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Abstract. Propositional interval temporal logics are quite expressive
temporal logics that allow one to naturally express statements that re-
fer to time intervals. Unfortunately, most such logics turned out to be
(highly) undecidable. To get decidability, severe syntactic and/or seman-
tic restrictions have been imposed to interval-based temporal logics that
make it possible to reduce them to point-based ones. The problem of
identifying expressive enough, yet decidable, new interval logics or frag-
ments of existing ones which are genuinely interval-based is still largely
unexplored. In this paper, we make one step in this direction by devising
an original tableau-based decision procedure for the future fragment of
Propositional Neighborhood Interval Temporal Logic, interpreted over
natural numbers.

1 Introduction

Propositional interval temporal logics are quite expressive temporal logics that
provide a natural framework for representing and reasoning about temporal
properties in several areas of computer science. Among them, we mention Halpern
and Shoham’s Modal Logic of Time Intervals (HS) [6], Venema’s CDT logic [10],
Moszkowski’s Propositional Interval Temporal Logic (PITL) [9], and Goranko,
Montanari, and Sciavicco’s Propositional Neighborhood Logic (PNL) [2] (an
up-to-date survey of the field can be found in [4]). Unfortunately, most such log-
ics turned out to be (highly) undecidable. To get decidability, severe syntactic
and/or semantic restrictions have been imposed to make it possible to reduce
them to point-based ones, thus leaving the problem of identifying expressive
enough, yet decidable, new interval logics or fragments of existing ones which
are genuinely interval-based largely unexplored. In this paper, we make one step
in this direction by devising an original tableau-based decision procedure for the
future fragment of PNL, interpreted over natural numbers.

Interval logics make it possible to express properties of pairs of time points
(think of intervals as constructed out of points), rather than single time points.
In most cases, this feature prevents one from the possibility of reducing interval-
based temporal logics to point-based ones. However, there are a few exceptions
where the logic satisfies suitable syntactic and/or semantic restrictions, and
such a reduction can be defined, thus allowing one to benefit from the good
computational properties of point-based logics [8].
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One can get decidability by making a suitable choice of the interval modal-
ities. This is the case with the 〈B〉〈B〉 and 〈E〉〈E〉 fragments of HS. Given a
formula φ and an interval [d0, d1], 〈B〉φ (resp. 〈B〉φ) holds over [d0, d1] if φ holds
over [d0, d2], for some d0 ≤ d2 < d1 (resp. d1 < d2), and 〈E〉φ (resp. 〈E〉φ) holds
over [d0, d1] if φ holds over [d2, d1], for some d0 < d2 ≤ d1 (resp. d2 < d1). Con-
sider the case of 〈B〉〈B〉 (the case of 〈E〉〈E〉 is similar). As shown by Goranko
et al. [4], the decidability of 〈B〉〈B〉 can be obtained by embedding it into the
propositional temporal logic of linear time LTL[F,P] with temporal modalities F
(sometime in the future) and P (sometime in the past). The formulae of 〈B〉〈B〉
are simply translated into formulae of LTL[F,P] by a mapping that replaces 〈B〉
by P and 〈B〉 by F . LTL[F,P] has the finite model property and is decidable.

As an alternative, decidability can be achieved by constraining the classes
of temporal structures over which the interval logic is interpreted. This is the
case with the so-called Split Logics (SLs) investigated by Montanari et al. in [7].
SLs are propositional interval logics equipped with operators borrowed from HS
and CDT, but interpreted over specific structures, called split structures. The
distinctive feature of split structures is that every interval can be ‘chopped’ in
at most one way. The decidability of various SLs has been proved by embedding
them into first-order fragments of monadic second-order decidable theories of
time granularity (which are proper extensions of the well-known monadic second-
order theory of one successor S1S).

Another possibility is to constrain the relation between the truth value of a
formula over an interval and its truth value over subintervals of that interval.
As an example, one can constrain a propositional variable to be true over an
interval if and only if it is true at its starting point (locality) or can constrain
it to be true over an interval if and only it it is true over all its subintervals
(homogeneity). A decidable fragment of PITL extended with quantification over
propositional variables (QPITL) has been obtained by imposing the locality con-
straint. By exploiting such a constraint, decidability of QPITL can be proved by
embedding it into quantified LTL. (In fact, as already noted by Venema, the lo-
cality assumption yields decidability even in the case of quite expressive interval
logics such as HS and CDT.)

A major challenge in the area of interval temporal logics is thus to identify
genuinely interval-based decidable logics, that is, logics which are not explicitly
translated into point-based logics and not invoking locality or other semantic re-
strictions. In this paper, we propose a tableau-based decision procedure for the
future fragment of (strict) Propositional Neighborhood Logic, that we call Right
Propositional Neighborhood Logic (RPNL− for short), interpreted over natural
numbers. While various tableau methods have been developed for linear and
branching time point-based temporal logics, not much work has been done on
tableau methods for interval-based temporal logics. One reason for this disparity
is that operators of interval temporal logics are in many respects more difficult
to deal with [5]. As an example, there exist straightforward inductive definitions
of the basic operators of point-based temporal logics, while inductive definitions
of interval modalities turn out to be much more complex. In [3,5], Goranko et
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al. propose a general tableau method for CDT, interpreted over partial orders.
It combines features of the classical tableau method for first-order logic with
those of explicit tableau methods for modal logics with constraint label man-
agement, and it can be easily tailored to most propositional interval temporal
logics proposed in the literature. However, it only provides a semi-decision pro-
cedure for unsatisfiability. By combining syntactic restrictions (future temporal
operators) and semantic ones (the domain of natural numbers), we succeeded in
devising a tableau-based decision procedure for RPNL−. Unlike the case of the
〈B〉〈B〉 and 〈E〉〈E〉 fragments, in such a case we cannot abstract way from the
left endpoint of intervals: there can be contradictory formulae that hold over in-
tervals that have the same right endpoint but a different left one. The proposed
tableau method partly resembles the tableau-based decision procedure for LTL
[11]. However, while the latter takes advantage of the so-called fix-point defini-
tion of temporal operators which makes it possible to proceed by splitting every
temporal formula into a (possibly empty) part related to the current state and
a part related to the next state, and to completely forget the past, our method
must also keep track of universal and (pending) existential requests coming from
the past.

