][A]p,
M, [d, d2] |= [A]¬p and M, [d2, d3] |= ¬p (contradiction). Let us consider now
the class of all linearly ordered domains. A model satisfying ImmediateSucc
can be built as follows. We take a model M whose domain contains four points
d0 < d1 < d2 < d3 such that d2 is an immediate successor of d1. Then, we
impose M, [d2, d3] |= p and M, [d, d′] |= ¬p for every interval [d, d′] 6= [d2, d3]. It
easily follows that M, [d0, d1] |= ImmediateSucc. A pictorial representation of
the model is given in Figure 4 - top. Exactly the same argument can be applied
in the case of (weakly) discrete linear orders and Z. ut

Proposition 3. The PNL formula NoImmediateSucc is satisfiable over the
class of all (resp., dense) linear orders, but it is not satisfiable over discrete
linear orders and integers.

Proof. We first show that the formula NoImmediateSucc is unsatisfiable over
discrete linear orders (the very same same argument applies to the integers).
The proof is by contradiction. Let us assume that there exists a discrete model

17

d0 d1
...

d−1
...

d−2
...

d2
...

d3dd′
...

〈A〉>
[A](p ∧ [A]¬p ∧ [A]p)

¬p

>
p, [A]p

[A]¬p

p

¬p

¬p

〈A〉〈A〉[A]([A]p∨
〈A〉〈A〉¬p)

〈A〉[A]([A]p∨
〈A〉〈A〉¬p)

[A]([A]p∨
〈A〉〈A〉¬p)

[A]p

〈A〉¬p¬p

〈A〉¬p

Fig. 5. A model for NoImmediateSucc: d0 does not have any immediate successor.

M for NoImmediateSucc, that is, M, [d0, d1] |= NoImmediateSucc for some
d0, d1. Let d be the immediate successor of d0. The first tow conjuncts 〈A〉> and
[A](p ∧ [A]¬p ∧ [A]p) constrain p to hold everywhere to the left of d0, including
the intervals ending in d0, and ¬p to hold over all intervals starting from d0,
including [d0, d]. The third conjunct 〈A〉〈A〉[A]([A]p∨〈A〉〈A〉¬p) forces the exis-
tence of an interval [d2, d3], with d1 < d2, satisfying [A]([A]p∨〈A〉〈A〉¬p). By the
second conjunct we have that M, [d0, d] |= ¬p and that M, [d, d2] 6|= [A]p. Hence,
〈A〉〈A〉¬p must hold over [d, d2]. The formula 〈A〉〈A〉¬p forces the existence of
two points d′′, d′, with d′′ < d′ < d, such that M, [d′′, d′] |= ¬p. Two cases are
possible: either d′ ≤ d0 or d0 < d′. In the former case, by the first conjunct of
NoImmediateSucc, we have that M, [d′′, d′] |= p; in the latter case, it turns out
that d is not the immediate successor of d0. Thus, in both cases we get a contra-
diction. Let us consider now the class of all linearly ordered domains. A model
satisfying NoImmediateSucc can be built as follows. We take a model M that
contains two points d0, d1 such that d0 has at least one predecessor, d1 has at least
two successors, and d0 has not an immediate successor, whose valuation function
is defined as follows: M, [db, de] |= p for every ordered pair of points db, de, with
de ≤ d0, and M, [db, de] |= ¬p for every ordered pair of points db, de, with db ≥ d0
(the truth value of p over the intervals [db, de], with db < d0 < de, does not mat-
ter, and thus it can be assigned in an arbitrary way). From M, [db, de] |= p
for every ordered pair of points db, de, with de ≤ d0, and M, [d0, de] |= ¬p for

