
An optimal tableau-based decision algorithm for
Propositional Neighborhood Logic

Davide Bresolin, Angelo Montanari, and Pietro Sala

Department of Mathematics and Computer Science, University of Udine, Italy
E-mail: {bresolin|montana|sala}@dimi.uniud.it

Abstract. In this paper we focus our attention on the decision problem
for Propositional Neighborhood Logic (PNL for short). PNL is the proper
subset of Halpern and Shoham’s modal logic of intervals whose modalities
correspond to Allen’s relations meets and met by. We show that the
satisfiability problem for PNL over the integers is NEXPTIME-complete.
Then, we develop a sound and complete tableau-based decision procedure
and we prove its optimality.

1 Introduction

Temporal logics play an important role in several areas of computer science,
including artificial intelligence, specification and automatic verification of pro-
grams, and temporal databases. Even though interval-based temporal logics pro-
vide a natural framework for representing and reasoning about time, most work
has been devoted to point-based ones, which generally show a better compu-
tational behavior. In this paper, we focus our attention on the propositional
fragment of the interval logic of temporal neighborhood (PNL for short) [3,4].
We devise a NEXPTIME tableau-based decision procedure for PNL over the
integers (or a subset of them) and we prove its optimality.

Various propositional and first-order interval temporal logics have been pro-
posed in the literature (a comprehensive survey can be found in [5]). The most
significant propositional ones are Halpern and Shoham’s Modal Logic of Time
Intervals (HS) [7], Venema’s CDT logic [6,12], and Moszkowski’s Propositional
Interval Temporal Logic (PITL) [11]. Unfortunately, all of them turn out to be
undecidable. Halpern and Shoham’s logic has been shown to be undecidable for
several classes of linear and branching orders [7]. Venema’s CDT is powerful
enough to embed HS, and thus it is undecidable (at least) over the same classes
of orders. Finally, PITL has been shown to be undecidable over discrete lin-
ear orders by Moszkowski [11]; its undecidability over dense linear orders easily
follows from the undecidability of the Begin/End (BE) fragment of HS [5,8].

To get decidability, severe syntactic and/or semantic restrictions have been
imposed to interval-based temporal logics to make it possible to reduce them
to point-based ones [9]. One can get decidability by making a suitable choice
of the interval modalities. This is the case with the BB (Begin/Begun by) and
EE (End/Ended by) fragments of HS [5]. As an alternative, decidability can

2

be achieved by constraining the classes of temporal structures over which the
interval logic is interpreted. This is the case with the so-called Split Logics (SLs)
[10]. Finally, another possibility is to constrain the relation between the truth
value of a formula over an interval and its truth value over subintervals of it. As
an example, one can constrain a propositional variable to be true over an interval
if and only if it is true at its starting point (locality) or if and only if it is true over
all its subintervals (homogeneity) [11]. All these approaches differ in the nature
of the restrictions they impose, but they have a common feature: they replace
every interval with a point and, accordingly, interval-based temporal operators
with point-based ones. Hence, as pointed out in [9], the problem of proving the
decidability of interval logics without taking advantage of such a replacement
remains largely unexplored.

A first result in this direction has been obtained by Bresolin et al. in [1,2],
where the decidability of the future fragment of PNL (RPNL for short) over
the natural numbers is established. They basically prove that an RPNL formula
is satisfiable if and only if there exist a finite model, or an ultimately periodic
(infinite) one, with a finite representation of bounded size. In both cases, such
a model can be built starting from any model satisfying the formula by pro-
gressively removing exceeding points from it until the desired bound is reached.
The removal of a point d from a model causes the removal of all intervals either
beginning or ending at it. Since RPNL features only future time modalities, the
removal of intervals beginning at d is not critical. On the contrary, the removal
of intervals ending at d may introduce “defects”, that is, there may be existential
future temporal formulae that are not satisfied anymore. However, by properly
choosing the point d to remove, we can guarantee that there exist sufficiently
many points in the future of d which allows us to fix such defects (by possi-
bly changing the truth value of formulas over intervals ending at them) without
introducing new defects.

In this paper, we generalize the proof for RPNL to full PNL by showing
that a PNL formula is satisfiable if and only if there exist a finite model or
an infinite one with a finite representation of bounded size. As in the case of
RPNL, such a model can be obtained by removing exceeding points from a
given model satisfying the formula, but the removal process turns out to be
much more involved. In contrast with the case of RPNL, the removal of a point
d from a PNL model may affect the satisfiability of formulae over intervals in the
past as well as in the future of d . Hence, to fix the defects possibly caused by the
removal of d, we must guarantee that there exist sufficiently many points with
the same characteristics as d both in the future and in the past of d. Moreover,
we must be sure that changing the valuation of intervals that either end or start
at these points does not generate new defects. In the following, we show that
this can actually be done.

The paper is organized as follows. In Section 2 we introduce syntax and se-
mantics of PNL. Then, in Section 3 we prove the decidability of PNL over the
integers (or a subset of them). In Section 4 we describe an optimal NEXPTIME
tableau-based decision procedure, and we prove its soundness and completeness.

3

Conclusions provide an assessment of the work and outline future research di-
rections.

2 Propositional Neighborhood Logic

In this section, we give syntax and semantics of PNL interpreted over the set Z
of the integers or over a subset of it. To this end, we introduce some preliminary
notions. Let D = 〈D,<〉 be a strict linear order isomorphic to Z (or to a subset
of it). A strict interval on D is an ordered pair [di, dj] such that di, dj ∈ D and
di < dj . The set of all strict intervals over D will be denoted by I(D)− (here we
conform to the notation proposed in [4], where − is used to denote the lack of
point intervals, that is, intervals of the form [di, di]). The pair 〈D, I(D)−〉 is called
a strict interval structure. For every pair of intervals [di, dj], [d′i, d

′
j] ∈ I(D)−, we

say that [d′i, d
′
j] is a right (resp., left) neighbor of [di, dj] if and only if dj = d′i

(resp., d′j = di).

The language of (Strict) Propositional Neighborhood Logic (PNL for short)
consists of a set AP of propositional letters, the connectives ¬ and ∨, and the
modal operators 〈A〉 and 〈A〉. The other connectives, as well as the logical con-
stants > (true) and ⊥ (false), can be defined as usual. The formulae of PNL,
denoted by ϕ,ψ, . . ., are recursively defined by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈A〉ϕ | 〈A〉ϕ.

We denote by |ϕ| the length of ϕ, that is, the number of symbols in ϕ (in the
following, we shall use | | to denote the cardinality of a set as well). Whenever
there are no ambiguities, we call a PNL formula just a formula. A formula of the
forms 〈A〉ψ, ¬〈A〉ψ, 〈A〉ψ, or ¬〈A〉ψ is called a temporal formula (from now on,
we identify ¬〈A〉¬ψ with [A]ψ and ¬〈A〉¬ψ with [A]ψ).