The rest of the paper is organized as follows. In Section 2, we introduce the
syntax and semantics of RPNL−. In Section 3, we give an intuitive account of
the proposed method. In Section 4, we present our decision procedure, we prove
its soundness and completeness, and we address complexity issues. In Section
5, we show our procedure at work on a simple example. Conclusions provide an
assessment of the work and outline future research directions.

2 The Logic RPNL−

In this section, we give syntax and semantics of RPNL− interpreted over natural
numbers or over a prefix of them. To this end, we introduce some preliminary
notions. Let D = 〈D,<〉 be a strict linear order, isomorphic to the set N of
natural numbers or to a prefix of them. A strict interval on D is an ordered pair
[di, dj ] such that di, dj ∈ D and di < dj . The set of all strict intervals on D will
be denoted by I(D)− (notice that every interval [di, dj ] ∈ I(D)− contains only a
finite number of points). The pair 〈D, I(D)−〉 is called an interval structure.

RPNL− is a propositional interval temporal logic based on the neighborhood
relation between intervals. Its formulae consist of a set AP of propositional letters
p, q, . . ., the Boolean connectives ¬ and ∨, and the future temporal operator 〈A〉.
The other Boolean connectives, as well as the logical constants > (true) and ⊥
(false), are defined in the usual way. Furthermore, we introduce the temporal
operator [A] as a shorthand for ¬〈A〉¬. The formulae of RPNL−, denoted by
ϕ,ψ, . . ., are recursively defined by the following grammar:

ϕ = p | ¬ϕ | ϕ ∨ ϕ | 〈A〉ϕ.

We denote by |ϕ| the length of ϕ, that is, the number of symbols in ϕ (in the
following, we shall use | | to denote the cardinality of a set as well). Whenever
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there are no ambiguities, we call an RPNL− formula just a formula. A formula of
the form 〈A〉ψ or ¬〈A〉ψ is called a temporal formula (from now on, we identify
¬〈A〉ψ with [A]¬ψ), while a formula devoid of temporal operators is called a
state formula (state formulae are formulae of propositional logic).

A model for an RPNL− formula is a tuple M− = 〈〈D, I(D)−〉,V〉, where
〈D, I(D)−〉 is an interval structure and V : I(D)− −→ 2AP is the valuation
function that assigns to every interval the set of propositional letters true on it.

Let M− = 〈〈D, I(D)−〉,V〉 be a model and let [di, dj ] ∈ I(D)−. The semantics
of RPNL− is defined recursively by the satisfiability relation 
 as follows:
– for every propositional letter p ∈ AP , M−, [di, dj ] 
 p iff p ∈ V([di, dj ]);
– M−, [di, dj ] 
 ¬ψ iff M−, [di, dj ] 6
 ψ;
– M−, [di, dj ] 
 ψ1 ∨ ψ2 iff M−, [di, dj ] 
 ψ1, or M−, [di, dj ] 
 ψ2;
– M−, [di, dj ] 
 〈A〉ψ iff ∃dk ∈ D, dk > dj , such that M−, [dj , dk] 
 ψ.

Let d0 be the initial element of D and let d1 be its successor. The satisfi-
ability problem for an RPNL− formula ϕ with respect to the initial inter-
val [d0, d1] of the structure is defined as follows: ϕ is satisfiable in a model
M− = 〈〈D, I(D)−〉,V〉 if and only if M−, [d0, d1] 
 ϕ.

3 The proposed solution

In this section we give an intuitive account of the proposed tableau-based decision
procedure for RPNL−. To this end, we introduce the main features of a model
building process that, given a formula ϕ to be checked for satisfiability, generates
a model for it (if any) step by step. Such a process takes into consideration one
element of the temporal domain at a time and, at each step, it progresses from
one time point to the next one. For the moment, we completely ignore the
problem of termination. In the next section, we shall show how to turn this
process into an effective procedure.

Let D = {d0, d1, d2, . . .} be the temporal domain, which we assumed to be
isomorphic to N or to a prefix of it. The model building process begins from time
point d1 by considering the initial interval [d0, d1]. It associates with [d0, d1] the
set C[d0,d1] of all and only the formulae which hold over it.