18

every de, it follows that M, [d0, d1] |= 〈A〉> ∧ [A](p ∧ [A]¬p ∧ [A]p). Now, let
d2, d3, with d2 < d3, be two successors of d1, whose existence is guaranteed
by definition of M. We show that M, [d2, d3] |= [A]([A]p ∨ 〈A〉〈A〉¬p). Let d
be a predecessor of d2. We distinguish two cases: either d ≤ d0 or d > d0. In
the former case, M, [d, d2] |= [A]p as M, [db, de] |= p for every ordered pair of
points db, de, with de ≤ d0. In the latter case, since d is not an immediate suc-
cessor of d0 (d0 has not an immediate successor), there exists d′ in between d0
and d such that M, [d0, d

′] |= ¬p, as M, [d0, de] |= ¬p for every de, and thus
M, [d, d2] |= 〈A〉〈A〉¬p. A pictorial representation of the model is given in Fig-
ure 5. ut

Proposition 4. The PNL formula AccPoints is satisfiable over the class of all
(resp., dense, discrete) linear orders, while it is not satisfiable over Z.

Proof. We first show that AccPoints is not satisfiable over Z. Suppose, by
contradiction, that there exists an interpretation M, based on Z, such that
M, [d0, d1] |= AccPoints. From M, [d0, d1] |= 〈A〉p ∧ [G]seqp, it follows that
there exists a sequence of points d1 < dj1 < dj2 . . . such that M, [d1, dj1] |= p
and M, [dji , dji+1] |= p, for all i ≥ 1. Moreover, from M, [d0, d1] |= 〈A〉[G]¬p, it
follows that there exists a point di such that M, [d1, di] |= [G]¬p. Two cases may
arise.

Case (1). Suppose di ≤ dj1 . From M, [d1, di] |= [G]¬p, it follows that M, [d,
dj1] |= [A]¬p and thus M, [dj1 , dj2] |= ¬p. This allows us to conclude that both
p and ¬p hold over [dj1 , dj2], as shown in Figure 6, and a contradiction is found.

AccPoints

¬p, [A]¬p,
[A][A]¬p

p, 〈A〉p, [A]seqp, [A][A]seqp

¬p,
[A]¬p

p,¬p

d0 d1 di dj1

dj2

Fig. 6. Unsatisfiability of AccPoints over Z: case (1).

Case (2). Suppose dj1 < di. From M, [d1, di] |= [A][A]¬p, it follows that, for any
point dk > di, M, [di, dk] |= [A]¬p and, for any point dm > dk, M, [dk, dm] |= ¬p.
Since AccPoints is interpreted over Z, there exists a point djh > di that belongs
to the sequence. This implies that p holds over [djh , djh+1

]. Hence, both p and
¬p hold over [djh , djh+1

], as shown in Figure 7, and a contradiction is found.

Let us consider now the class of all linearly ordered domains. A model satis-
fying AccPoints can be built as follows: we take an infinite sequence of points
dj1 < dj2 < dj3 < . . . such that M, [dji , dji+1

] |= p, for every i ≥ 1, and then
we add an accumulation point dω greater than dji , for every i ≥ 1, such that
M, [d1, dω] |= [G]¬p. The definition of the valuation function can be easily com-
pleted without introducing any contradiction, thus showing that AccPoints is

19

AccPointsd0 d1 di

dj1 dj2 djh−1

djh
djh+1

¬p, [A]¬p,
[A][A]¬p

p, 〈A〉p,
[A]seqp,

[A][A]seqp

p,

〈A〉p
p, 〈A〉p

¬p,
[A]¬p

p,¬p
...

Fig. 7. Unsatisfiability of AccPoints over Z: case (2).

satisfiable (see Figure 8). Exactly the same argument holds for dense linear or-
ders. As for (weakly) discrete linear orders, it is sufficient to consider the domain
consisting of the concatenation of two copies of Z. ut

AccPointsd0 d1 dω¬p, [A]¬p, [A][A]¬p

p, 〈A〉p,
[A]seqp,

[A][A]seqp

p,

〈A〉p
p,

〈A〉p

¬p
¬p

¬p...