A model for a PNL formula is a pair M = 〈〈D, I(D)−〉,V〉, where 〈D, I(D)−〉
is a strict interval structure and V : I(D)− −→ 2AP is a valuation function
assigning to every interval the set of propositional letters true over it. Given a
model M = 〈〈D, I(D)−〉,V〉 and an interval [di, dj] ∈ I(D)−, the semantics of
PNL is defined recursively by the satisfiability relation
 as follows:

– for every propositional letter p ∈ AP , M, [di, dj]
 p iff p ∈ V([di, dj]);
– M, [di, dj]
 ¬ψ iff M, [di, dj] 6
 ψ;
– M, [di, dj]
 ψ1 ∨ ψ2 iff M, [di, dj]
 ψ1 or M, [di, dj]
 ψ2;
– M, [di, dj]
 〈A〉ψ iff ∃dk ∈ D such that dk > dj and M, [dj , dk]
 ψ;
– M, [di, dj]
 〈A〉ψ iff ∃dk ∈ D such that dk < di and M, [dk, di]
 ψ.

We place ourselves in the most general (and difficult) setting where there
are not constraints on the valuation function. As an example, given an interval
[di, dj], it may happen that p ∈ V([di, dj]) and p 6∈ V([d′i, d

′
j]) for all intervals

[d′i, d
′
j] (strictly) contained in [di, dj].

4

3 Labeled Interval Structures and Satisfiability

In this section we introduce some preliminary notions and we establish some
basic results on which our tableau method for PNL relies (an intuitive account
of them can be found in [2]).

Let ϕ be a PNL formula to be checked for satisfiability and let AP be the
set of its propositional letters.

Definition 1. The closure CL(ϕ) of ϕ is the set of all subformulae of 〈A〉ϕ and
of their negations (we identify ¬¬ψ with ψ).

As it will become clear later, we put the formula 〈A〉ϕ and its negation in CL(ϕ)
to avoid that the removal process could delete all intervals over which ϕ holds.

Definition 2. The set of temporal formulae of ϕ is the set TF(ϕ) = {ζ ∈
CL(ϕ) : ζ = 〈A〉ψ or ζ = [A]ψ or ζ = 〈A〉ψ or ζ = [A]ψ}.

By induction on the structure of ϕ, we can easily prove that, for every formula
ϕ, |CL(ϕ)| is less than or equal to 2 · (|ϕ| + 1), while |TF(ϕ)| is less than or
equal to 2 · |ϕ|. We are now ready to introduce the notion of ϕ-atom.

Definition 3. A ϕ-atom is a set A ⊆ CL(ϕ) such that:

– for every ψ ∈ CL(ϕ), ψ ∈ A iff ¬ψ 6∈ A;
– for every ψ1 ∨ ψ2 ∈ CL(ϕ), ψ1 ∨ ψ2 ∈ A iff ψ1 ∈ A or ψ2 ∈ A.

We denote the set of all ϕ-atoms by Aϕ. We have that |Aϕ| ≤ 2|ϕ|+1. Atoms are
connected by the following binary relation.

Definition 4. Let LRϕ be a relation such that for every pair of atoms A1, A2 ∈
Aϕ, A1 LRϕ A2 if and only if (i) for every [A]ψ ∈ CL(ϕ), if [A]ψ ∈ A1 then
ψ ∈ A2 and (ii) for every [A]ψ ∈ CL(ϕ), if [A]ψ ∈ A2 then ψ ∈ A1.

We now introduce a suitable labeling of interval structures based on ϕ-atoms.

Definition 5. A ϕ-labeled interval structure (LIS for short) is a pair L =
〈〈D, I(D)−〉,L〉, where 〈D, I(D)−〉 is an interval structure and L : I(D)− →
Aϕ is a labeling function such that, for every pair of neighboring intervals
[di, dj], [dj , dk] ∈ I(D)−, L([di, dj]) LRϕ L([dj , dk]).

If we interpret the labeling function as a valuation function, LISs represent
candidate models for ϕ. The truth of formulae devoid of temporal operators and
that of [A]/[A] formulae indeed follow from the definition of ϕ-atom and LRϕ,
respectively. However, to obtain a model for ϕ, we must also guarantee the truth
of 〈A〉/〈A〉 formulae. To this end, we introduce the notion of fulfilling LIS.

Definition 6. A ϕ-labeled interval structure L = 〈〈D, I(D)−〉,L〉 is fulfilling if
and only if (i) for every temporal formula 〈A〉ψ ∈ TF(ϕ) and every interval
[di, dj] ∈ I(D)−, if 〈A〉ψ ∈ L([di, dj]), then there exists dk > dj such that ψ ∈
L([dj , dk]) and (ii) for every temporal formula 〈A〉ψ ∈ TF(ϕ) and every interval
[di, dj] ∈ I(D)−, if 〈A〉ψ ∈ L([di, dj]), then there exists dk < di such that ψ ∈
L([dk, di]).

5

The next theorem proves that for any given formula ϕ, the satisfiability of ϕ
is equivalent to the existence of a fulfilling LIS with an interval labeled by ϕ.

Theorem 1. A formula ϕ is satisfiable if and only if there exists a fulfilling LIS
L = 〈〈D, I(D)−〉,L〉 with ϕ ∈ L([di, dj]) for some [di, dj] ∈ I(D)−.

The implication from left to right is straightforward; the opposite implication is
proved by induction on the structure of the formula.

From now on, we say that a fulfilling LIS L = 〈〈D, I(D)−〉,L〉 satisfies ϕ
if and only if there exists an interval [di, dj] ∈ I(D)− such that ϕ ∈ L([di, dj]).
Since (the domain of) fulfilling LISs satisfying ϕ may be arbitrarily large or even
infinite, we must find a way to finitely establish their existence. In the following,
we first give a bound on the size of finite fulfilling LISs that must be checked
for satisfiability, when searching for finite ϕ-models; then, we show that we can
restrict ourselves to infinite fulfilling LISs with a finite bounded representation,
when searching for infinite ϕ-models.

Definition 7. Given a LIS L = 〈〈D, I(D)−〉,L〉 and a point d ∈ D, we define the
set of future temporal requests of d as the set REQL

f (d) = {〈A〉ξ, [A]ξ ∈ TF(ϕ) :
∃d′ ∈ D(〈A〉ξ, [A]ξ ∈ L([d′, d]))} and the set of past temporal requests of d as
the set REQL

p (d) = {〈A〉ξ, [A]ξ ∈ TF(ϕ) : ∃d′ ∈ D(〈A〉ξ, [A]ξ ∈ L([d, d′]))}. The
set of temporal requests of d is defined as REQL(d) = REQL

p (d) ∪ REQL
f (d).

We denote by REQϕ the set of all possible sets of requests. It is not difficult

to show that |REQϕ | is equal to 2
|TF(ϕ)|

2 .

