
SoSyM manuscript No.
(will be inserted by the editor)

Metric Propositional Neighborhood Interval Logics on Natural Numbers

Bresolin, Davide · Della Monica, Dario · Montanari, Angelo · Goranko, Valentin ·
Sciavicco, Guido

Received: date / Accepted: date

Abstract Interval temporal logics formalize reasoning about
interval structures over linearly (or partially) ordered do-
mains, where time intervals are the primitive ontological en-
tities and truth of formulae is defined relative to time inter-
vals, rather than time points. In this paper, we introduce and
study Metric Propositional Neighborhood Logic (MPNL)
over natural numbers. MPNL features two modalities refer-
ring, respectively, to an interval that is “met by” the current
one and to an interval that “meets” the current one, plus an
infinite set of length constraints, regarded as atomic propo-
sitions, to constrain the lengths of intervals. We argue that
MPNL can be successfully used in different areas of ar-
tificial intelligence to combine qualitative and quantitative
interval temporal reasoning, thus providing a viable alter-
native to well-established logical frameworks such as Du-
ration Calculus. We show that MPNL is decidable in dou-
ble exponential time and expressively complete with respect
to a well-defined sub-fragment of the two-variable fragment
FO2[N,=,<,s] of first-order logic for linear orders with suc-
cessor function, interpreted over natural numbers. Moreover,
we show that MPNL can be extended in a natural way to

D. Bresolin
University of Verona, Italy
E-mail: davide.bresolin@univr.it

D. Della Monica
University of Udine, Italy
E-mail: dario.dellamonica@uniud.it

A. Montanari
University of Udine, Italy
E-mail: angelo.montanari@uniud.it

V. Goranko
Technical University of Denmark, Denmark
E-mail: vfgo@imm.dtu.dk

G. Sciavicco
University of Murcia, Spain E-mail: guido@um.es

cover full FO2[N,=,<,s], but, unexpectedly, the latter (and
hence the former) turns out to be undecidable.

1 Introduction

Interval temporal logics provide a natural framework for tem-
poral reasoning about interval structures over linearly (or
partially) ordered domains. They take time intervals as the
primitive ontological entities and define truth of formulae
relative to time intervals, rather than time points. Interval
logics feature modal operators that correspond to various
relations between pairs of intervals. In particular, the well-
known logic HS, introduced by Halpern and Shoham in [21],
features a set of modal operators that makes it possible to
express all Allen’s interval relations [1].

Interval-based formalisms have been extensively used in
various areas of AI, such as, for instance, planning and plan
validation, theories of action and change, natural language
processing, and constraint satisfaction problems. However,
most of them are subjected to severe syntactic and semantic
restrictions that considerably weaken their expressive power.
Interval temporal logics relax these restrictions, thus allow-
ing one to cope with much more complex application do-
mains and scenarios. Unfortunately, many of them, includ-
ing HS and the majority of its fragments, turn out to be un-
decidable (a comprehensive survey can be found in [6]). One
of the few cases of decidable interval logic with truly inter-
val semantics, i.e., not reducible to point-based semantics, is
Propositional Neighborhood Logic (PNL), interpreted over
various classes of interval structures (all, dense, and dis-
crete linear orders, integers, natural numbers) [19]. PNL is a
fragment of HS with only two modalities, corresponding to
Allen’s relations meets and met by. Basic logical properties
of PNL (representation theorems, axiomatic systems) have
been investigated by Goranko et al. in [19]. The satisfiabil-
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ity problem for PNL has been addressed by Bresolin et al.
in [9]. NEXPTIME-completeness with respect to the classes
of all linearly ordered domains, well-ordered domains, fi-
nite linearly ordered domains, and natural numbers has been
proved via a reduction to the satisfiability problem for the
two-variable fragment of first-order logic for binary rela-
tional structures over ordered domains [28]. Finally, in [13],
a tableau system for the right-neighborhood fragment of PNL,
interpreted over the natural numbers, has been developed;
such a system has been later extended to full PNL over the
integers [11].

Various metric extensions to point-based temporal logics
have been proposed in the literature. They include Timed
Propositional Temporal Logic (TPTL), introduced by Alur
and Henzinger in [2], Montanari et al.’s two-sorted metric
temporal logics [25,?], Hirshfeld and Rabinovich’s Quanti-
tative Monadic Logic of Order [23], and Owakine and Wor-
rell’s Metric Temporal Logic [29], which refines and extends
Koymans’ Metric Temporal Logic [?]. Little work in that re-
spect has been done in the interval logic setting. Among the
few contributions, we mention the extension of Allen’s In-
terval Algebra with a notion of distance developed by Kautz
and Ladkin in [24]. The most important quantitative inter-
val temporal logic is Duration Calculus (DC) [22,34], an
interval logic for real-time systems originally developed by
Zhou Chaochen, C.A.R. Hoare, and A.P. Ravn [15], based
on Moszkowski’s ITL [27], which is quite expressive, but
generally undecidable. A number of variants and fragments
of DC have been proposed to model and to reason about real-
time processes and systems [4,14,16,34]. Many of them re-
cover decidability by imposing semantic restrictions, such
as the locality principle, that essentially reduce the interval
system to a point-based one.

In this paper, we present a family of non-conservative
metric extensions of PNL, which allow one to express met-
ric properties of interval structures over natural numbers.
We mainly focus our attention on the most expressive lan-
guage in this class, called Metric PNL (MPNL, for short).
MPNL features a family of special atomic propositions rep-
resenting integer constraints (equalities and inequalities) on
the length of the intervals over which they are evaluated.
MPNL is particularly suitable for quantitative interval rea-
soning, and thus it emerges as a viable alternative to exist-
ing logical systems for quantitative temporal reasoning. The
right-neighborhood fragment of MPNL has been introduced
and studied in [10]; full MPNL has been considered [7]–the
main precursor of this paper, which extends and strengthens
it substantially. The main contributions of the paper are:

(i) the proposal of a number of extensions of PNL with met-
ric modalities and with interval length constraints, which
turn out to be very expressive and natural to reason about
interval structures on natural numbers;

(ii) expressive completeness of MPNL with respect to a pro-
per fragment FO2

r [N,=,<,s] of the two-variable frag-
ment FO2[N,=,<,s] of FO with equality, order, succes-
sor, and any family of binary relations, interpreted on
natural numbers. We also show how to extend MPNL to
obtain an interval logic MPNL+ which is expressively
complete with respect to full FO2[N,=,<,s];

(iii) decidability and complexity of the satisfiability prob-
lem for MPNL, and undecidability of the satisfiability
problem for MPNL+, and thus for FO2[N,=,<,s];

(iv) analysis and classification of the expressive power of
the proposed metric extensions of PNL.

The results in this paper can be compared with analogous re-
sults for PNL and FO2[=,<] (the two-variable fragment of
FO with equality on linear orders with a family of uninter-
preted binary relations), given in [8,9]. Unlike FO2[=,<],
which was already known to be decidable [28], the decid-
ability of FO2

r [N,=,<,s] is a consequence of the decidabil-
ity and expressive completeness results for MPNL. At the
best of our knowledge, this result is new and of independent
interest.