Next, it moves from d1 to its immediate successor d2 and it takes into con-
sideration the two intervals ending in d2, namely, [d0, d2] and [d1, d2]. As before,
it associates with [d1, d2] (resp. [d0, d2]) the set C[d1,d2] (resp. C[d0,d2]) of all and
only the formulae which hold over [d1, d2] (resp. [d0, d2]). Since [d1, d2] is a right
neighbor of [d0, d1], if [A]ψ holds over [d0, d1], then ψ must hold over [d1, d2].
Hence, for every formula [A]ψ in C[d0,d1], it puts ψ in C[d1,d2]. Moreover, since
every interval which is a right neighbor of [d0, d2] is also a right neighbor of
[d1, d2], and vice versa, for every formula ψ of the form 〈A〉ξ or [A]ξ, ψ holds
over [d0, d2] if and only if it holds over [d1, d2]. Accordingly, it requires that
ψ ∈ C[d0,d2] if and only if ψ ∈ C[d1,d2]. Let us denote by REQ(d2) the set of
formulae of the form 〈A〉ψ or [A]ψ which hold over an interval ending in d2 (by
analogy, let REQ(d1) be the set of formulae of the form 〈A〉ψ or [A]ψ which hold
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d0

d1C[d0,d1]

d2C[d1,d2]C[d0,d2]

d3C[d2,d3]C[d1,d3]C[d0,d3]

d4C[d3,d4]C[d2,d4]C[d1,d4]C[d0,d4]

. . .· · ·· · ·· · ·· · ·

djC[dj−1,dj ]
. . .. . .. . .C[d1,dj ]

· · ·

C[d0,dj ]

Fig. 1. The layered structure

over an interval ending in d1, that is, the formulae 〈A〉ψ or [A]ψ which hold over
[d0, d1]).

Next, the process moves from d2 to its immediate successor d3 and it takes
into consideration the three intervals ending in d3, namely, [d0, d3], [d1, d3], and
[d2, d3]. As at the previous steps, for i = 0, 1, 2, it associates the set C[di,d3] with
[di, d3]. Since [d1, d3] is a right neighbor of [d0, d1], for every formula [A]ψ ∈
REQ(d1), ψ ∈ C[d1,d3]. Moreover, [d2, d3] is a right neighbor of both [d0, d2] and
[d1, d2], and thus for every formula [A]ψ ∈ REQ(d2), ψ ∈ C[d2,d3]. Finally, for
every formula ψ of the form 〈A〉ξ or [A]ξ, we have that ψ ∈ C[d0,d3] if and only
if ψ ∈ C[d1,d3] if and only if ψ ∈ C[d2,d3].

Next, the process moves from d3 to its successor d4 and it repeats the same
operations; then it moves to the successor of d4, and so on.

The layered structure generated by the process is graphically depicted in
Figure 1. The first layer correspond to time point d1, and for all i > 1, the i-th
layer corresponds to time point di. If we associate with each node C[di,dj ] the
corresponding interval [di, dj ], we can interpret the set of edges as the neighbor-
hood relation between pairs of intervals. As a general rule, given a time point
dj ∈ D, for every di < dj , the set C[di,dj ] of all and only the formulae which hold
over [di, dj ] satisfies the following conditions:
– since [di, dj ] is a right neighbor of every interval ending in di, for every

formula [A]ψ ∈ REQ(di), ψ ∈ C[di,dj ];
– since every right neighbor of [di, dj ] is also a right neighbor of all intervals

[dk, dj ] belonging to layer dj , for every formula ψ of the form 〈A〉ξ or [A]ξ,
ψ ∈ C[di,dj ] if and only if it belongs to all sets C[dk,dj ] belonging to the layer.
As we shall show in the next section, the layers of the structure depicted in

Figure 1 will become the (macro)nodes of the tableau for ϕ, whose edges will
connect ordered pairs of nodes corresponding to consecutive layers.



6

4 A tableau-based decision procedure for RPNL−

4.1 Basic notions

Let ϕ be an RPNL− formula to check for satisfiability and let AP be the set of
its propositional variables. For the sake of brevity, we use (A)ψ as a shorthand
for both 〈A〉ψ and [A]ψ.

Definition 1. The closure CL(ϕ) of a formula ϕ is the set of all subformulae
of ϕ and of their single negations (we identify ¬¬ψ with ψ).

Lemma 1. For every formula ϕ, |CL(ϕ)| ≤ 2 · |ϕ|.

Lemma 1 can be easily proved by induction on the structure of ϕ.

Definition 2. The set of temporal requests of a formula ϕ is the set TF(ϕ) of
all temporal formulae in CL(ϕ), that is, TF(ϕ) = {(A)ψ ∈ CL(ϕ)}.

We are now ready to introduce the key notion of atom.

Definition 3. Let ϕ be a formula of RPNL−. A ϕ-atom is a pair (A,C), with
A ⊆ TF(ϕ) and C ⊆ CL(ϕ), such that:
– for every (A)ψ ∈ TF(ϕ), if (A)ψ ∈ A, then ¬(A)ψ 6∈ A;
– for every ψ ∈ CL(ϕ), ψ ∈ C iff ¬ψ 6∈ C;
– for every ψ1 ∨ ψ2 ∈ CL(ϕ), ψ1 ∨ ψ2 ∈ C iff ψ1 ∈ C or ψ2 ∈ C;
– for every [A]ψ ∈ A, ψ ∈ C.

Temporal formulae in A are called active requests, while formulae in C are called
current formulae.

We denote the set of all ϕ-atoms by Aϕ. We have that |Aϕ| ≤ 22|ϕ|. As we shall
later show, the proposed tableau method identifies any interval [di, dj ] with an
atom (A,C), where A includes all universal formulae [A]ψ ∈ REQ(di) as well as
those existential formulae 〈A〉ψ ∈ REQ(di) which do not hold over any interval
[di, dk], with dk < dj , and C includes all formulae ψ ∈ CL(ϕ) which hold over
[di, dj ]. Moreover, for all [A]ψ ∈ A, ψ ∈ C, while for any 〈A〉ψ ∈ A, it may
happen that ψ ∈ C, but this is not necessarily the case.