Definition 8. Given a LIS L = 〈〈D, I(D)−〉,L〉, D′ ⊆ D, and R ∈ REQϕ, we
say that R occurs n times in D′ if and only if there exist exactly n distinct points
di1 , . . . , din ∈ D′ such that REQL(dij) = R, for all 1 ≤ j ≤ n.

We describe now the process of removing a point from a LIS. Given L =
〈〈D, I(D)−〉,L〉 and d ∈ D, let L−d be the set of all LIS L′ = 〈〈D′, I(D′)−〉,L′〉
such that D′ = D \{d} and REQL′(d) = REQL(d), for all d ∈ D \{d}. L and L′

do not necessarily agree on the labeling of intervals, but they agree on the sets
of requests of points.

Given a fulfilling LIS L and a point d, it is not guaranteed that L−d contains
a fulfilling LIS. The removal of d indeed causes the removal of all intervals either
beginning or ending at it and thus there can be a point d < d (resp., d > d) such
that there exists a formula 〈A〉ψ ∈ REQL

f (d) (resp., 〈A〉ψ ∈ REQL
p (d)) which is

fulfilled in L, but not in any L′ ∈ L−d. The following lemma provides a sufficient
condition for preserving the fulfilling property when removing a point from L.

Lemma 1. Let L = 〈〈D, I(D)−〉,L〉 be a fulfilling LIS, f be the number of 〈A〉-
formulae in TF(ϕ), and p be the number of 〈A〉-formulae in TF(ϕ). If there exists
a point de ∈ D such that (i) there exist at least f · p + p distinct points d < de
such that REQL(d) = REQL(de) and (ii) there exist at least f · p + f distinct
points d > de such that REQL(d) = REQL(de), then there is one fulfilling LIS
̂L ∈ L−de .

6

Proof. Let L = 〈〈D, I(D)−〉,L〉 be a fulfilling LIS and let de ∈ D be a point such
that there exist at least f · p + p distinct points d < de such that REQL(d) =
REQL(de) and at least f · p + f distinct points d > de such that REQL(d) =
REQL(de). We define D′ = 〈D \ {de}, <〉 and L′ = L|I(D′)− (the restriction of
L to the intervals on D′). The pair L′ = 〈〈D′, I(D′)−〉,L′〉 is obviously a LIS in
L−de , but, as already pointed out, it is not necessarily a fulfilling one. We show
how the defects possibly caused by the removal of de can be fixed one-by-one by
properly redefining L′.

Consider the case of a point d < de and a formula 〈A〉ψ ∈ REQL
f (d) such

that ψ ∈ L([d, de]) and there are no d ∈ D \ {de} such that ψ ∈ L′([d, d])
(the symmetric case of d > de and 〈A〉ψ ∈ REQL

p (d) can be dealt with in the
same way). Let R = {dr ∈ D : dr > de ∧ REQL(dr) = REQL(de)}. To satisfy
the request 〈A〉ψ ∈ REQL(d) we change the labeling of an interval [d, dr], for
a suitable dr ∈ R. However, to avoid that such a change makes one or more
requests in REQL

p (dr) no more satisfied, we preliminarily redefine the labeling
L′. First, we take a minimal set of points P de ⊆ D \ {de} such that, for every
〈A〉ψ ∈ REQL

p (de) there exists a point di ∈ P de such that ψ ∈ L([di, de]). We
call P de the set of preserved past points for de. Then, for every point di ∈ P de , let
F di ⊆ D\{de} be a minimal set of points such that, for every 〈A〉ψ ∈ REQL

f (di)
there is a point df ∈ F di such that ψ ∈ L([di, df]). We call F di the set of
preserved future points for di.

Let G be the set of points R \
⋃

di∈Pde F
di . By the minimality requirements,

|P de | is bounded by p and |F di |, for each di ∈ P de , is bounded by f . Hence,
|
⋃

di∈Pde F
di | ≤ f · p and, by Condition (ii), |G| is greater than or equal to f .

Now, we can use points in G to fulfill 〈A〉ψ ∈ REQL
f (d), without generating new

defects, as follows. Since REQL
f (d) contains at most f 〈A〉-formulae, there exists

at least one point dg ∈ G such that the atom L′([d, dg]) either fulfills no 〈A〉-
formulae or it fulfills only 〈A〉-formulae which are also fulfilled by an ϕ-atom
L′([d, dk]) for some dk. Let dg one of such “useless” points. We can redefine
L′([d, dg]) by putting L′([d, dg]) = L([d, de]), thus fixing the problem for 〈A〉ψ ∈
REQL

f (d). Since REQL(dg) = REQL(de), such a change has no impact on the
right neighboring intervals of [d, dg]. On the contrary, there may exist one or more
〈A〉-formulae in REQL

p (dg) which, due to the change in the labeling of [d, dg],
are not satisfied anymore. In such a case, however, we can recover satisfiability,
without introducing any new defect, by putting L′([di, dg]) = L([di, de]) for all
di ∈ P de .

In the same way, we can fix all possible other defects caused by the removal
of de. Let ̂L = 〈〈D′, I(D′)〉, ̂L〉 be the resulting LIS. It is immediate to show that
̂L is fulfilling and it belongs to L−de . ut

By taking advantage of Lemma 1, we can prove the following theorem.

Theorem 2. Let L = 〈〈D, I(D)−〉,L〉 be a finite fulfilling LIS that satisfies ϕ, f
be the number of 〈A〉-formulae in TF(ϕ), and p be the number of 〈A〉-formulae in
TF(ϕ). Then, there exists a finite fulfilling LIS ̂L = 〈〈̂D, I(̂D)−〉, ̂L〉 that satisfies

7

ϕ such that, for every ̂di ∈ ̂D, REQL̂(̂di) occurs at most m = 2fp+ f + p times
in ̂D.

Proof. Let L = 〈〈D, I(D)−〉,L〉 be a finite fulfilling LIS that satisfies ϕ. If for
every dj ∈ D, REQL(dj) occurs at most m times in D, we are done. If this is
not the case, we show how to build a fulfilling LIS with the requested property
by progressively removing exceeding points from D.