The paper is organized as follows. In Section 2, we re-
call some basic features of PNL, and in Section 3 we present
the metric language MPNL. In Section 4, we illustrate vari-
ous possible applications of MPNL. Next, in Section 5, we
prove the decidability of the logic. Expressive completeness
results are given in Section 6. Finally, in Section 7, we clas-
sify various fragments of MPNL with respect to their expres-
sive power. In the conclusions, we provide an assessment of
the work and we mention open problems.

2 Propositional Neighborhood Interval Logics: PNL

The language of the propositional neighborhood logics PNL
consists of a set AP of atomic propositions, the proposi-
tional connectives ¬,∨, and the modal operators ♦r and ♦l ,
corresponding to the Allen’s relation meets and its inverse
met-by [1]. The other propositional connectives, as well as
the logical constants > (true) and ⊥ ( f alse), and the dual
modal operators �r and �l , are defined as usual. Proposi-
tional neighborhood logics have been studied both in the
so-called strict semantics, which excludes point-intervals,
and in the non-strict one, which includes them. In the latter
case, it is natural to include in the language a special atomic
proposition (modal constant), usually denoted by π , to iden-
tify point-intervals (PNLπ ). The differences in the expres-
sive power in the various cases have been studied in [19].
In this paper, we focus on the non-strict semantics. The for-
mulae, denoted by ϕ,ψ, . . ., are generated by the following
grammar:

ϕ ::= π | p | ¬ϕ | ϕ ∨ϕ | ♦rϕ | ♦lϕ.
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Given a linearly ordered domain D = 〈D,<〉, a (non-
strict) interval over D is any ordered pair [i, j] such that i≤ j.
An interval structure is a pair 〈D,I(D)〉, where I(D) is the
set of all intervals over D. The semantics of PNL is given
in terms of models of the form M = 〈D,I(D),V 〉, where
〈D,I(D)〉 is an interval structure and V : AP → 2I(D) is a
valuation function assigning to every atomic proposition the
set of intervals over which it holds. We recursively define
the satisfiability relation 
 as follows:

– (M, [i, j] 
 π iff i = j;)
– M, [i, j] 
 p iff p ∈V ([i, j]), for any p ∈ AP;
– M, [i, j] 
 ¬ϕ iff it is not the case that M, [i, j] 
 ϕ;
– M, [i, j] 
 ϕ ∨ψ iff M, [i, j] 
 ϕ or M, [i, j] 
 ψ;
– M, [i, j] 
 ♦rϕ iff there exists h≥ j such that M, [ j,h] 


ϕ;
– M, [i, j]
♦lϕ iff there exists h≤ i such that M, [h, i]
ϕ .

A PNL-formula ϕ is satisfiable if there exists a model M
and an interval [b,e] such that M, [b,e] 
 ϕ .

The logics PNL and PNLπ have been studied in [8,19],
where the decidability of their satisfiability problem has been
shown. A tableau-based method for deciding satisfiability
in the single-modality fragment of PNL, called RPNL, has
been presented in [13], and subsequently extended to the full
PNL/PNLπ in [11]. In this paper, we focus our attention on
the class of interval structures over the ordering of the natu-
ral numbers N= (ω,<).

3 Metric PNL: MPNL

In this sectio, we introduce metric extensions of proposi-
tional neighborhood logics interpreted over N. Depending
on the choice of the metric operators, a hierarchy of lan-
guages can be built. In Section 7, we will study the relative
expressive power of these languages. For the moment, we
just consider the most expressive language of the hierarchy.

From now on, we denote by δ the distance function
on N: δ : N×N→ N, defined as δ (i, j) = |i− j|. The re-
sults presented here may be suitably rephrased for any func-
tion δ satisfying the standard properties of distance over
a linear ordering. The most expressive metric extension of
PNL is based on atomic propositions for length constraints.
These are pre-interpreted propositional letters referring to
the length of the current interval. Such propositions can be
seen as the metric generalizations of the modal constant π .
For each ∼∈ {<, ≤, =, ≥, >}, we introduce the length
constraint len∼k, with the following semantics:

M, [i, j] 
 len∼k iff δ (i, j)∼ k.

Note that the equality and inequality constraints are mu-
tually definable:

M, [i, j] 
 len=0⇔M, [i, j] 
 ¬len>0

M, [i, j] 
 len=k⇔M, [i, j] 
 len>k−1∧¬len>k if k > 0

M, [i, j] 
 len<k⇔M, [i, j] 
 len=0∨ . . .∨ len=k−1

M, [i, j] 
 len≤k⇔M, [i, j] 
 len=0∨ . . .∨ len=k

M, [i, j] 
 len>k⇔M, [i, j] 
 ¬len≤k
M, [i, j] 
 len≥k⇔M, [i, j] 
 ¬len<k

In Section 5 we will limit ourselves to constraints of type
len=k, without taking into account the increase in length of
formulae due to the above translation.

4 MPNL at Work

Finding an optimal balance between good expressive power
and reasonable computational complexity is a challenge for
every knowledge representation and reasoning formalism.
Interval temporal logics are not an exception in this respect.
We believe that MPNL offers a good compromise between
these two requirements. In the following, we show that MPNL
makes it possible to encode (metric versions of) basic oper-
ators of point-based linear temporal logic (LTL) as well as
interval modalities corresponding to Allen’s relations; in ad-
dition, we show that it allows one to express limited forms
of fuzziness.

First, MPNL is expressive enough to encode the strict
sometimes in the future (resp., sometimes in the past) opera-
tor of LTL:

♦r(len>0∧♦r(len=0∧ p)).

Moreover, length constraints allow one to define a met-
ric version of the until (resp., since) operator. For instance,
the condition: ‘p is true at a point in the future at distance
k from the current interval and, until that point, q is true
(pointwise)’ can be expressed as follows:

♦r(len=k∧♦r(len=0∧ p))∧�r(len<k→ ♦r(len=0∧q)).

MPNL can also be used to constrain interval length and
to express metric versions of basic interval relations. First,
we can constrain the length of the intervals over which a
given property holds to be at least (resp., at most, exactly) k.
As an example, the following formula constrains p to hold
only over intervals of length l, with k ≤ l ≤ k′:

[G](p→ len≥k∧ len≤k′), (bl)

where the universal modality [G] (for all intervals) is defined
as in [19]. By exploiting such a capability, a metric version
of all, but one (the ‘subinterval’ relation), Allen’s relations
can be expressed. As an example, we can state that: ‘p holds
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only over intervals of length l, with k ≤ l ≤ k′, and any p-
interval begins a q-interval’ as follows:

(bl)∧ [G]
k′∧

i=k

(p∧ len=i→ ♦l♦r(len>i∧q)).

As another example, a metric version of Allen’s relation
during (the inverse of the ‘subinterval’ relation) can be ex-
pressed by pairing (bl) with:

[G]
k′∧

i=k

(p∧ len=i→
∨

j 6=0, j+ j′<i

(♦l♦r(len=j∧♦r(len=j′ ∧q)))).