Atoms are connected by the following binary relation.

Definition 4. Let Xϕ be a binary relation over Aϕ such that, for every pair of
atoms (A,C), (A′, C ′) ∈ Aϕ, (A,C)Xϕ(A′, C ′) if (and only if):
– A′ ⊆ A;
– for every [A]ψ ∈ A, [A]ψ ∈ A′;
– for every 〈A〉ψ ∈ A, 〈A〉ψ ∈ A′ iff ¬ψ ∈ C.

In the next section we shall show that for any pair i < j, the relation Xϕ

connects the atom associated with the interval [di, dj ] to the atom associated
with the interval [di, dj+1].
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4.2 Tableau construction, fulfilling paths, and satisfiability

To check the satisfiability of a formula ϕ, we build a graph, called a tableau for
ϕ, whose nodes are sets of atoms, associated with a layer of Figure 1 (namely,
with a set of intervals that end at the same point), and whose edges represent
the relation between a layer and the next one, that is, between a point and its
immediate successor. We shall take advantage of such a construction to reduce
the problem of finding a model for ϕ to the problem of finding a path in the
tableau that satisfies suitable properties.

Definition 5. A node is a set of ϕ-atoms N such that, for any pair (A,C), (A′,
C ′) ∈ N and any (A)ψ ∈ TF(ϕ), (A)ψ ∈ C ⇔ (A)ψ ∈ C ′.

We denote by Nϕ the set of all nodes that can be built from Aϕ, by Init(Nϕ) the
set of all initial nodes, that is, the set {{(∅, C)} ∈ Nϕ}, and by Fin(Nϕ) the set
of all final nodes, that is, the set {N ∈ Nϕ : ∀(A,C) ∈ N ,∀〈A〉ψ ∈ CL(ϕ)(〈A〉ψ
6∈ C)}. Furthermore, for any node N , we denote by REQ(N ) the set {(A)ψ :
∃(A,C) ∈ N ((A)ψ ∈ C)} (or, equivalently, {(A)ψ : ∀(A,C) ∈ N ((A)ψ ∈ C)}).
From Definition 5, it follows that |Nϕ| ≤ 222·|ϕ|

.

Definition 6. The tableau for a formula ϕ is a directed graph Tϕ = 〈Nϕ, Eϕ〉,
where for any pair N ,M∈ Nϕ, (N ,M) ∈ Eϕ if and only ifM = {(AN , CN )}∪
M′N , where
1. (AN , CN ) is an atom such that AN = REQ(N );
2. for every (A,C) ∈ N , there exists (A′, C ′) ∈M′N such that (A,C)Xϕ(A′, C ′);
3. for every (A′, C ′) ∈M′N , there exists (A,C) ∈ N such that (A,C)Xϕ(A′, C ′).

Definition 7. Given a finite path π = N1 . . .Nn in Tϕ, an atom path in π is a
sequence of atoms (A1, C1), . . . , (An, Cn) such that:
– for every 1 ≤ i ≤ n, (Ai, Ci) ∈ Ni;
– for every 1 ≤ i < n, (Ai, Ci)Xϕ(Ai+1, Ci+1).

Given a node N and an atom (A,C) ∈ N , we say that the atom (A′, C ′) is a
descendant of (A,C) if and only if there exists a nodeM such that (A′, C ′) ∈M
and there exists a path π from N to M such that there is an atom path from
(A,C) to (A′, C ′) in π.

The search for a ϕ model can by reduced to the search for a suitable path in Tϕ.

Definition 8. A pre-model for ϕ is a (finite or infinite) path π = N1N2N3 . . .
in Tϕ such that:
– N1(= {(∅, C)}) ∈ Init(Nϕ) and ϕ ∈ C;
– if π is finite and Nn is the last node of π, then Nn ∈ Fin(Nϕ).

Let M− = 〈〈D, I(D)−〉,V〉 be a model for ϕ. For every interval [di, dj ] ∈
I(D)−, we define an atom (A[di,dj ], C[di,dj ]) such that:
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A[di,dj ] = {[A]ψ ∈ REQ(di)}∪
{〈A〉ψ ∈ REQ(di) : ∀di < dl < dj(M−, [di, dl] 
 ¬ψ)};

C[di,dj ] = {ψ ∈ CL(ϕ) : M−, [di, dj ] 
 ψ}.

For every j ≥ 1 (and j < |D|, if |D| is finite), we have that:

(A[di,dj ], C[di,dj ])Xϕ(A[di,dj+1], C[di,dj+1]).

For every dj ∈ D, with j ≥ 1, let Nj = {(A[di,dj ], C[di,dj ]) : i < j} and πM− =
N1N2N3 . . .. We have that for all j ≥ 1, Nj is a node; moreover, πM− is a
pre-model for ϕ.