Let L0 = L and let R0 = {REQ1,REQ2, . . . ,REQk} be the (arbitrarily
ordered) finite set of all and only the sets of requests that occur more than
m times in D. L0 can be turned into a fulfilling LIS L1 = 〈〈D1, I(D1)−〉,L1〉
satisfying ϕ, which contains exactly m points d ∈ D1 such that REQL1(d) =
REQ1 as follows. Since REQ1 occurs more that m times in D, there exists a point
de ∈ D such that REQL0(de) = REQ1 and there exist at least fp + p distinct
points d < de such that REQL0(d) = REQL0(de) and at least fp + f distinct
points d > de such that REQL0(d) = REQL0(de). Hence, by Lemma 1, there
exists a fulfilling LIS L′ ∈ L−de . We repeat the application of Lemma 1 until we
get a fulfilling LIS L1 such that REQ1 occurs exactly m times in D1. It remains
to show that L1 satisfies ϕ. Since L0 satisfies ϕ, we have that there exists an
interval [di, dj] such that ϕ ∈ L0([di, dj]). By definition of CL(ϕ), 〈A〉ϕ ∈ CL(ϕ),
hence 〈A〉ϕ ∈ REQL0(di). In L1 two cases are possible: either di ∈ D1 or it does
not. If di ∈ D1, then 〈A〉ϕ ∈ REQL1(di) and, being L1 fulfilling, there exists an
interval [di, dk] such that ϕ ∈ L1([di, dk]). If di 6∈ D1, then it has been deleted
at some stage of the construction of L1. This implies that REQL1(di) = REQ1

and thus there exist m points d in L1 such that REQL1(d) = REQL1(di). Since
L1 is fulfilling, there exists an interval [d, d′] such that ϕ ∈ L1([d, d′]). In both
cases L1 satisfies ϕ.

By iterating such a transformation k−1 times, we can turn L1 into a fulfilling
LIS devoid of exceeding points that satisfies ϕ. ut

Let us consider now the case of infinite (fulfilling) LISs. We start with a
classification of points belonging the domain of the structure.

Definition 9. Given an infinite LIS L = 〈〈D, I(D)−〉,L〉, we partition the points
in D into the following sets:

– Fin(L) is the set of all points d ∈ D such that REQL(d) occurs finitely many
times in D;

– Infl(L) is the set of all points d ∈ D such that REQL(d) occurs infinitely
many times in D, but there exists a point dmax such that, for all d′ > dmax,
REQL(d′) 6= REQL(d);

– Infr(L) is the set of all points d ∈ D such that REQL(d) occurs infinitely
many times in D, but there exists a point dmin such that, for all d′ < dmin,
REQL(d′) 6= REQL(d);

– Inf(L) is the set of all points d ∈ D such that REQL(d) occurs infinitely
many times in D and, for every point d′, there exists d′′ < d′ such that
REQL(d′′) = REQL(d) and there exists d′′′ > d′ such that REQL(d′′′) =
REQL(d).

8

The following definition captures a particular subclass of infinite LISs that
enjoy a finite representation.

Definition 10. An infinite LIS L = 〈〈D, I(D)−〉,L〉 is ultimately periodic, with
left period l, infix i and right period r, if and only if there exists d0 ∈ D such
that for all k < 0, REQL(dk) = REQL(dk−l) and for all k ≥ 0, REQL(di+k) =
REQL(di+k+r).

The following theorem proves that if there exists an infinite fulfilling LIS
that satisfies ϕ, then there exists also an ultimately periodic fulfilling LIS that
satisfies it. Furthermore, it provides a bound to the left period, infix, and right
period of such a fulfilling LIS which closely resembles the one that we established
for finite ones.

Theorem 3. Let L = 〈〈D, I(D)−〉,L〉 be an infinite fulfilling LIS that satisfies
ϕ, f be the number of 〈A〉-formulae in TF(ϕ), and p be the number of 〈A〉-
formulae in TF(ϕ). Then, there exists an ultimately periodic fulfilling LIS ̂L =
〈〈̂D, I(̂D)−〉, ̂L〉, with left period l, infix i and right period r, such that

1. for every dj ∈ Fin(̂L), REQL̂(dj) occurs at most m = 2fp+ f + p times in
D;

2. for every dj ∈ Infr(̂L), REQL̂(dj) occurs exactly fp + p times in I, where
I is the set of points in the infix part of ̂L;

3. for every dj ∈ Infl(̂L), REQL̂(dj) occurs exactly fp+ f times in I;

4. for all points dj ∈ Inf(̂L), dj 6∈ I;
5. r ≤ |REQϕ | and l ≤ |REQϕ |;

6. for every dj ∈ Fin(L) and every formula 〈A〉ψ ∈ REQL̂
f (dj), there exists a

point dh ≤ di+(f ·p+f)·r such that ψ ∈ ̂L([dj , dh]);

7. for every dj ∈ Fin(L) and every formula 〈A〉ψ ∈ REQL̂(dj), there exists a
point dh ≥ d−(f ·p+p)·l such that ψ ∈ ̂L([dh, dj])

that satisfies ϕ.

Proof. Let ϕ be a satisfiable formula and let L = 〈〈D, I(D)−〉,L〉 be an infinite
fulfilling LIS that satisfies ϕ. By exploiting Lemma 1, we briefly show how to
build a fulfilling LIS ̂L which respects Conditions 1–7.

1. Let d0 be the smallest point in Fin(L) ∪ Infr(L) and di−1 be the greatest
point in Fin(L) ∪ Infl(L). The set I = {d0, . . . , di−1} will be the infix of
̂L. By repeatedly applying Lemma 1 we can remove from the infix all points
d ∈ Fin(L) such that REQL(d) occurs more that m times in D.

2. Suppose that there exists a point dj ∈ Infr(L) such that REQL(dj) does
not occurs fp+ p times in I: two cases may arise. If REQL(dj) occurs more
than fp + p times in I, we can exploit Lemma 1 to remove the exceeding
occurrences of REQL(dj). If REQL(dj) occurs less than fp+p times in I, let

9

dk > di−1 be the point such that REQL(dk) = REQL(dj) and REQL(dk) oc-
curs exactly fp+p times in {d0, . . . , di−1, . . . , dk}. I = {d0, . . . , di−1, . . . , dk}
becomes the new infix of the ultimately periodic LIS. We repeat such a pro-
cedure until REQL(d) occurs exactly fp+ p times in I, for all d ∈ Infr(L).

3. Suppose that there exists a point dj ∈ Infl(L) such that REQL(dj) does
not occurs fp+ f times in I. We proceed as in the previous case, either by
removing the exceeding occurrences of REQL(dj) or by extending the infix
to the left if REQL(dj) occurs less than fp+ f times in I.

4. Suppose now that there exists a point dj ∈ Inf(L) such that dj ∈ I.
By the definition of Inf(L), there are infinitely many points d < dj such
that REQL(d) = REQL(dj) and infinitely many points d > dj such that
REQL(d) = REQL(dj). Hence, by exploiting Lemma 1, we can obtain a
fulfilling LIS satisfying ϕ where dj is removed.