Fig. 8. A model for AccPoints over the class of linearly ordered domains.

Theorem 1. A PNL formula ϕ is satisfiable ifif there exists a fulfilling LIS
L = 〈〈D, I(D)〉,L〉 with ϕ ∈ L([di, dj]) for some [di, dj] ∈ I(D).

Proof. We first prove the left-to-right direction. Let ϕ be a satisfiable PNL for-
mula. Hence, there exist a model M = 〈〈D, I(D)〉,V〉 and an interval [di, dj] ∈
I(D) such that M, [di, dj]
 ϕ. We show that L = 〈〈D, I(D)〉,L〉, where, for every
[d, d′] ∈ I(D), L([d, d′]) = {ψ ∈ CL(ϕ) | M, [d, d′]
 ψ}, is a fulfilling LIS for
ϕ. We first prove that for every [d, d′] ∈ I(D), L([d, d′]) is a ϕ-atom. For every
[d, d′] ∈ I(D) and ψ ∈ CL(ϕ), we have that:

– by definition of
, M, [d, d′]
 ψ if and only if M, [di, dj] 6
 ¬ψ and thus, by
definition of L, ψ ∈ L([d, d′]) if and only ¬ψ 6∈ L([d, d′]);

– by definition of
, M, [d, d′]
 ψ1 ∨ ψ2 if and only if M, [d, d′]
 ψ1 or
M, [d, d′]
 ψ2 and thus, by definition of L, ψ ∈ L([d, d′]) if and only if
ψ1 ∈ L([d, d′]) or ψ2 ∈ L([d, d′]).

Next, we prove that for every d, d′, d′′ in D, if d < d′ < d′′, then L([d, d′]) LRϕ
L([d′, d′′]). Suppose, by contradiction, that there exist d, d′, d′′ in D such that

20

d < d′ < d′′ and L([d, d′]) LRϕ L([d′, d′′]) does not hold. By definition of LRϕ,
this means that there exists [A]ψ ∈ CL(ϕ) such that [A]ψ ∈ L([d, d′]) and
ψ 6∈ L([d′, d′′]) (and thus ¬ψ ∈ L([d′, d′′]) or there exists [A]ψ ∈ CL(ϕ) such
that [A]ψ ∈ L([d′, d′′]) and ψ 6∈ L([d, d′]) (and thus ¬ψ ∈ L([d, d′])). Let us
consider the first case (the second one is completely symmetric, and thus omit-
ted). By definition of L, we have that M, [d, d′] |= [A]ψ and M, [d′, d′′] |= ¬ψ.
By definition of
, M, [d, d′] |= [A]ψ implies that M, [d′, d] |= ψ for all d > d′.
Since, by hypothesis, d′′ > d′, we have that M, [d′, d′′] |= ψ, which contradicts
M, [d′, d′′] |= ¬ψ. Finally, to prove that L is fulfilling, we must show that for
every [d, d′] ∈ I(D) and every 〈A〉ψ ∈ L([d, d′]) (resp., 〈A〉ψ ∈ L([d, d′])) there
exists d′′ > d′ (resp., d′′ < d) such that ψ ∈ L([d′, d′′]) (resp., ψ ∈ L([d′′, d])).
Let 〈A〉ψ ∈ L([d, d′]) (the case in which 〈A〉ψ ∈ L([d, d′]) is completely sym-
metric, and thus omitted). By definition of L, we have that M, [d, d′] |= 〈A〉ψ.
Since M is a model, we have that there exists d′′ ∈ D with d′′ > d′ for which
M, [d′, d′′] |= ψ and, by definition of L, we have ψ ∈ L([d′, d′′]).

Let us consider now the right-to-left. Let L = 〈〈D, I(D)〉,L〉 a fulfilling LIS
for a PNL formula ϕ we define M = M = 〈〈D, I(D)〉,V〉 with V([d, d′]) =
L([d, d′]) ∩ AP . For every [d, d′] ∈ I(D) we prove by induction on the structure
of ψ that M, [d, d′] |= ψ if and only if ψ ∈ L([d, d′]).