Conversely, for every pre-model for ϕ π = N1N2N3 . . . in Tϕ, we build an
interval structure 〈D, I(D)−〉 and a set of interpretations Mπ such that M− =
〈〈D, I(D)−〉,V〉 ∈Mπ if and only if:
– 〈D \ {d0}, <〉 and π are isomorphic;
– for every p ∈ AP and [di, dj ] ∈ I(D)−, p ∈ V([di, dj ]) if and only if
µ([di, dj ]) = (A,C) and p ∈ C, where µ : I(D)− → Aϕ maps every interval
[di, dj ] into an atom µ([di, dj ]) in such a way that:
1. N1 = {µ([d0, d1])};
2. for every di ∈ D, with d1 < di, µ([di−1, di]) = (A,C) ∈ Ni, with A =

REQ(Ni−1);
3. for every di, dj ∈ D, with di < dj−1, µ([di, dj ]) = (A,C) ∈ Nj , with
µ([di, dj−1])Xϕ(A,C);

Intuitively, µ assigns to every interval [di, dj ] an atom belonging to the j-th node
Nj in such a way that the interval relations depicted in Figure 1 are respected.

However, being π a pre-model for ϕ does not imply that there exists a model
satisfying ϕ in Mπ, because formulae of the form 〈A〉ψ are not necessarily sat-
isfied by interpretations 〈〈D, I(D)−〉,V〉 ∈ Mπ. To overcome this problem, we
restrict our attention to fulfilling paths.

Definition 9. Let π = N1N2N3 . . . be a pre-model for ϕ in Tϕ. π is a fulfilling
path for ϕ in Tϕ if and only if, for every Ni and every (A,C) ∈ Ni, if 〈A〉ψ ∈ A,
then there exist Nj, with i ≤ j, and (A′, C ′) ∈ Nj, such that (A′, C ′) is a
descendant of (A,C) in π and ψ ∈ C ′.

Theorem 1. For any formula ϕ, ϕ is satisfiable if and only if there exists a
fulfilling path for ϕ in Tϕ.

Proof. Let ϕ be a satisfiable formula and M− be a model for it. It is easy to
show that the pre-model πM− = N1N2 . . . is a fulfilling path for ϕ in Tϕ. Let
(A[di,dj ], C[di,dj ]) ∈ Nj be an atom such that 〈A〉ψ ∈ A[di,dj ]. By definition of
πM− , we have that 〈A〉ψ ∈ REQ(di) and, for all di < dl < dj , M−, [di, dl] 
 ¬ψ.
Since M− is a model for ϕ, there must exist an interval [di, dk], with dk ≥ dj ,
satisfying ψ. Hence, by definition, ψ ∈ C[di,dk].

As for the converse, let π = N1N2 . . . be a fulfilling path for ϕ, and let Mπ

be the corresponding set of interpretations. We show that there exists a fulfilling
interpretation M− = 〈〈D, I(D)−〉,V〉 ∈Mπ, that is, an interpretation such that,
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for every interval [di, dj ] ∈ I(D)−, if µ([di, dj ]) = (A,C) and 〈A〉ψ ∈ C, then
there exists an interval [dj , dk] ∈ I(D)− such that µ([dj , dk]) = (A′, C ′), with
ψ ∈ C ′. We define such an interpretation by induction on the index of the nodes
in π, that is, we first show how to fulfill the 〈A〉-formulae in REQ(N1) (base
case) and then we show how to fulfill those in REQ(Nj) provided that we have
already fulfilled those in REQ(Ni) for i = 1, . . . , j − 1 (inductive step).

We begin from the initial node N1 = {(∅, C)}. By the definition of µ, we have
that µ([d0, d1]) = (∅, C). Let 〈A〉ψ1, 〈A〉ψ2, . . . , 〈A〉ψn be the ordered list of the
〈A〉-formulae in REQ(N1), if any (assume that they have been totally ordered
on the basis of some syntactical criterion). We start with 〈A〉ψ1. By Definition 6,
there exists (A2, C2) ∈ N2 such that 〈A〉ψ1 ∈ A2. Since π is a fulfilling path for ϕ,
by Definition 9 there exist Nk, with k ≥ 2, and (Ak, Ck) ∈ Nk such that (Ak, Ck)
is a descendant of (A2, C2) in π and ψ1 ∈ Ck. Let (A2, C2) . . . (Ak, Ck) be the
atom path that leads from (A2, C2) to (Ak, Ck) in π. By putting µ([d1, di]) =
(Ai, Ci) for every 2 ≤ i ≤ k, we meet the fulfilling requirement for 〈A〉ψ1. Then
we move to formula 〈A〉ψ2. Two cases may arise: if there exists (Ai, Ci), with
2 ≤ i ≤ k, such that ψ2 ∈ Ci, then we are already done. Otherwise, we have
that, for every (Ai, Ci), with 2 ≤ i ≤ k, ¬ψ2 ∈ Ci, and thus, by Definition 4,
〈A〉ψ2 ∈ Ai for 2 ≤ i ≤ k. Since π is fulfilling, there exist Nh, with h > k,
and (Ah, Ch) ∈ Nh such that (Ah, Ch) is a descendant of (Ak, Ck) in π and
ψ2 ∈ Ch. Let (Ak, Ck) . . . (Ah, Ch) be the atom path that leads from (Ak, Ck) to
(Ah, Ch) in π. As before, by putting µ([d1, di]) = (Ai, Ci) for every k+1 ≤ i ≤ h,
we meet the fulfilling requirement for 〈A〉ψ2. By repeating this process for the
remaining formulae 〈A〉ψ3, . . . , 〈A〉ψn, we meet the fulfilling requirement for all
〈A〉-formulae in REQ(N1).