5. Let I = {d0, . . . , di−1} be the infix of L and suppose that it respects Condi-
tions 1–4. To turn L into an ultimately periodic LIS respecting Condition 5,
we must show how to define the right and left period. Consider the set R =
{REQL(d) : d ∈ Inf(L) ∪ Infr(L)} and let R = {REQ0, . . . ,REQr−1} be
an arbitrary enumeration of it. The cardinality r ofR will be the right period
of ̂L. We inductively define ̂L in such a way that, for all k ≥ 0, REQL̂(̂di+k) =
REQk mod r. Let k = 0, and consider REQL(di): if REQL(di) = REQ0, we are
done. Otherwise, let dh > di be the first occurrence of REQ0 after di. Since
L respects Conditions 1–4, we have that, for every point di ≤ d′ < dh, there
exist sufficiently many points d′′ < di such that REQL(d′′) = REQL(d′).
Hence, by Lemma 1, there exists a LIS L0 where all points di ≤ d′ < dh
have been removed. Thus, L0 is such that REQL0(di) = REQL(dh) = REQ0.
Now, let k > 0 and suppose that Lk−1 = 〈〈Dk−1, I(Dk−1)〉,Lk−1〉 respect the
condition for all h < k. We can proceed as in the case of k = 0 and define a
LIS Lk = 〈〈Dk, I(Dk)〉,Lk〉 such that REQLk(di+k) = REQk mod r.
The left period of ̂L can be defined in an analogous way starting from an
arbitrary enumeration of the set L = {REQL(d) : d ∈ Inf(L) ∪ Infl(L)}.

6. Suppose that L respects Conditions 1-5. Let dj ∈ Fin(L) and 〈A〉ψ ∈
REQL(dj) be a formula that is fulfilled only by intervals [dj , dh] such that
dh > di+f(p+1)r. Since L respects Condition 2, for every point d′ such that
di ≤ d′ < dh we have that there exist at least fp + p points d′′ < di
with REQL(d′′) = REQL(d′). Hence, we can exploit Lemma 1 to remove
points between di and dh, thus building a fulfilling LIS ̂L that satisfies ϕ
and such that 〈A〉ψ ∈ REQL(dj) is fulfilled by an interval [dj , dh] with
dh ≤ di+(fp+f)r.

7. To build a fulfilling LIS ̂L that respects Condition 7, we suppose that L
respects Conditions 1-5, and we proceed with a removal procedure analogous
to the one for the previous case. ut

10

4 A tableau-based decision procedure for PNL

In this section we define a tableau method for PNL over the integers (or a subset
of them). We begin with some basic definitions.

Given a formula ϕ, let m = 2fp + f + p, where f (resp. p) is the number
of 〈A〉-formulae (resp. 〈A〉-formulae) in CL(ϕ). A tableau for PNL is a special
decorated tree T . For each node n in a branch B, the decoration ν(n) is a tuple
〈[di, dj], An,REQn,Dn, x〉, where:

– [di, dj] ∈ I(Dn)−;
– REQn : Dn 7→ REQϕ is a request function;
– Dn = 〈Dn, <〉 is a finite linear order;
– An ∈ Aϕ is such that: (i) for all [A]ψ ∈ REQn(di), ψ ∈ An, (ii) for all

[A]ψ ∈ REQn(dj), ψ ∈ An, (iii) for all ψ ∈ An, if ψ = 〈A〉ξ or ψ = [A]ξ,
then ψ ∈ REQn(di), and (iv) for all ψ ∈ An, if ψ = 〈A〉ξ or ψ = [A]ξ, then
ψ ∈ REQn(dj);

– x ∈ {R,L, F}, where R, L, and F respectively stand for right blocked, left
blocked, and free.

The root r of the tree is decorated by the empty decoration 〈∅, ∅, ∅, ∅, F 〉.
Given a node n ∈ B, decorated with 〈[di, dj], An,REQn,Dn, x〉, and a future

existential formula 〈A〉ψ ∈ An, we say that 〈A〉ψ ∈ An is fulfilled on B if and
only if there exists a node n′ ∈ B such that ν(n′) = 〈[dj , dk], An′ ,REQn′ ,Dn′ , x〉
and ψ ∈ An′ . Conversely, we say that a past existential formula 〈A〉ψ ∈ An
is fulfilled on B if and only if there exists a node n′ ∈ B such that ν(n′) =
〈[dk, di], An′ ,REQn′ ,Dn′ , x〉 and ψ ∈ An′ . A node n is said to be active on B if
and only if An contains at least one (future or past) existential formula which is
not fulfilled on B.

Expansion rules. Let B a branch of a decorated tree T . We denote by DB and
REQB the linear order and the request function of the decoration of the last
node in B, respectively. Moreover, let dl and dr be the minimum and maximum
element of DB , respectively. The expansion rules for B are:

1. Right step rule: if there exists an active node n ∈ B, with ν(n) = 〈[di, dj], An,
REQn,Dn, x〉 and a non-fulfilled future existential formula in An, then ex-
tend DB to D′ = DB ∪{dr+1}, with dr+1 > dr. Then, take an atom A′ such
that An LRϕ A′ and extend REQB to REQ′ : D′ 7→ REQϕ in such a way
that for all [A]ψ ∈ REQ′(dr+1), ψ ∈ A′ and for all ψ ∈ A′, if ψ = 〈A〉ξ or
ψ = [A]ξ, then ψ ∈ REQ′(dr+1). Finally, add an immediate successor n′ to
the last node in B decorated as follows:

– if the number p of points d ∈ D′ with REQ′(d) = REQ′(dr+1) is less
than or equal to m, then ν(n′) = 〈[dj , dr+1], A′,REQ′,D′, F 〉;

– otherwise (p = m+ 1), ν(n′) = 〈[dj , dr+1], A′,REQ′,D′, R〉.

2. Left step rule: if there exists an active node n ∈ B, with ν(n) = 〈[di, dj], An,
REQn,Dn, x〉 and a non-fulfilled past existential formula in An, then extend

11

DB to D′ = DB ∪ {dl−1}, with dl−1 < dl. Then, take an atom A′ such that
A′ LRϕ An and extend REQB to REQ′ : D′ 7→ REQϕ in such a way that for
all [A]ψ ∈ REQ′(dl−1), ψ ∈ A′ and for all ψ ∈ A′, if ψ = 〈A〉ξ or ψ = [A]ξ,
then ψ ∈ REQ′(dl−1). Finally, add an immediate successor n′ to the last
node in B decorated as follows:

– if the number p of points d ∈ D′ with REQ′(d) = REQ′(dl−1) is less
than or equal to m, then ν(n′) = 〈[dl−1, di], A′,REQ′,D′, F 〉;

– otherwise (p = m+ 1), ν(n′) = 〈[dl−1, di], A′,REQ′,D′, L〉.

3. Fill-in rule: if there exist two points di < dj such that there are no nodes in B
decorated with the interval [di, dj] and there exists a decoration 〈[di, dj], A′,
REQB ,DB , F 〉, then expand B by adding an immediate successor n′, with
such a decoration, to the last node in B.

All rules expand the branch B with a new node. However, while the left and
right step rules add a new point d to DB and decorate the new node with a new
interval beginning or ending at d, the fill-in rule decorates it with a new interval
whose endpoints already belong to DB .