In [12] the problem of the relationship between a metric
extension of PNL and the consistency problem for Allen’s
Interval Networks with quantitative constraints has been con-
sidered (and later generalized to its spatial version, Rectan-
gle Algebra, in [30]). Intuitively, one can be interested in
exploring the problem of deciding the consistency of a net-
work of constraints using a logical language; although the
satisfiability of an interval logic formula is, in general, a
much harder problem, this complexity blowup can be paid
off by the increase of expressivity, and the possibility of
expressing negative constraints and disjunctive information
(which is not possible by means of constraint networks).
There are at least two different ways of expressing the fact
that a constraint network is consistent through a logical for-
mula. The first one consists, as in [30], of using the uni-
versal modality to simulate nominals, and, then, using them
to force two objects (intervals, in this case) to be in a cer-
tain relation, even when such a relation is not directly ex-
pressible in the language. Notice that this is not in contra-
diction with the computability properties of the logic (e.g.,
PNL), since it allow us to express Allen’s relation such as
begins or ends only between a bounded number of objects
(one for each nominal). If metric constraints are added to
the language, one can also formalize a network with quanti-
tative constraints [12]. As we have seen above, the addition
of metric constraints allows us also to express a metric ver-
sion of all, but one, Allen’s relations. Such metric interval
relations can thus be used as an alternative way to encode
the consistency problem for Allen’s Interval Networks with
quantitative constraints, without introducing nominals. The
drawback of this choice is that the constructs only work ’up
to a certain length’, and, thus, it is not completely general.
However, since Allen’s relations are expressed without us-
ing simulated nominals, we can express properties of an ar-
bitrary (possibly infinite) number of intervals, both existen-
tially and universally. Moreover, the formulae in this second
case are much simpler and shorter.

MPNL also allows one to express some form of ‘fuzzi-
ness’. As an example, the condition: ‘p is true over the cur-
rent interval and q is true over some interval close to it’,

where by ‘close’ we mean that the right endpoint of the p-
interval is at distance at most k from the left endpoint of the
q-interval, can be expressed as follows:

p∧ (♦r♦l(len<k∧♦l♦rq)∨♦r(len<k∧♦rq)).

MPNL capabilities suffice to cope with various applica-
tion domains. As a source of illustration, we show how to
express some basic safety requirements of the classical gas-
burner example (a formalization of such an example in DC
can be found in [34]). Let the propositional letter Gas (resp.,
Flame, Leak) be used to state that gas is flowing (resp., burn-
ing, leaking), e.g., M, [i, j] 
 Gas means that gas is flowing
over the interval [i, j]. The formula

[G](Leak↔ Gas∧¬Flame)

states that Leak holds over an interval if and only if gas is
flowing and not burning over that interval. The condition: ‘it
never happens that gas is leaking for more than k time units’
can be expressed as:

[G](¬(len>k∧Leak)).

Similarly, the condition: ‘the gas burner will not leak un-
interruptedly for k time units after the last leakage’ can be
formalized as:

[G](Leak→¬♦l(len<k∧♦lLeak)).

We conclude the section by mentioning two application
domains where MPNL features are well-suited, namely, med-
ical guidelines and ambient intelligence. In the former area
(see [31]), events with duration, e.g., ‘running a fever’, pos-
sibly paired with metric constraints, e.g., ‘if a patient is run-
ning a fever for more than k time units, then administrate
him/her drug D’, are quite common. In general, many rel-
evant phenomena are inherently interval-based as there are
no general rules to deduce their occurrence from point-based
data. The use of temporal logic in ambient intelligence, specif-
ically in the area of Smart Homes [3,18], has been advocated
by Combi et al. in [17]. MPNL can be successfully used to
express safety requirements referring to situations that can
be properly modeled only in terms of time intervals, e.g.,
‘being in the kitchen’.

5 Decidability of MPNL

In this section, we use a model-theoretic argument to show
that the satisfiability problem for MPNL has a bounded-
model property with respect to finitely presentable ultimately
periodic models, and it is therefore decidable. From now on,
let ϕ be any MPNL-formula and letAP be the set of propo-
sition letters of the language.
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Definition 1 The closure of ϕ is the set CL(ϕ) of all sub-
formulae of ♦rϕ and their negations (we identify ¬¬ψ with
ψ). Let

⊙
∈ {♦r,♦l ,�r,�l}. The set of temporal requests

from CL(ϕ) is the set T F(ϕ) = {
⊙

ψ |
⊙

ψ ∈CL(ϕ)}.

Definition 2 A ϕ-atom is a set A⊆CL(ϕ) such that for ev-
ery ψ ∈CL(ϕ), ψ ∈ A iff ¬ψ 6∈ A and for every ψ1 ∨ψ2 ∈
CL(ϕ), ψ1∨ψ2 ∈ A iff ψ1 ∈ A or ψ2 ∈ A.

We denote the set of all ϕ-atoms by Aϕ . One can eas-
ily prove that |CL(ϕ)| ≤ 2(|ϕ|+ 1), |T F(ϕ)| ≤ 2|ϕ|, and
|Aϕ | ≤ 2|ϕ|+1. We now introduce a suitable labeling of inter-
val structures based on ϕ-atoms.

Definition 3 A (ϕ-)labeled interval structure (LIS for short)
is a structure L = 〈D,I(D),L〉, where 〈D,I(D)〉 is the inter-
val structure over natural numbers (or over a finite subset
of it) and L : I(D)→ Aϕ is a labeling function such that
for every pair of neighboring intervals [i, j], [ j,h] ∈ I(D), if
�rψ ∈ L([i, j]), then ψ ∈ L([ j,h]), and if �lψ ∈ L([ j,h]),
then ψ ∈ L([i, j]).

Notice that every interval model M induces a LIS, whose
labeling function is the valuation function:

ψ ∈ L([i, j]) iff M, [i, j] 
 ψ.

Thus, LIS can be thought of as quasi-models for ϕ , in
which the truth of formulae containing neither ♦r, ♦l nor
length constraints is determined by the labeling (due to the
definitions of ϕ-atom and LIS). To obtain a model, we must
also guarantee that the truth of the other formulae is in ac-
cordance with the labeling. To this end, we introduce the
notion of fulfilling LIS.

Definition 4 A LIS L = 〈D,I(D),L〉 is fulfilling iff:
– for every length constraint len=k ∈ CL(ϕ) and interval
[i, j] ∈ I(D), len=k ∈ L([i, j]) iff δ (i, j) = k;

– for every temporal formula ♦rψ (resp., ♦lψ) in T F(ϕ)

and interval [i, j] ∈ I(D), if ♦rψ (resp., ♦lψ) in L([i, j]),
then there exists h≥ j (resp., h≤ i) such that ψ ∈ L([ j,
h]) (resp., L([h, i])).

Clearly, every interval model is a fulfilling LIS. Conversely,
every fulfilling LIS L= 〈D,I(D),L〉 can be transformed into
a model M(L) by defining the valuation in accordance with
the labeling. Then, one can prove that for every ψ ∈CL(ϕ)
and interval [i, j] ∈ I(D),

ψ ∈ L([i, j]) iff M(L), [i, j] |= ψ

by a routine induction on ψ .