Consider now a node Nj ∈ π, with j > 1, and assume that, for every i < j,
the fulfilling requirements for all 〈A〉-formulae in REQ(Ni) have been met. We
have that for any pair of atoms (A,C), (A′, C ′) ∈ Nj and any 〈A〉ψ ∈ CL(ϕ),
〈A〉ψ ∈ C iff 〈A〉ψ ∈ C ′ iff 〈A〉ψ ∈ REQ(Nj). Moreover, no one of the intervals
over which µ has been already defined can fulfill any 〈A〉ψ ∈ REQ(Nj) since
their left endpoints strictly precede dj . We proceed as in the case of N1: we take
the ordered list of 〈A〉-formulae in REQ(Nj) and we orderly fulfill them.

As for the intervals [di, dj ] which are not involved in the fulfilling process, it
suffices to define µ([di, dj ]) so that it satisfies the general constraints on µ.

To complete the proof, it suffices to show that a fulfilling interpretation M− =
〈〈D, I(D)−〉,V〉 is a model for ϕ. We show that for every [di, dj ] ∈ I(D)− and
every ψ ∈ CL(ϕ), ψ ∈ C, with µ([di, dj ]) = (A,C), if and only if M−, [di, dj ] 
 ψ.
We prove this by induction on the structure of ψ.

– If ψ is the propositional letter p, then p ∈ C
V def.⇐⇒ p ∈ V([di, dj ]) ⇔

M−, [di, dj ] 
 p.

– If ψ is the formula ¬ξ, then ¬ξ ∈ C atom def.⇐⇒ ξ 6∈ C ind. hyp.⇐⇒ M−, [di, dj ] 6

ξ ⇔ M−, [di, dj ] 
 ¬ξ.

– If ψ is the formula ξ1∨ ξ2, then ξ1∨ ξ2 ∈ C
atom def.⇐⇒ ξ1 ∈ C or ξ2 ∈ C

ind. hyp.⇐⇒
M−, [di, dj ] 
 ξ1 or M−, [di, dj ] 
 ξ2 ⇔ M−, [di, dj ] 
 ξ1 ∨ ξ2.
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– Let ψ be the formula 〈A〉ξ. Suppose that 〈A〉ξ ∈ C. Since M− is a fulfilling
interpretation, there exists an interval [dj , dk] ∈ I(D)− such that µ([dj , dk]) =
(A′, C ′) and ξ ∈ C ′. By the inductive hypothesis, we have that M−, [dj , dk] 

ξ, and thus M−, [di, dj ] 
 〈A〉ξ. As for the opposite implication, we assume
by contradiction that M−, [di, dj ] 
 〈A〉ξ and 〈A〉ξ 6∈ C. By atom definition,
this implies that ¬〈A〉ξ = [A]¬ξ ∈ C. By definition of µ, we have that
µ([dj , dk]) = (A′, C ′) and [A]¬ξ ∈ A′ for every dk > dj , and thus ¬ξ ∈ C ′.
By the inductive hypothesis, this implies that M−, [dj , dk] 
 ¬ξ for every
dk > dj , and thus M−, [di, dj ] 
 [A]¬ξ, which contradicts the hypothesis
that M−, [di, dj ] 
 〈A〉ξ.

Since π is a fulfilling path for ϕ, ϕ ∈ C[d0,d1], and thus M−, [d0, d1] 
 ϕ. ut

4.3 Maximal strongly connected components and decidability

In the previous section, we reduced the satisfiability problem for RPNL− to the
problem of finding a fulfilling path in the tableau for the formula ϕ to check.
However, fulfilling paths may be infinite, and thus we must show how to finitely
establish their existence.

Let C be a subgraph of Tϕ. We say that C is a strongly connected component
(SCC for short) of Tϕ if for any two different nodes N ,M ∈ C there exists a
path in C leading from N to M.

Let π = N1N2N3 . . . be an infinite fulfilling path in Tϕ. Let Inf(π) be the
set of nodes that occurs infinitely often in π. It is not difficult to see that the
subgraph defined by Inf(π) is an SCC. We show that the search for a fulfilling
path can be reduced to the search for a suitable SCC in Tϕ. More precisely, we
show that it is suffices to consider the maximal strongly connected components
(MSCC for short) of Tϕ, namely, SCC which are not properly contained in any
other SCC.

Definition 10. Let C be an SCC in Tϕ. C is self-fulfilling if for every node
N ∈ C, every atom (A,C) ∈ N , and every formula 〈A〉ψ ∈ A, there exists a
descendant (A′, C ′) of (A,C) in C such that ψ ∈ C ′.

Let π = N1N2 . . . be a fulfilling path for ϕ in Tϕ. π starts from an initial node
N1. If π is finite, it reaches a final node that belongs to a self-fulfilling SCC. If
π is infinite, it reaches the SCC defined by Inf(π) which is self-fulfilling as well.

The following lemma proves that being self-fulfilling is a monotone property.

Lemma 2. Let C and C′ be two non empty SCCs such that C ⊆ C′. If C is
self-fulfilling, then C′ is self-fulfilling too.

Proof. Let C ⊂ C′. Suppose that there exist a node N ∈ C′ and an atom (A,C) ∈
N such that 〈A〉ψ ∈ C. Since C′ is a SCC, there exists a path in C′ that connects
the node N to a node M in C.

By Definition 6, there exists an atom (A′, C ′) ∈M which is a descendant of
(A,C). Two cases may arise:
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– if 〈A〉ψ 6∈ A′, then there exist a node M′ in the path from N to M and a
descendant (A′′, C ′′) of (A,C) in M′ with ψ ∈ C ′′;

– if 〈A〉ψ ∈ A′, since C is self-fulfilling, there exists (A′′, C ′′) which is a descen-
dant of (A′, C ′) (and thus of (A,C)) with ψ ∈ C ′′.