Expansion strategy. Given a decorated tree T and a branchB, we say that B is
right-blocked if there exists a node n decorated with 〈[di, dj], An,REQn,Dn, R〉,
while it is left-blocked if there exists a node n decorated with 〈[di, dj], An,REQn,
Dn, L〉. A branch is blocked if it is both left and right blocked.

An expansion rule is applicable on B if B is non-blocked and the application
of the rule generates a new node. The branch expansion strategy for a branch B
is the following one:

1. if the fill-in rule is applicable, apply the fill-in rule to B and, for every possible
choice for the decoration, add an immediate successor to the last node in B;

2. if the fill-in rule is not applicable and there exist two points di < dj ∈ DB

such that there are no nodes in B decorated with [di, dj], close the branch;
3. if B is not right-blocked and the right-step rule is applicable, then apply it

to B and, for every possible choice for the decoration, add an immediate
successor to the last node in B;

4. if B is not left-blocked and the left-step rule is applicable, then apply it to B
and, for every possible choice for the decoration, add an immediate successor
to the last node in B.

Tableau. Let ϕ be the formula to be checked for satisfiability and let
〈[d0, d1], A1,REQ1, {d0, d1}, F 〉, . . . , 〈[d0, d1], Ak,REQk, {d0, d1}, F 〉 be the set of
decorations with 〈A〉ϕ ∈ REQi(d0). The initial tableau for ϕ consists of the
root, with the empty decoration, and k immediate successors n1, . . . nk. For each
1 ≤ i ≤ k, ni is decorated by 〈[d0, d1], Ai,REQi, {d0, d1}, F 〉. A tableau for ϕ is
any decorated tree T obtained by expanding the initial tableau for ϕ through
successive applications of the branch-expansion strategy to existing branches,
until the branch-expansion strategy cannot be applied anymore.

12

Fulfilling branches. Given a branch B of a tableau T for ϕ, we say that B is a
fulfilling branch if and only if B is not closed and one of the following conditions
holds:

1. B does not contain active nodes (finite model case);
2. B is right blocked and there exists at least one formula 〈A〉ψ not fulfilled in
B (right unbounded model case). Moreover, let dr be the greatest point in
DB . By the blocking condition, REQB(dr) is repeated m + 1 times in DB .
Let dk be the greatest point in DB , with dk < dr, such that REQB(dk) =
REQB(dr). The set {dk+1, . . . , dr}, called fulfilling right period, satisfies the
following conditions:

(a) for all di, dj ∈ {dk+1, . . . , dr}, there exists an atom Aij such that (i) for
all [A]ψ ∈ REQB(di), ψ ∈ Aij , and (ii) for all [A]ψ ∈ REQB(dj),
ψ ∈ Aij ;

(b) for all di ∈ {dk+1, . . . , dr} and 〈A〉ψ ∈ REQB(di), there exist a point
dj ∈ {dk+1, . . . , dr} and an atom Aij such that (i) ψ ∈ Aij , (ii) for all
[A]ξ ∈ REQB(di), ξ ∈ Aij , and (iii) for all [A]ξ ∈ REQB(dj), ξ ∈ Aij ;

(c) for all di ≤ dk such that REQB(di) does not occur in the right period,
all 〈A〉-formulae in REQB(di) are fulfilled in B.

3. B is left blocked and there exists at least one formula 〈A〉ψ not fulfilled in
B (left unbounded model case). Moreover, let dl be the smallest point in
DB . By the blocking condition, REQB(dl) is repeated m + 1 times in DB .
Let dk be the smallest point in DB , with dk > dl, such that REQB(dk) =
REQB(dl). The set {dl, . . . , dk−1}, called fulfilling left period, satisfies the
following conditions:

(a) for all di, dj ∈ {dl, . . . , dk−1}, there exists an atom Aij such that (i) for
all [A]ψ ∈ REQB(di), ψ ∈ Aij , and (ii) for all [A]ψ ∈ REQB(dj),
ψ ∈ Aij ;

(b) for all di ∈ {dl, . . . , dk−1} and 〈A〉ψ ∈ REQB(di), there exists a point
dj ∈ {dl, . . . , dk−1} and an atom Aji such that (i) ψ ∈ Aji, (ii) for all
[A]ξ ∈ REQB(dj), ξ ∈ Aji, and (iii) for all [A]ξ ∈ REQB(di), ξ ∈ Aji;

(c) for all di ≥ dk such that REQB(di) does not occur in the left period, all
〈A〉-formulae in REQB(di) are fulfilled in B.

4. if B is both right and left blocked, Conditions 2. and 3. must hold.

The decision procedure works as follows: given a formula ϕ, it constructs a
tableau T for ϕ and it returns “satisfiable” if and only if there exists at least
one fulfilling branch in T .

4.1 Soundness and completeness

Soundness and completeness of the proposed method can be proved as follows.
Soundness is proved by showing how to construct a fulfilling LIS satisfying ϕ
from a fulfilling branch B in a tableau T for ϕ (by Theorem 1, it follows that ϕ

13

has a model). The proof must encompass both the case of non-blocked branches
(finite case) and of blocked ones (infinite case). Proving completeness consists in
showing that for any satisfiable formula ϕ, there exists a fulfilling branch B in
any tableau T for ϕ. Given a model for ϕ and the corresponding fulfilling LIS
L, we prove the existence of a fulfilling branch in T by exploiting Theorems 2
and 3.

Theorem 4. Given a formula ϕ and a tableau T for ϕ, if there exists a fulfilling
branch in T , then ϕ is satisfiable.

Proof. Let T be a tableau for ϕ and B a fulfilling branch in T . We show that,
starting from B, we can build up a fulfilling LIS L satisfying ϕ. We first consider
the LIS LB = 〈〈DB , I(DB)−〉,LB〉, where LB is such that, for every [di, dj] ∈
I(DB)−, LB([di, dj]) = An, with n being the unique node in B decorated with
〈[di, dj], An,REQn,Dn, x〉. Given the expansion rules of the tableau, we have
that LB is a LIS, but it is not necessarily fulfilling. Four cases may arise.

B does not contains active nodes (finite model case). In this case, all 〈A〉 and
〈A〉-formulae that occur in B are fulfilled in B and thus in LB . By the definition
of initial tableau we have that 〈A〉ϕ ∈ REQB(d0). Hence, ϕ is satisfied in LB .