Definition 5 Given a LIS L = 〈D,I(D),L〉 and a point i ∈
D, the set of left (resp., right) temporal requests at i, denoted
by REQL(i) (resp., REQR(i)), is the set of temporal formu-
lae of the forms ♦lϕ , �lϕ (resp., ♦rϕ , �rϕ) in T F(ϕ) be-
longing to the labeling of any interval beginning in i (resp.,
ending in i). For any j ∈ D, we write REQ( j) for REQL( j)
∪ REQR( j)-

We denote by REQ(ϕ) the set of all possible sets of
temporal requests over CL(ϕ). Let m be |T F(ϕ)|

2 and k be
the maximum among the natural numbers occurring in the
length constraints in ϕ . For example, if ϕ = ♦r(len>3∧ p→
♦l(len>5 ∧ q)), then m = 2 and k = 5. It is easy to show
that |REQ(ϕ)| = 2m. Moreover, given any set of temporal
requests REQR( j) (resp., REQL(i)), it can be easily proved
that all of them can be satisfied using at most m different
points greater than j (resp., less than i).

Now, consider any MPNL-formula ϕ such that ϕ is satis-
fiable on a finite model. We have to show that we can restrict
our attention to models with a bounded size.

Definition 6 Given any LIS L = 〈D,I(D),L〉, we say that
a k-sequence in L is a sequence of k consecutive points
in D. Given a k-sequence σ in L, its sequence of requests
REQ(σ) is defined as the k-sequence of temporal requests
at the points in σ . We say that i ∈ L starts a k-sequence σ if
the temporal requests at i, . . . , i+ k−1 form an occurrence
of REQ(σ). Moreover, the sequence of requests REQ(σ)

is said to be abundant in L iff it has at least 2 · (m2 +m) ·
|REQ(ϕ)|+1 disjoint occurrences in D.

Lemma 1 Let L = 〈D,I(D),L〉 be any LIS such that the se-
quence REQ(σ) is abundant in it. Then, there exists an index
q such that for each elementR∈ {REQ(d) | iq < d < iq+1},
where iq and iq+1 begin the q-th and the q+1-th occurrence
of σ , respectively, R occurs at least m2 +m times before iq
and at least m2 +m times after iq+1 + k−1.

Proof To prove this property, we proceed by contradiction.
Suppose that REQ(σ) is abundant, that is, it occurs n > 2 ·
(m2+m) · |REQ(ϕ)| times in D and, for each q with 1≤ q≤
n, there exists a point d(q) with iq < d(q) < iq+1, such that
REQ(d(q)) occurs less than (m2+m) times before iq or less
than (m2 +m) times after jq+1 + k− 1. Let ∆ = {d(q)|1 ≤
q≤ n} the set of all such points. By hypothesis, there cannot
be anyR∈ REQ(ϕ) such thatR occurs more than 2 · (m2 +

m) times in ∆ . Then |∆ | ≤ 2 · (m2 +m) · |REQ(ϕ)|, which is
a contradiction. ut

Lemma 2 Let L = 〈D,I(D),L〉 be a fulfilling LIS that sat-
isfies ϕ . Suppose that there exists an abundant k-sequence
of requests REQ(σ) and let q be the index whose existence
is guaranteed by Lemma 1. Then, there exists a fulfilling LIS
L = 〈D,I(D),L〉 that satisfies ϕ such that D = D \ {iq, . . . ,
iq+1−1}.

Proof Let us fix a fulfilling LIS L = 〈D,I(D),L〉 satisfy-
ing ϕ at some [i, j], an abundant k-sequence REQ(σ) in
L, and the index q identified by Lemma 1. Now, let D− =

{iq, . . . , iq+1−1} and D′ = D\D− and, consequently, the set
of all intervals I(D′). For sake of readability, the points in D′

will be denoted by the same numbers as in D. Now, we have
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the problem of suitably re-defining the evaluation of all in-
tervals on D′ in a way preserving the temporal requests at all
points in D′ and still satisfying ϕ .

First, we consider all points d < iq and for each of them,
for all p such that 0≤ p≤ k−1, we put L′([d, iq+1 + p]) =
L([d, iq + p]). In such a way, we guarantee that the intervals
whose length has been shortened as an effect of the elimina-
tion of the points in D− have a correct labeling in terms of
all length constraints of the forms len=k′ and ¬len=k′ . More-
over, since the requests (in both directions) in L at iq+1 + p
are equal to the requests at iq + p, this operation is safe
with respect to universal and existential requirements. Fi-
nally, since the lengths of intervals beginning before iq and
ending after iq+1 + k−1 are greater than k both in L and in
L′, there is no need to change their labeling.

The structure L′ = 〈D′,I(D′),L′〉 defined so far is obvi-
ously a LIS, but it is not necessarily a fulfilling one. The re-
moval of the points in the set D− and the relabelling needed
to guarantee correctness w.r.t. length constraints may gen-
erate defects, that is, situations in which there exist a point
d < iq (resp., d ≥ iq+1 + k) and a formula of the type ♦rψ

(resp., ♦lψ) belonging to REQ(d), such that ψ was satis-
fied in L by some interval [d,d′] (resp., [d′,d]), and it is not
satisfied in L′, either because d′ ∈ D−, or because the la-
belling of [d,d′] (resp., [d′,d]) has changed due to the above
relabeling. We have to show how to repair such defects.
Suppose that there exists d < iq (the case when d ≥ iq+1
is similar) and some formula ♦rψ ∈ REQ(d) that it is not
satisfied anymore in L′. Since L is a fulfilling LIS, then
there exists an interval [d,d′] such that ψ ∈ L([d,d′]) and
either d′ ∈ D− or ψ 6∈ L′([d,d′]). Notice that, for this to be
the case, δ (d′,d) > k in L. By Lemma 1, there are at least
n = m2 +m points {d̄1, d̄2, . . . , d̄n} after hq+1 + k− 1 such
that REQ(d̄i) = REQ(d′) for i = 1, . . . ,n. We will chose a
point of the type d̄i to satisfy the request. To prevent such a
change making one or more requests in REQL(d̄i) no longer
satisfied, we have to preliminarily redefine the labeling L′.
First, we take a minimal set of points Pd ⊂ D′ such that,
for each ♦lτ ∈ REQL(d), there exists a point e ∈ Pd such
that τ ∈ L([e,d]). Now, for each point e ∈ Pd , let Pd

e be a
minimal set of points such that, for every ♦rξ ∈ REQR(e),
there exists a point f ∈Pd

e such that ξ ∈L([e, f ]). Finally, let
Q =

⋃
e∈Pd Pd

e : by the minimality requirements, we have that
|Q| ≤m2, since each set of requests can be satisfied using at
most m points. Similarly, requests in REQR(d) need at most
m points to be satisfied. Consider the set H = {d̄1, d̄2, . . . , d̄n}\
Q: since, by construction, |H| ≥m, there must be some point
d̄h ∈ H such that in L the interval [d, d̄h] satisfies only those
♦r-formulae of REQ(d), if any, that are satisfied at other in-
tervals starting at d. Thus we can put L′([d, d̄h]) =L([d,d′]),
and correct this defect without creating a new one. Since
δ (d̄h,d) > k in L′, this operation does not introduce incon-
sistencies with the length constraints in the labeling, either.