In both cases, the formula 〈A〉ψ gets fulfilled. ut

On the basis of Lemma 2, we define a simple algorithm searching for fulfilling
paths, that progressively removes from Tϕ useless MSCCs, that is, MSCCs that
cannot participate in a fulfilling path. We call transient state an MSCC consisting
of a single node N devoid of self loops, i.e., such that the edge (N ,N ) 6∈ Eϕ.

Definition 11. Let C be an MSCC in Tϕ. C is useless if one of the following
conditions holds:
1. C is not reachable from any initial node;
2. C is a transient state which has no outgoing edges and is not a final node;
3. C has no outgoing edges and it is not self-fulfilling.

Algorithm 1 Satisfiability checking procedure.
〈N0, E0〉 ← Tϕ
i← 0
while 〈Ni, Ei〉 is not empty and contains useless MSCC do

let C = 〈N , E〉 be a useless MSCC
i← i+ 1
Ni ← Ni−1 \ N
Ei ← Ei−1 ∩ (Ni ×Ni)

if ∃N ∈ Init(Ni) such that N = {(∅, C)} with ϕ ∈ C then
return true

else
return false

Let us denote by 〈N ∗, E∗〉 the structure computed by Algorithm 1. The
correctness of the algorithm is based on the following lemma.

Lemma 3. π is a fulfilling path for ϕ in 〈Ni, Ei〉 if and only if it is a fulfilling
path for ϕ in 〈Ni+1, Ei+1〉.

Proof. A fulfilling path for ϕ starts from an initial node and reaches either a
final node that belongs to a self-fulfilling SCC (finite path) or the self-fulfilling
SCC defined by Inf(π) (infinite path). By Lemma 2, we know that being self-
fulfilling is monotone and thus by removing useless MSCC from 〈Ni, Ei〉 we
cannot remove any fulfilling path. ut

Theorem 2. For any formula ϕ, ϕ is satisfiable if and only if Algorithm 1
returns true.

Proof. By Theorem 1, we have that ϕ is satisfiable if and only if there exists a
fulfilling path in Tϕ = 〈N0, E0〉. By Lemma 3, this holds if and only if there exists
a fulfilling path in 〈N ∗, E∗〉, that is, there exists a finite path π = N1N2 . . .Nk
in 〈N ∗, E∗〉 such that:



12

– N1 = {(∅, C)} is an initial node with ϕ ∈ C;
– Nk belongs to a self-fulfilling MSCC.

Since 〈N ∗, E∗〉 does not contain any useless MSCC, this is equivalent to the fact
that there exists an initial node N = {(∅, C)} in N ∗, with ϕ ∈ C. Thus, the
algorithm correctly returns true if and only if ϕ is satisfiable. ut

As for computational complexity, we have:

– |Nϕ| ≤ 222|ϕ|
and thus |Tϕ| = 22O(|ϕ|)

;
– the decomposition of Tϕ into MSCCs can be done in time linear in |Tϕ|;
– the algorithm takes time polynomial in |Aϕ| · |Tϕ|.

Hence, checking the satisfiability of a formula ϕ has an overall time bound of
22O(|ϕ|)

, that is, doubly exponential in the length of ϕ.

4.4 Improving the complexity: an EXPSPACE algorithm

In this section we describe an improvement of the proposed solution that exploits
nondeterminism to find a fulfilling path in the tableau and thus to decide the
satisfiability of a given formula ϕ, which is based on the definition of ultimately
periodic pre-model.

Definition 12. An infinite pre-model for ϕ π = N1N2 . . . is ultimately periodic,
with prefix l and period p > 0, if and only if, for all i ≥ l, Ni = Ni+p.

Theorem 3. Let Tϕ be the tableau for a formula ϕ. There exists an infinite
fulfilling path in Tϕ if and only if there exists an infinite fulfilling path that is
ultimately periodic with prefix l ≤ |Nϕ| and period p ≤ |Nϕ|2.

Proof. Let π be an infinite fulfilling path in Tϕ. Consider now the SCC defined
by Inf(π) and the path σ connecting the initial node of π to it. An ultimately
periodic fulfilling path satisfying the conditions of the theorem can be built as
follows:
– let σ = N1N2 . . .Nn. If n > |Nϕ|, take a path σ′ from N1 to Nn of length
|σ′| ≤ |Nϕ|. Otherwise, take σ′ = σ.

– Since Nn ∈ Inf(π), take a path σloop from Nn to Nn. To guarantee the
condition of fulfilling, we constrain σloop to contain all nodes in Inf(π). By
the definition of SCC, this loop exists and its length is less than or equal to
|Nϕ|2.

The infinite path π′ = σ′σloopσloopσloop . . . is an ultimately periodic fulfilling
path with prefix l ≤ |Nϕ| and period p ≤ |Nϕ|2. ut

The following algorithm exploits Theorem 3 to nondeterministically guess a
fulfilling path satisfying the formula.

First, the algorithm guesses two numbers l ≤ |Nϕ| and p ≤ |Nϕ|2. If p = 0,
it searches for a finite pre-model of length l. Otherwise, it takes l as the prefix
and p as the period of the ultimately periodic pre-model. Next, the algorithm
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guesses the first node N1 of the pre-model, taking N1 = {(∅, C)} with ϕ ∈ C.
Subsequently, it guesses the next node N2, incrementing a counter and checking
that the edge (N1,N2) is in Eϕ. The algorithm proceeds in this way, incrementing
the counter for every node it adds to the pre-model.