- ψ = p with p ∈ AP . By construction p ∈ V([d, d′]) if and only if p ∈ L([d, d′]).

- ψ = ¬ψ1. By inductive hypothesis, M, [d, d′] |= ψ1 if and only if ψ1 ∈
L([d, d′]). Since L([d, d′]) is an atom we have ψ1 ∈ L([d, d′]) if and only if
¬ψ1 /∈ L([d, d′]). Hence, M, [d, d′] |= ¬ψ1 if and only if ¬ψ1 ∈ L([d, d′]).

- ψ = ψ1 ∨ ψ2. By inductive hypothesis we have that M, [d, d′] |= ψ1 if and
only if ψ1 ∈ L([d, d′]) and M, [d, d′] |= ψ2 if and only if ψ2 ∈ L([d, d′]).
By definition of atom we have that ψ1 ∨ ψ2 ∈ L([d, d′]) if and only if ψ1 ∈
L([d, d′]) or ψ2 ∈ L([d, d′]). Hence, M, [d, d′]
 ψ1∨ψ2 if and only if ψ1∨ψ2 ∈
L([d, d′]).

- ψ = 〈A〉ψ1. Since L is a fulfilling LIS we have that there exists d′′ > d′ with
ψ1 ∈ L([d′, d′′]) if and only if 〈A〉ψ1 ∈ L([d, d′]). By inductive hypothesis we
have that ψ1 ∈ L([d′, d′′]) if and only if M, [d′, d′′]
 ψ1. Summing up we
obtain that 〈A〉ψ1 ∈ L([d, d′]) if and only if M, [d, d′]
 〈A〉ψ1.

- ψ = 〈A〉ψ1. This case is symmetric to the previous one.

To conclude the proof, it suffices to observe that since L is a fulfilling LIS there
exists an interval [di, dj] ∈ I(D) for which ϕ ∈ L([di, dj]) and thus we have that
M, [di, dj]
 ϕ. ut

Lemma 2. Given a PNL formula ϕ and a fulfilling LIS L = 〈〈D, I(D)〉,L〉 that
satisfies it, there exists a pseudo-model L′ for ϕ, with |D′| ≤ 2 · |ϕ| · 23·|ϕ|+1.

Proof. Let IT (L) = {〈R,A,R′〉 | 〈R,A,R′〉 appears in L} and let D′ be a
minimal subset of D such that for every 〈R,A,R′〉 ∈ IT (L), there exist two
points d, d′ ∈ D′ such that REQL(d) = R, REQL(d′) = R′, L([d, d′]) = A, and
d, d′ are fulfilled in D′, that is, ESd

′

f ∪ ESdf ∪ ESd
′

p ∪ ESd
′

p ⊆ D′. For every

21

d, d′ ∈ D′, with d < d′, we define L′([d, d′]) = L([d, d′]). It is easy to prove
that L′ is a pseudo-model for ϕ. As for the size of D′, the number of distinct
interval-tuples in L′ is at most 23·|ϕ|+1 (the number of atoms is 2|ϕ|+1 and the
number of sets of requests is 2|ϕ|) and, for every interval-tuple, at most 2 · |ϕ|
points must be added. Hence, |D′| ≤ 2 · |ϕ| · 23·|ϕ|+1. ut

Theorem 3. Let T be a final tableau for a PNL formula ϕ and B be a branch
of T . We have that |B| ≤ (2 · |ϕ| · 23·|ϕ|+1) · (2 · |ϕ| · 23·|ϕ|+1 − 1)/2.