Now, if we repeat the above procedure sufficiently many
times, we obtain a finite sequence of LISs, the last one of
which is the required L. To conclude the proof, we have to
show that L is still a LIS for ϕ . Let [d,d′] be the interval
of L satisfying the formula ϕ . Since ♦rϕ ∈CL(ϕ), we have
that ♦rϕ ∈ REQ(d). If d is still present in L, then, since
the final LIS is fulfilling, we have that there must exists an
interval [d,d′′] labelled with ϕ . If d is not a point of L, then
Lemma 1 guarantees that there exists another point d′′ in L
such that REQ(d′′) = REQ(d). Again, since L is fulfilling,
we have that there must exists an interval [d′′,d′′′] labelled
with ϕ . ut

The lemma above guarantees that we can eliminate sequences
of requests that occur ‘sufficiently many’ times in a LIS,
without ‘spoiling’ the LIS. This eventually allows us to prove
the following small-model theorem for finite satisfiability of
MPNL.

Theorem 1 (Small-Model Theorem) If ϕ is any finitely
satisfiable formula of MPNL, then there exists a fulfilling,
finite LIS L = 〈D,I(D),L〉 that satisfies ϕ such that |D| ≤
|REQ(ϕ)|k · (2 · (m2 +m) · |REQ(ϕ)|+1) · k+ k−1.

Proof Let L = 〈D,I(D),L〉 be any finite fulfilling LIS that
satisfies ϕ . If |D| ≤ |REQ(ϕ)|k(2(m2+m)|REQ(ϕ)|+1)k+
k−1, then we are done. Otherwise, by an application of the
pigeonhole principle, for at least one sequence REQ(σ) of
length k, we have that REQ(σ) is abundant. In this case, we
apply Lemma 2 sufficiently many times to get the requested
maximum length. ut

To deal with formulae that are satisfiable only over infi-
nite models, we need to provide these models with a finite
(periodic) representation, and to bound the lengths of their
prefix and period.

Definition 7 A LIS L = 〈D,I(D),L〉 is ultimately periodic,
with prefix L, period P, and threshold k if, for every interval
[i, j],

– if i≥ L, then L([i, j]) = L([i+P, j+P]);
– if j ≥ L and δ ( j, i)> k, then L([i, j]) = L([i, j+P]).

It is worth noticing that, in every ultimately periodic LIS,
REQ(i) = REQ(i+P), for i ≥ L, and that every ultimately
periodic LIS is finitely presentable: it suffices to define its
labeling only on the intervals [i, j] such that j ≤ L + P +

max(k,P); thereafter, it can be uniquely extended by peri-
odicity. Furthermore, we can identify a finite LIS with an
ultimately periodic one with a period P = 0.

Lemma 3 Let L = 〈N,I(N),L〉 be an infinite fulfilling LIS
over N that satisfies a formula ϕ . Then, there exists an infi-
nite ultimately periodic fulfilling LIS L = 〈N,I(N),L〉 over
N that satisfies ϕ .
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Proof First of all, let [b,e] be the interval satisfying ϕ in L.
We define the set REQin f (ϕ) as the subset of REQ(ϕ) con-
taining all and only the sets of requests that occurs infinitely
often in L. Let L ∈ N be the first point in L such that the
following conditions are met:

i) L≥ e;
ii) for each point r ≥ L, REQ(r) ∈ REQin f (ϕ);
iii) each set of requests R ∈ REQin f (ϕ), occurs at least

m2 +m times before L, and at least m2 +m times between L
and M;

iv) for each point i < L, and any formula ♦rτ ∈ REQ(i),
τ is satisfied on some interval [i, j] where j < M; and,

v) the k-sequences of requests starting at L and at M are
the same.

We put P = M−L. We will build an infinite ultimately
periodic structure L over the domain N with prefix L, period
P and threshold k. To this end, first, for all points d < M we
put REQ(d) = REQ(d). Then, for all points M + n, where
0 ≤ n < P, we put REQ(M + n) = REQ(L + n) (by con-
dition (v), this is already the case with 0 ≤ n < k). Now,
we will define the labeling. For all intervals [i, j] such that
j < M we put L([i, j]) = L([i, j]). As for any interval [i, j],
with M ≤ j < M+P, (a) if i≥M, we put L([i, j]) = L([i−
P, j−P]), (b) if i < M, we must distinguish three cases: (b1)
if δ (i, j) ≤ k , then we put L([i, j]) = L([i, j]) (as REQ(i)
has not been modified and REQ( j) = REQ( j) by condition
(v)); (b2) if k < δ (i, j) ≤ k+P, we put L([i, j]) = L([i,h])
for some h such that REQ( j) = REQ(h) and δ (i,h) > k,
where the existence of such an h is guaranteed by condition
(ii) (in fact, if M ≤ j < M +K, we can take h = j); (b3)
if δ (i, j) > k+P, we put L([i, j]) = L([i, j−P]). This con-
struction labels all subintervals of [0,M +P] in a way that
is consistent with the definition of LIS, but that is not nec-
essarily fulfilling. It could be the case that for some point
L≤ i≤M and some formula ♦rψ ∈ REQ(i) there are no in-
tervals satisfying ψ , because the only interval(s) satisfying
it in L are of the type [i,d] where d > M+P and δ (d, i)> k.
We fix such defects as follows. Since REQ(i) = REQ(i),
there exists a point j > i such that ψ ∈ L([i, j]) in the orig-
inal model. By condition iii), there exists at least m2 +m
points between M and M +P with the same set of requests
of j, and at least m2 +m points between L and M with the
same set of requests of j. We proceed exactly as in the proof
of Lemma 2, and we fix the defect choosing a point d′ be-
tween M and M+P, putting L([i,d′]) =L([i,d]). By repeat-
ing such a procedure sufficiently many times going from left
to right, we build a LIS where every request of every point
i ≤ M is fulfilled before M +P. To conclude the construc-
tion we extend the so defined L over I(N) in the unique way
satisfying the conditions in Definition 7 for an ultimate peri-
odic LIS with prefix L, period P, and threshold k, that is: for
every i > M+P we put REQ(i) = REQ(i−n ·P) where n is
the least non-negative integer such that i− n ·P ≤ M +P;

and, for every interval [i, j] such that j > M + P, we put
L([i, j]) = L([i−n ·P, j−q ·P]), where n and q are the least
non-negative integers such that i− nP ≤ M and j− qP ≤
M + P. It is straightforward to check that the labeling L
so defined respects all length constraints len=k′ and their
negations for all intervals, and that the resulting structure
L = 〈N,I(N),L〉 is an ultimately periodic fulfilling LIS sat-
isfying ϕ on [b,e]. ut

Theorem 2 (Small Periodic Model Theorem) If ϕ is any
satisfiable formula of MPNL, then there exists a fulfilling,
ultimately periodic LIS satisfying ϕ such that both the length
L of the prefix and the length P of the period are less or equal
to |REQ(ϕ)|k · (2 · (m2 +m) · |REQ(ϕ)|+1) · k+ k−1.

Proof Existence of an ultimately periodic fulfilling LIS is
guaranteed by Lemma 3. The bound on the prefix and of the
period can be proved by exploiting Lemma 2. ut

Corollary 1 The satisfiability problem for MPNL, interpreted
over N, is decidable.