When the counter reaches l, two cases are possible: if p = 0, then the current
node is the last node of a finite pre-model, and the algorithm checks if it is a
self-fulfilling final node. If p > 0, the algorithm must guess the period of the
pre-model. To this end, it keeps in Np the current node (that is, the first node
of the period), and it guesses the other nodes of the period by adding a node
and by incrementing the counter at every step. Furthermore, for every atom
(A,C) ∈ Np and for every formula 〈A〉ψ ∈ A, it checks if the formula gets
fulfilled in the period. When the counter reaches p, it checks if there exists an
edge from the current node to Np and if all 〈A〉-formulae in Np has been fulfilled.

By Theorem 3, it follows that the algorithm returns true if and only if ϕ is
satisfiable. Furthermore, the algorithm only needs to store:
– the numbers l, p and a counter ranging over them;
– the initial node N1;
– the current node and the next guessed node of the pre-model;
– the first node of the period Np;
– the set of 〈A〉-formulae that needs to be fulfilled.

Since the counters are bounded by |Nϕ|2 = 22O(|ϕ|)
, and since the number of

nodes is bounded by 22O(|ϕ|)
), the algorithm needs an amount of space which is

exponential in the length of the formula.

Theorem 4. The satisfiability problem for RPNL− is in EXPSPACE.

5 The decision procedure at work

In this section we apply the proposed decision procedure to the satisfiable for-
mula ϕ = 〈A〉p ∧ [A]〈A〉p (which does not admit finite models). We show only
a portion of the entire tableau, which is sufficiently large to include a fulfilling
path for ϕ and thus to prove that ϕ is satisfiable.

Let M− = 〈〈D, I(D)−〉,V〉 be a model that satisfies ϕ. Since M−, [d0, d1] 
 ϕ
we have that M−, [d0, d1] 
 [A]〈A〉p and M−, [d0, d1] 
 〈A〉p. It is easy to see
that this implies that, for every interval [di, dj ] ∈ I(D)−, M−, [di, dj ] 
 [A]〈A〉p
and M−, [di, dj ] 
 〈A〉p. For this reason, we can consider (when searching for a
fulfilling path for ϕ) only atoms obtained by combining one the following set of
active requests with one of the following set of current formulae:

A0 = ∅; C0 = {ϕ, [A]〈A〉p, 〈A〉p, p};
A1 = {[A]〈A〉p}; C1 = {ϕ, [A]〈A〉p, 〈A〉p,¬p}.
A2 = {〈A〉p, [A]〈A〉p};

As an example, consider the initial node N1 = {(∅, C0)}. Figure 2 depicts
a portion of Tϕ which is reachable from N1. An edge reaching a boxed set of
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nodes means that there is an edge reaching every node in the box, while an edge
leaving from a box means that there is an edge leaving from every node in the
box.

(∅, C0)

(∅, C0)
(A2, C1)

(∅, C1)
(A2, C1)

(∅, C0)
(A2, C0)

(∅, C1)
(A2, C0)

(∅, C0)
(A2, C0)
(A2, C1)

(∅, C1)
(A2, C0)
(A2, C1)

(∅, C0)
(A1, C0)
(A2, C0)

(∅, C1)
(A1, C0)
(A2, C0)

(∅, C0)
(A1, C1)
(A2, C0)

(∅, C1)
(A1, C1)
(A2, C0)

(∅, C0)
(A1, C0)
(A2, C1)

(∅, C0)
(A1, C1)
(A2, C1)

(∅, C1)
(A1, C0)
(A2, C1)

(∅, C1)
(A1, C1)
(A2, C1)

Fig. 2. A portion of the tableau for 〈A〉p ∧ [A]〈A〉p.

The only atoms with 〈A〉-formulae in their set of active requests are (A2, C0)
and (A2, C1), since 〈A〉p ∈ A2. The atom (A2, C0) immediately fulfills 〈A〉p, since
p ∈ C0. The atom (A2, C1) does not fulfill 〈A〉p, but we have that (A2, C1)Xϕ

(A2, C0).
Consider now the two boxed set of nodes of Figure 2. They define an SCC C

such that every node in C that contains the atom (A2, C1) has a descendant that
contains the atom (A2, C0), which fulfills the request 〈A〉p. This means that C
is a self-fulfilling SCC which is reachable from the initial node N1 and thus our
decision procedure correctly concludes that the formula ϕ is satisfiable.



15

6 Conclusions and further work

In this paper we proposed an original tableau-based decision procedure for
RPNL− interpreted over N (or over a prefix of it). We also provided an EX-
PSPACE upper bound to the complexity of the satisfiability problem for RPNL−.
We do not know yet whether it is EXPSPACE-complete or not. As for possible
extensions of the proposed method, we generalized it to branching time (where
every timeline is isomorphic to N) [1]. To this end, the definition of Tϕ must
be modified to take into account that every point of the tree (and, thus, every
node) may have many immediate successors. Furthermore, the decision algo-
rithm, instead of searching for fulfilling paths, has to test whether, for every
formula 〈A〉ψ that belongs to the set C of current formulae of an atom (A,C)
of a node N , there exists a successor M of N that fulfills its request. If this
is the case, a model satisfying the formula can be obtained simply by taking
the tree obtained through the unfolding of the tableau, starting from the initial
node. The extension of the method to full PNL− turns out to be more difficult.
In such a case the definition of nodes and edges of the tableau, as well as the
definition of fulfilling path, must be revised to take into account past operators.
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