B is right blocked and it contains at least one non-fulfilled 〈A〉 formula, while
all 〈A〉-formulae are fulfilled in B (right-unbounded model case). In this case, we
extend LB to a right unbounded LIS L′ where all 〈A〉-formulae are fulfilled.
Let dr be the greatest point of DB and dk be the greatest point in DB such
that dk < dr and REQB(dk) = REQB(dr). We extend DB to D′ by putting an
infinite sequence of point dr+1, dr+2, . . . after dr and we build the right-periodic
LIS L′ = 〈〈D′, I(D′)−〉,L′〉 as follows:

– for all intervals [d, d′] ∈ I(DB)−, L′([d, d′]) = LB([d, d′]);
– for all points dr+h > dr, we put REQL′(dr+h) = REQLB (dk+(h mod(r−k)));

– for every point dr+h > dr, we fulfill the 〈A〉-formulae in REQL′(dr+h) as
follows. First, for every di < dk such that REQL′(di) does not occur in
the period, we put L′([di, dr+h]) = LB([di, dk+(h mod(r−k))). Then, for every
formula 〈A〉ψ ∈ REQL′(dr+h) which has not been fulfilled yet, we consider
the point dk+(h mod(r−k)). Since in B all 〈A〉-formulae are fulfilled, there exists
an interval [d, dk+(h mod(r−k))] such that ψ ∈ LB([d, dk+(h mod(r−k))]). Two may
cases arise. Either REQL′(d) occurs in the period or it does not. If REQL′(d)
does not occur in the period, then L′([d, dr+h]) = LB([d, dk+(h mod(r−k))]) and
〈A〉ψ ∈ REQL′(dr+h) is already fulfilled. If REQL′(d) occurs in the period,
we take the greatest point d′ < dr+h such that REQL′(d′) = REQL′(d)
and the labeling of the interval [d′, dr+h] has not been defined yet, and we
put L′([d′, dr+h]) = LB([d, dk+(h mod(r−k))]). By making such a choice for d′,
we guarantee that there always exist infinitely many points d′′ > d with the
same set of requests of dr+h such that the labeling of [d, d′′] is still undefined;

14

– for every point d ∈ D′ and every 〈A〉ψ ∈ REQL′(d) which has not been
fulfilled yet, proceed as follows. By Condition 2.(c) of the definition of ful-
filling branch, there exists a point dk+1 ≤ di ≤ dr such that REQB(d) =
REQB(di). Hence, by Condition 2.(b), there exist a point dj ∈ {dk+1, . . . , dr}
and an atom Aij such that ψ ∈ Aij , for all [A]ξ ∈ REQB(di), ξ ∈ Aij , and for
all [A]ξ ∈ REQB(dj), ξ ∈ Aij . By the definition of L′, we have that there ex-
ist infinitely many points dn ≥ dr in D′ such that REQL′(dn) = REQB(dj).
We can take one of such points dn such that L([d, dn]) has not been defined
yet and put L([d, dn]) = Aij ;

– once we have fulfilled all diamond formulae in REQL′(d), for all d ∈ D′, we
define the labeling of the remaining intervals [d, d′], where d′ > dr. Since B
is fulfilling, we can always define L′([d, d′]) by exploiting Condition 2.(b) for
fulfilling branches.

B is left blocked and it contains at least one non-fulfilled 〈A〉 formula, while
all 〈A〉-formulae are fulfilled in B (left-unbounded model case). In this case we
proceed as in the right-unbounded model case to extend LB to a left unbounded
LIS where all 〈A〉-formulae are fulfilled.

B is left and right blocked and it contains both 〈A〉 and 〈A〉 non-fulfilled
formulae (unbounded model case). We apply the construction for the right un-
bounded model case and that for the left unbounded model case to build an
unbounded LIS where all diamond formulae are fulfilled. ut

Theorem 5. Given a satisfiable formula ϕ, there exists a fulfilling branch in
every tableau T for ϕ.

Proof. Let ϕ be a satisfiable formula and let L = 〈〈D, I(D)−〉,L〉 be a fulfilling
LIS satisfying ϕ, whose existence is guaranteed by Theorem 1. Without loss
of generality, we may assume that L respects the constraints of Theorem 2,
if it is finite, and of Theorem 3, if it is infinite. Furthermore, we assume that
〈A〉ϕ ∈ REQL(d0). Given a linear order D′ ⊆ D, we denote with REQL |D′
the restriction of REQL to the intervals in I(D′)−. We prove that there exists
a fulfilling branch B in T which corresponds to L. To this end, we prove the
following property: there exists a non-closed branch B such that, for every node
n ∈ B, if n is decorated with 〈[dj , dk], An,REQn,Dn, x〉, then An = L([dj , dk])
and REQn = REQL |Dn . The proof is by induction on the height h(T) of T .

If h(T) = 1, then T is the initial tableau for ϕ and, by construction, it
contains a branch B0 = 〈∅, ∅〉 · 〈[d0, d1], An,REQn,Dn, F 〉, with An = L([d0, d1])
and REQn = REQL |{0,1}.

Let h(T) = i + 1. By the inductive hypothesis, there exists a branch Bi
of length i that satisfies the property. Let DBi = {d−h, . . . , d0, d1, . . . , dk}. We
distinguish three cases, depending on the expansion rule that has been applied
to Bi in the construction of T .

– The right-step rule has been applied.
Let n be the active node, decorated with 〈[dj , dl], An,REQn,Dn, x〉, which

15

the right-step rule has been applied to. By the inductive hypothesis, An =
L([dj , dl]) and REQn = REQL |Dn . Let D′ = {d−h, . . . , dk+1}. Since L is
a LIS, L([dj , dl]) LRϕ L([dl, dk+1]) and REQL |D′ is a possible extension of
REQn. Hence, there must exist in T a successor n′ of the last node of Bi
decorated with 〈[dl, dk+1],L([dl, dk+1]),REQL |D′ ,D′, x〉. Let Bi+1 = Bi · n′.
Since the step rule can be been applied only to non-closed branches (and it
does not close any branch), Bi+1 is non-closed.

– The left-step rule has been applied.
Let n be the active node, decorated with 〈[dj , dl], An,REQn,Dn, x〉, which
the left-step rule has been applied to. By proceeding as in the case of the
right-step rule, we can extend Bi to a non closed branch Bi+1 that respects
the property.

– The fill-in rule has been applied.
Let dj < dl be the points in DBi such that there are no nodes in Bi decorated
with [dj , dl]. By the inductive hypothesis (and by the definition of LIS), we
have that 〈[di, dj],L([dj , dl]),REQBi ,Dbi , F 〉 is a possible decoration. Hence,
there must exist in T a successor n′ of the last node of Bi decorated with
〈[di, dj],L([dj , dl]),REQBi ,Dbi , F 〉. Let Bi+1 = Bi · n′. As before, since the
fill-in rule can be applied only to non-closed branches (and it does not close
any branch), Bi+1 is not closed.

Now we show that B is the fulfilling branch we are searching for. Since B is
not closed, one of the following cases may arise.

– B is non-blocked and the expansion strategy cannot be applied anymore. Since
B is not closed, this means that there exist no active nodes in B, that is, for
every node n ∈ B and every formula 〈A〉ψ ∈ An (resp. 〈A〉ψ ∈ An), there
exists a node n′ fulfilling it. Hence, B is a fulfilling branch.