The results of this section immediately give a double
exponential time nondeterministic procedure for checking
the satisfiability of any MPNL-formula ϕ . Such a proce-
dure nondeterministically checks models whose size is in
general O(2|ϕ|k), where |ϕ| is the length of the formula to
be checked for satisfiability. It has been shown in [10] that,
in the case in which k is represented in binary, the right-
neighborhood fragment of MPNL is complete for the class
EXPSPACE. This means that, in the general case, the com-
plexity for MPNL is located somewhere in between EX-
PSPACE and 2NEXPTIME (the exact complexity is still
an open problem). It is worth noticing that, whenever k is
a constant, it does not influence the complexity class and
thus, since we have a NTIME(2|ϕ|) procedure for satisfiabil-
ity and a NEXPTIME-hardness result [13], we can conclude
that MPNL is NEXPTIME-complete. Similarly, when k is
expressed in unary, the value of k increases linearly with the
length of the formula and thus NTIME(2k|ϕ|)=NTIME(2|ϕ|

2
);

therefore, as in the previous case, MPNL is NEXPTIME-
complete.

6 MPNL and Two-Variable Fragments of First Order
Logic for (N,<,s)

6.1 PNL and Two-Variable Fragments of First Order Logic

Here we will recall some results from [9] which will then
be extended to MPNL. Let us denote by FO2[=] the frag-
ment of first-order logic with equality whose language con-
tains only two distinct variables. We denote its formulae by
α,β , . . .. For example, the formula ∀x(P(x)→∀y∃xQ(x,y))
belongs to FO2, and the formula ∀x(P(x)→ ∀y∃z(Q(z,y)∧
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Q(z,x))) does not. We first focus our attention on the exten-
sion FO2[=,<] of FO2[=] over a purely relational vocabu-
lary {=,<,P,Q, . . .} including equality and a distinguished
binary relation < interpreted as a linear ordering. Since atoms
in the two-variable fragment can involve at most two distinct
variables, we may further assume without loss of generality
that the arity of every relation in the considered vocabulary
is exactly 2. Let x and y be the two variables of the language.
The formulae of FO2[=,<] can be defined recursively as fol-
lows:

α ::= A0 | A1 | ¬α | α ∨β | ∃xα | ∃yα

A0 ::= x = x | x = y | y = x | y = y | x < y | y < x

A1 ::= P(x,x) | P(x,y) | P(y,x) | P(y,y),

where A1 deals with (uninterpreted) binary predicates. For
technical convenience, we assume that both variables x and
y occur as (possibly vacuous) free variables in every formula
α ∈ FO2[<], that is, α = α(x,y). Formulas of FO2[=,<] are
interpreted over relational models of the form M = 〈D,V 〉,
where D= 〈D,<〉 is a linearly ordered set, and V is a valua-
tion function that assigns to every binary relation P a subset
of D×D. When we evaluate a formula α(x,y) on a pair of
elements a,b, we write α(a,b) for α[x := a,y := b].

The satisfiability problem for FO2 without equality was
proved decidable by Scott [32] by a satisfiability preserv-
ing reduction of any FO2-formula to a formula of the form

∀x∀yψ0 ∧
m∧

i=1
∀x∃yψi, which belongs to the Gödel’s prefix-

defined decidable class of first-order formulae, shown by
Gödel to have decidable satisfiability problem [5]. Later on,
Mortimer extended this result by including equality in the
language [26]. More recently, Grädel, Kolaitis, and Vardi
improved Mortimer’s result by lowering the complexity [20].
Finally, by building on techniques from [20] and taking ad-
vantage of an in-depth analysis of the basic 1-types and 2-
types in FO2[=,<]-models, Otto proved the decidability of
FO2[=,<] over various classes of orderings, and in partic-
ular over the natural numbers. It has been shown in [8] that
FO2[=,<] is expressively complete with respect to PNLπ .
For the comparison of these logics suitable truth-preserving
model transformations between interval models and rela-
tional models have been defined. We will sketch this trans-
formations here, since they will be used to extend the result
to expressive completeness of MPNL with respect to a suit-
able extension of FO2[=,<].

In order to define the mapping from interval models to
relational models, we associate a binary relation P with ev-
ery propositional variable p∈AP of the considered interval
logic [33].

Definition 8 ([8]) Given an interval model M = 〈I(D),VM〉,
the corresponding relational model η(M) is a pair of the

type 〈D,Vη(M)〉, where for all p ∈AP , Vη(M)(P) = {(i, j) ∈
D×D : [i, j] ∈VM(p)}.

To define the mapping from relational models to inter-
val ones, we have to solve a technical problem: the truth
of formulae in interval models is evaluated only on ordered
pairs [i, j], with i≤ j, while in relational models there is no
such constraint. To deal with this problem, we associate two
propositional letters p≤ and p≥ of the interval logic with
every binary relation P.

Definition 9 ([8]) Given a relational model M = 〈D,VM〉,
the corresponding interval model ζ (M) is a pair 〈I(D),Vζ (M)〉
such that for any binary relation P and any interval [i, j],we
have that [i, j] ∈Vζ (M(p≤) iff (i, j) ∈VM(P) and that [i, j] ∈
Vζ (M)(p≥) iff ( j, i) ∈VM(P).

Definition 10 Given an interval logic LI and a first-order
logic LFO, we say that LFO is at least as expressive as LI ,
denoted by LI � LFO, if there exists an effective transla-
tion τ from LI to LFO such that for any interval model M,
any interval [a,b], and any formula ϕ of LI , M, [a,b] 
 ϕ iff
η(M) |= τ(ϕ)(a,b). Conversely, we say that LI is at least
as expressive as LFO, denote by LFO � LI , if there exists
an effective translation τ ′ from LFO to LI such that for any
relational model M, any pair (i, j) of elements, and any for-
mula ϕ of LFO, M |=ϕ(i, j) iff ζ (M), [i, j]
 τ ′(ϕ) if i≤ j or
ζ (M), [ j, i] 
 τ ′(ϕ) otherwise. We say that LI is as expres-
sive as LFO, denoted by LI ≡ LFO, if LI � LFO and LFO �
LI . Then, LI ≺ LFO and LFO ≺ LI are defined as expected.

Theorem 3 ([8]) PNLπ ≡ FO2[=,<], when interpreted over
any class of linearly ordered sets.

6.2 The Logic FO2[N,=,<,s]

Here we consider the extension of FO2[=,<] interpreted
over N with the successor function s, denoted by FO2[N,=
,<,s]. The terms of the language FO2[N,=,<,s] are of the
type sk(z), where z ∈ {x,y} and sk(z) denotes z when k =

0 and s(s(. . .s︸ ︷︷ ︸
k

(z) . . .)) when k > 0. Then, the formulae of

FO2[N,=,<,s] can be defined as in the case of the logic
FO2[=,<], mutatis mutandis. Using 2-pebble games and a
standard model-theoretic argument, it is possible to prove
that FO2[N,=,<,s] is strictly more expressive than FO2[=

,<]. That result, however, is also a direct consequence of the
expressive completeness results established in [8] and in this
paper.