Proof. By the very same argument of Lemma 2, for any branch B, |DB | ≤
2 · |ϕ| ·23·|ϕ|+1. As we have exactly one node for any interval over DB , the length
of B is at most (2 · |ϕ| · 23·|ϕ|+1) · (2 · |ϕ| · 23·|ϕ|+1 − 1)/2. ut

Theorem 4. Let T be a final tableau for a PNL formula ϕ. If T features one
blocked branch, then ϕ is satisfiable over all linear orders.

Proof. Let B be a blocked branch in T . From the completeness of B, it follows
that for every pair d, d′ ∈ DB , with d < d′, there exists one node n in B
labeled with 〈[d, d′], A〉. Moreover, such a node is unique by construction. Let
L = 〈(DB , I(DB)),LB〉, where, for every pair d, d′ ∈ DB , we put LB([d, d′]) = A.
By construction (expansion rules), it immediately follows that L is a finite LIS.
Since B is blocked, all its active points are fulfilled in B and thus in L. Hence,
every interval-tuple 〈S,A, S′〉 in L is fulfilled. This allows us to conclude that L
is a pseudo-model for ϕ. From Lemma 1 and Theorem 1, it immediately follows
that ϕ is satisfiable. ut

Theorem 5. Let ϕ be a PNL formula which is satisfiable over the class of all
linear orders. Then, there exists a final tableau for ϕ with at least one blocked
branch.

Proof. First, by Theorem 1, we have that if ϕ is satisfiable, then there exists a
fulfilling LIS L = 〈(D, I(D)),L〉 for it. Next, we show that such a fulfilling LIS can
be exploited to construct a final tableau T for ϕ, that features a blocked branch
B. Formally, by an induction on the number i of expansion steps, we prove that
there exists a non-closed branch B such that (i) for all d ∈ DB , d ∈ D and
REQB(d) = REQL(d), (ii) for all d, d′ ∈ DB , if d < d′ in D, then d < d′ in DB ,
and (iii) if there exists a node n in B labeled with 〈[d, d′], A〉, then A = L([d, d′]).
The base case is straightforward. Since L is a LIS for ϕ, there exist two points
d, d′ ∈ D such that ϕ ∈ L([d, d′]). We start with an initial tableau T0, consisting
of a single branch B0, whose unique node n0 is labeled with 〈[d, d′], A〉, with
REQB0

(d) = REQL(d), REQB0
(d′) = REQL(d′), and A = L([d, d′]). Let Ti be

the tableau generated at the i-th step of the expansion process and let Bi be a
branch of Ti that satisfies the inductive hypothesis. We expand it as follows:

- If the Fill-in rule is applicable, then there exists a pair of points d, d′ ∈ DBi

such that there exists no node in Bi labeled with the interval [d, d′]. By the
inductive hypothesis, d, d′ ∈ D. We expand Bi with a new node n labeled
with 〈[d, d′],L([d, d′])〉.

22

- If the 〈A〉-rule is applicable, then there exist an active point d ∈ DBi
and a

formula 〈A〉ψ ∈ REQBi
(d), which is not fulfilled in Bi for d. By the inductive

hypothesis, d ∈ D. Since L is fulfilling, there exists d′ ∈ D, with d′ > d, such
that ψ ∈ L([d, d′]). Since 〈A〉ψ is not fulfilled in Bi for d and Bi is complete
(the Fill-in rule is not applicable), by condition (iii), we can conclude that
d′ /∈ DBi

. We add a new point d′ to DBi
in such a way that for all d′′ ∈ DBi

,
if d′′ < d′ in D, then d′′ < d′ in DBi

, d′ < d′′ in DBi
otherwise, and we apply

the 〈A〉-rule to expand Bi with a new node n = 〈[d, d′],L[d, d′]〉.
- The case of the 〈A〉-rule is completely symmetric, and thus its description is

omitted.

By Theorem 3, the expansion of the tableau terminates in a finite (bounded)
number of steps. Since no contradiction is introduced by any of the above steps,
the final branch B is necessarily blocked. ut