– B is right-blocked. This implies that REQB(dk) is repeated m + 1 times in
B. Since B is decorated coherently to L, by Theorem 2, we can assume L to
be infinite. Let dj < dk be the greatest point in DB such that REQB(dj) =
REQB(dk). We have that L is ultimately periodic, with right prefix r = k−j,
since (by Theorem 3) the only set of requests which has been repeated m+1
times in B is the one associated with the first point in the right period.
Furthermore, we have that there are exactly fp+ f repetitions of the right
period in B. This allows us to exploit the structural properties of L to prove
that B is fulfilling.
For every pair of points d, d′ ∈ {dj , . . . , dk}, we have that d, d′ ∈ Inf(L).
Hence, there exist infinitely many points d′′ in L such that REQB(d′′) =
REQB(d′) and d < d′′. Let d′′ be one of such points. We can choose the
atom A′′ = L([d, d′′]) to satisfy Condition 2.(a) of the definition of fulfilling
branch.
For every point d ∈ {dj , . . . , dk} and for every formula 〈A〉ψ ∈ REQB(d),
since L is fulfilling, there exists a point d′′ in D such that ψ ∈ L([d′, d′′]).
If d′′ ≤ dk, then 〈A〉ψ is fulfilled in B. Otherwise, there exists a point dm,
with di ≤ dm ≤ dk, such that REQB(d′′) = REQB(dm). Hence, the atom

16

A′ = L([d′, d′′]) can be chosen in order to satisfy Condition 2.(b) of the
definition of fulfilling branch.
For every point d ∈ D such that REQB(di) does not occur in the period,
we have that d ∈ Fin(L). Hence, by Theorem 3, we have that every formula
〈A〉ψ ∈ REQB(d) is fulfilled by an interval [d, d′] such that d′ ≤ di+(fp+f)r.
Since dk corresponds to the first point of the (fp + f + 1)-th occurrence of
the right period, we have that d′ < dk and hence 〈A〉ψ is fulfilled in B. This
shows that B respects Condition 2.(c) of the definition of fulfilling branch.

– The cases when B is left-blocked, or both right and left-blocked can be
proved as the case when B is a right-blocked branch. ut

4.2 Optimality of the proposed method

In this section we provide a precise characterization of the computational com-
plexity of the satisfiability problem for PNL.

As for the computational complexity of the proposed decision procedure,
observe that, by the blocking condition, after at most |REQϕ |·m+1 applications
of the step rules, the expansion strategy cannot be applied anymore to a branch.
Moreover, given a branch B, between two successive applications of the step
rules, the fill-in rule can be applied at most k times, being k the number of
points in DB (as a matter of fact, k is exactly the number of applications of the
step rules up to that point). Since m = 2fp + p ≤ 2 · |TF(ϕ)|2 + |TF(ϕ)|, we
have that m is polynomial in the length of ϕ, while |REQϕ | is exponential in
it. If |ϕ| = n, the length of any branch B of a tableau T for ϕ is bounded by
(

|REQϕ | · (2 · |TF(ϕ)|2 + |TF(ϕ)|)
)2 = 2O(n), that is, the length of a branch is

exponential in |ϕ|. This implies that the satisfiability problem for PNL can be
solved by a (nondeterministic) algorithm that guesses a fulfilling branch B for
the formula ϕ in nondeterministic exponential time.

To give a NEXPTIME lower bound to the complexity of the satisfiabil-
ity problem for PNL we can exploit the computational complexity results for
the future-only fragment of PNL [2]. NEXPTIME-hardness of RPNL is proved
by reducing the exponential tiling problem to the satisfiability problem for
RPNL. Since RPNL is a fragment of PNL, the reduction presented in [2] proves
NEXPTIME-hardness of PNL as well.

Theorem 6. The satisfiability problem for RPNL is NEXPTIME-complete.

5 Conclusions

In this paper, we focussed our attention on interval logics of temporal neighbor-
hood. We addressed the satisfiability problem for Propositional Neighborhood
Logic (PNL), interpreted over the integers (or a subset of them), and we showed
that it is NEXPTIME-complete. Moreover, we developed a sound and complete
tableau-based decision procedure for PNL and we proved its optimality. As for
possible extensions of the method, we are working on its generalization to the

17

whole class of linear orders as well as to other specific classes of temporal struc-
tures, such as dense ones.

References

1. D. Bresolin and A. Montanari. A tableau-based decision procedure for Right Propo-
sitional Neighborhood Logic. In Proc. of TABLEAUX 2005: 14th Conference on
Automated Reasoning with Analytic Tableaux and Related Methods, volume 3702
of LNAI, pages 63–77, Koblenz, Germany, September 2005. Springer.

2. D. Bresolin, A. Montanari, and G. Sciavicco. An optimal decision procedure for
Right Propositional Neighborhood Logic. Journal of Automated Reasoning, 2006.
DOI10.1007/s10817-006-9051-0.

3. Z. Chaochen and M. R. Hansen. An adequate first order interval logic. In W.P.
de Roever, H. Langmaak, and A. Pnueli, editors, Compositionality: the Significant
Difference, number 1536 in LNCS, pages 584–608. Springer, 1998.

4. V. Goranko, A. Montanari, and G. Sciavicco. Propositional interval neighborhood
temporal logics. Journal of Universal Computer Science, 9(9):1137–1167, 2003.

5. V. Goranko, A. Montanari, and G. Sciavicco. A road map of interval temporal
logics and duration calculi. Journal of Applied Non-Classical Logics, 14(1–2):9–54,
2004.

6. V. Goranko, A. Montanari, G. Sciavicco, and P. Sala. A general tableau method
for propositional interval temporal logics: theory and implementation. Journal of
Applied Logic, 4(3):305–330, 2006.

7. J. Halpern and Y. Shoham. A propositional modal logic of time intervals. Journal
of the ACM, 38(4):935–962, 1991.

8. K. Lodaya. Sharpening the undecidability of interval temporal logic. In Proc. of
6th Asian Computing Science Conference, volume 1961 of LNCS, pages 290–298.
Springer, 2000.

9. A. Montanari. Propositional interval temporal logics: some promising paths. In
Proc. of the 12th International Symposium on Temporal Representation and Rea-
soning (TIME), pages 201–203. IEEE Computer Society Press, 2005.

10. A. Montanari, G. Sciavicco, and N. Vitacolonna. Decidability of interval temporal
logics over split-frames via granularity. In Proc. of the 8th European Conf. on Logic
in Artificial Intelligence, volume 2424 of LNAI, pages 259–270. Springer, 2002.

11. B. Moszkowski. Reasoning about digital circuits. Tech. rep. stan-cs-83-970, Dept.
of Computer Science, Stanford University, Stanford, CA, 1983.

12. Y. Venema. A modal logic for chopping intervals. Journal of Logic and Computa-
tion, 1(4):453–476, 1991.