Theorem 4 The satisfiability problem for FO2[N,=,<,s],
interpreted over any class of linearly ordered sets with at
least one infinite ascending or descending sequence, is un-
decidable.
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Proof For the sake of simplicity, we assume that FO2[N,=
,<,s] is interpreted over N; nevertheless, the proof can be
adapted to any class of linearly ordered sets with at least one
infinite ascending or descending sequence. Let O = {(i, j) :
i, j ∈N∧0≤ i≤ j} be the second octant of the integer plane
Z×Z. The tiling problem for O is the problem of establish-
ing whether a given finite set of tile types T = {t1, . . . , tk}
can tile O. For every tile type ti ∈ T , let right(ti), le f t(ti),
up(ti), and down(ti) be the colors of the corresponding sides
of ti. To solve the problem, one must find a function f :O→
T such that

right( f (n,m)) = le f t( f (n+1,m)), with n < m, and
up( f (n,m)) = down( f (n,m+1)).

Using König’s lemma one can prove that a tiling system tiles
O if and only if it tiles arbitrarily large squares if and only
if it tiles N×N if and only if it tiles Z×Z. The undecidabil-
ity of the first of these tiling problems immediately follows
from that of the last one [5]. The reduction from the tiling
problem for O to the satisfiability problem for FO2[N,=
,<,s] takes advantage of some special relational symbols,
namely those in the set Let = {∗,Tile, Id, Ide, Idb, Idd ,Corr,
T1,T2, . . . ,Tk}. The reduction consists of three main steps:
(i) the encoding of an infinite chain that will be used to rep-
resent the tiles, (ii) the encoding of the above-neighbor rela-
tion by means of the relation Corr, and (iii) the encoding of
the right-neighbor relation, which will make use of the suc-
cessor function. Pairs of successive points are used as cells
to arrange the tiling. Next, we use the relation Id to repre-
sent a row of the octant. Any Id consists of a sequence of
intervals, each one of which is used either to represent a part
of the plane or to separate two Ids. In the former case, it
is labeled with the relation Tile, while, in the latter case, it
is labeled with the relation ∗. Consider now the following
formulae:

∀x,y
∧

P∈Let

(P(x,y)↔ x < y) (1)

∀x,y(y = s(x)↔∗(x,y)∨Tile(x,y)) (2)

∀x,y(∗(x,y)→¬Tile(x,y)) (3)

y = s(x)∧∗(x,y)∧∀x∃y(y = s(x)) (4)

∃x(x = s(y)∧Tile(y,x)∧∗(s(y),s(x))) (5)

The conjunction α1 of the above formulae, guarantees that
there exists an infinite sequence x0,x1, . . . , xω of points. More-
over, α1 guarantees that each pair xi,xi+1 is labelled either
by ∗ or by Tile, but not both. Finally, we have that ∗(x0,x1),

Tile(x1,x2), and ∗(x2,x3). Now, consider the conjunction α2

of α1 and the following formulae:

∃y(y = s2(x)∧ Id(x,y)) (6)

∀x,y(Id(x,y)→∗(y,s(y))) (7)

∀x,y(Id(x,y)→∗(x,s(x))) (8)

∀x,y(∗(x,y)→∃y(s(x)< y∧ Id(x,y))) (9)

∀x,y(Id(x,y)→ Ide(s(x),y)) (10)

∀x,y(Ide(x,y)∧ s(x)< y→ Ide(s(x),y)) (11)

∀x,y(Id(x,s(y))→ Idb(x,y)) (12)

∀x,y(Idb(x,s(y))∧ x < y→ Idb(x,y)) (13)

∀x,y((Ide(x,s(y))∨ Idd(x,s(y)))∧ x < y→ Idd(x,y)) (14)

∀x,y((Idb(x,y)∨ Ide(x,y)∨ Idd(x,y))→¬Id(x,y)) (15)

∀x,y
∧

ν ,µ∈{b,d,e},ν 6=µ

(Idν(x,y)→¬Idµ(x,y)). (16)

The formula α2 builds a chain of Id, in such a way that it
holds Id(x0,x3), each Id is followed by another Id, for each
pair x < y such that Id(x,y) then ∗(x,x+ 1), and if Id(x,y)
then ¬Id(z, t), for all x≤ z≤ t ≤ y ((x,y) 6= (z, t)). The rela-
tions of the type Idν are used to ensure the last condition. For
example, if Id(x,y), then, for all x < z < y we put Idb(x,z),
and similarly for Ide and Idd ; then, we impose that no pair
of points is labeled by Idν and Idµ at the same time, thus
preventing two Id to be one inside, overlapping, starting, or
ending the other. As a third step, let α3 be the conjunction
of α2 with the following formulae:

∀x,y(Id(x,y)→Corr(s(x),s(y))) (17)

∀x,y(Corr(x,y)→ Tile(x,s(x))∧Tile(y,s(y))) (18)

∀x,y(Corr(x,y)∧∗(s(x),s2(x))→
Tile(y,s(y))∧Tile(s(y),s2(y))∧∗(s2(x),s3(x))) (19)

∀x,y(Corr(x,y)∧¬∗ (s(x),s2(x))→Corr(s(x),s(y))) (20)

∀x,y(Id(x,y)→¬Corr(x,y)). (21)

If Tile(x,y) and Tile(z, t), we say that the two tiles are above
connected if and only if Corr(x,z). If α3 holds, then, as a
first consequence, we have that the first tile of each Id is
above connected with the first tile of the successive Id. Then,
by taking advantage of the successor function, from this ini-
tial connection we make sure that each i-th Tile of any Id
is above connected with the i-th Tile of the successive Id,
and, finally, the second formula of the above set enures that
each Id has exactly one tile less than the successive one.
This means that, if α3 holds, the j-th Id codifies exactly the
j-th layer of the octant. Finally, let αT be the conjunction of
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α3 and the following formulae:

∀x,y(Tile(x,y)→∨
T∈T

T (x,y)∧
∧

T,T ′∈T ,T 6=T ′
¬(T (x,y)∧T ′(x,y)) (22)

∀x,y(T (x,y)∧Tile(s(x),s(y))→ (23)∨
T ′∈T ,right(T )=le f t(T ′)

T ′(s(x),s(y)))

∀x,y(Corr(x,y)∧T (x,s(x)))→∨
T ′∈T ,up(T )=down(T ′)

T ′(y,s(y))). (24)

Given any set of tiles T the formula αT is satisfiable if and
only if T can tileO, as claimed. Thus, the satisfiability prob-
lem of FO2[N,=,<,s] is undecidable. ut

6.3 Expressive completeness of MPNL for a fragment of
FO2[N,=,<,s]

Let FO2
r [N,=,<,s] be the fragment of FO2[N,=,<,s] with

the following restriction: if both variables x and y occur in
the scope of an occurrence of a binary relation, other than
= and <, then the successor function s cannot occur in the
scope of that occurrence. As an example, each of the formu-
lae sk(x) = sm(y),sk(x) < sm(y),P(sk(x),sm(x)),P(x,y) be-
longs to FO2

r [N,=,<,s], but none of P(x,s(y)) and P(s(x),y)
does. By using 2-pebble games and a standard model-theoretic
argument, one can show that:

FO2[=,<]≺ FO2
r [N,=,<,s]≺ FO2[N,=,<,s].

First, we define the standard translation STx,y of MPNLl-
formulae into FO2

r [N,=,<,s], as follows:

STx,y(ϕ) = x≤ y∧ST ′x,y(ϕ),

where x,y are the two first-order variables in FO2
r [N,=,<,s],

and

ST ′x,y(p) = P(x,y)
ST ′x,y(len=k) = sk(x) = y
ST ′x,y(ϕ ∨ψ) = ST ′x,y(ϕ)∨ST ′x,y(ψ)

ST ′x,y(¬ϕ) = ¬ST ′x,y(ϕ)
ST ′x,y(♦lϕ) = ∃y(y≤ x∧ST ′y,x(ϕ))
ST ′x,y(♦rϕ) = ∃x(y≤ x∧ST ′y,x(ϕ)).

Lemma 4 For any MPNLl-formula ϕ , any interval model
M = 〈N,I(N),V 〉, and any interval [a,b] in M:

M, [a,b] 
 ϕ iff η(M) |= STx,y(ϕ)[x := a,y := b].

Proof Routine structural induction on ϕ .

Now, the inverse translation τ from FO2[N,=,<,s] to
MPNLl is given in Table 1, and we have the following lemma.

Lemma 5 For every FO2
r [N,=,<,s]-formula α(x,y), every

FO2[N,=,<,s]-model M = 〈N, VM〉 and every pair i, j ∈N,
with i≤ j:

(i) M |= α(i, j) if and only if ζ (M), [i, j] 
 τ[x,y](α),
and

(ii) M |= α( j, i) if and only if ζ (M), [i, j] 
 τ[y,x](α).

Proof The proof is by structural induction on the complex-
ity of α (for the sake of simplicity, we only prove claim (i);
the other one can be proved similarly):

– α = (sk(x) = sm(x)). If k = m, then both α and its trans-
lation τ[x,y](α) => are true, while if k 6= m, then α and
τ[x,y](α) =⊥ are both false; the same applies when x is
used instead of y;

– α = (sk(x)< sm(x)). If k = m, then both α and its trans-
lation τ[x,y](α) = ⊥ are false, while if k 6= m, then α

and τ[x,y](α) => are both true; the same applies when
x is used instead of y;

– α = (sk(x) = sm(y)). Assuming i < j, if k < m then
sk(i) < sm( j), and, since M |= α(i, j) iff sk(i) < sm( j),
we have that M 6|= α(i, j); on the other hand τ[x,y](α) =

⊥. If m≤ k, sk(i) = sm( j) iff j− i = k−m, that is M |=
α(i, j) iff ζ (M), [i, j] |= len=k−m. Likewise for the cases
α = (sm(y) = sk(x)), α = (sk(x) = sm(y)), α = (sm(y)<
sk(x));

– α = (P(sk(x),sm(x))). Assuming i < j, if k < m then
we have that sm(x)− sk(x) = m− k, and that sk(x)− x =
k. Thus, M |= α(i, j) iff P is true over the pair (sk(i),
sm−k(sk(i))), that is, M |= α(i, j) iff ζ (M), [i, j] 
 ♦l♦r
(len=k∧♦r(len=m−k∧ p≤)). A similar reasoning can be
followed for the case of m < k. If k = m, then sk(x) =
sm(x), so P must be true over a point-interval, specifi-
cally, identified by the pair (sk(i),sk(i)). Thus, we have
that M |=α(i, j) iff ζ (M), [i, j]
♦l♦r(len=k∧♦r(len=0

∧p≤∧ p≥)). Likewise, when y substitutes x;
– α = P(x,y) or α = P(y,x). The claim follows from the

valuation of p≤ and p≥;
– The Boolean cases are straightforward;
– α = ∃xβ . Suppose that M |=α(i, j). Then, there is l ∈M

such that M |= β (l, j). There are two (non-exclusive)
cases: j ≤ l and l ≤ j. If b ≤ c, by the inductive hy-
pothesis, we have that ζ (M), [ j, l] 
 τ[y,x](β ) and thus
ζ (M), [i, j]
♦r(τ[y,x](β )). Likewise, if l≤ j, by the in-
ductive hypothesis, we have that ζ (M), [l, j]
 τ[x,y](β )
and thus for every r such that j≤ r, ζ (M), [ j,r]
♦l(τ[x,
y](β )), that is, ζ (M), [a,b] 
 �r♦l(τ[x,y](β )). Hence
ζ (M), [i, j] 
 ♦r(τ[y,x](β ))∨�r♦l(τ[x,y](β )), that is,
ζ (M), [i, j] 
 τ[x,y](α). For the converse direction, it
suffices to note that the interval [i, j] has at least one right
neighbor, viz. [ j, j], and thus the above argument can be
reversed;

– α = ∃yβ . Analogous to the previous case.
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τ[x,y](sk(z) = sm(z)) => (z ∈ {x,y}), if k = m
=⊥ (z ∈ {x,y}), if k 6= m

τ[x,y](sk(z)< sm(z)) =⊥ (z ∈ {x,y}), if k ≥ m
=> (z ∈ {x,y}), if k < m

τ[x,y](sk(x) = sm(y))=⊥, if k < m
= len=k−m, if k ≥ m

τ[x,y](sk(x)< sm(y))=>, if k < m
= len>k−m, if k ≥ m

τ[x,y](sm(y)< sk(x))=⊥, if k < m
= len<k−m, if k ≥ m

τ[x,y](¬α) = ¬τ[x,y](α)

τ[x,y](α ∨β ) = τ[x,y](α)∨ τ[x,y](β )
τ[x,y](∃xβ ) = ♦r(τ[y,x](β ))∨�r♦l(τ[x,y](β ))
τ[x,y](∃yβ ) = ♦l(τ[y,x](β ))∨�l♦r(τ[x,y](β ))
τ[x,y](P(sk(x),sm(x))) = ♦l♦r(len=k∧♦r(len=m−k∧ p≤)), if k < m

= ♦l♦r(len=k∧♦r(len=0∧ p≤∧ p≥)), if k = m
= ♦l♦r(len=m∧♦r(len=k−m∧ p≥)), if k > m

τ[x,y](P(sk(y),sm(y))) = ♦r(len=k∧♦r(len=m−k∧ p≤)), if k < m
= ♦r(len=k∧♦r(len=0∧ p≤∧ p≥)), if k = m
= ♦r(len=m∧♦r(len=k−m∧ p≥)), if k > m

τ[x,y](P(x,y)) = p≤

τ[x,y](P(y,x)) = p≥

Table 1 Translation clauses from FO2
r [N,=,<,s] to MPNL.

♦+k
be ♦

+(m−k)
e p≤, if k < m

(len>0∧♦+k
be p≤)∨ (len=0∧♦+k

be (p≤∧ p≥), if k = m
(len>k−m∧♦+m

be ♦+(k−m)
b p≤)∨

(len=k−m∧♦+m
be ♦+(k−m)

b (p≤∧ p≥)∨
(len<k−m∧♦+k

be ♦
+(k−m)
b p≥, if k > m

Table 2 Extending the translation from FO2[N,=,<,s] to MPNL: the
clause for τ[x,y](P(sk(x),sm(y)))

Corollary 2 For every FO2
r [N,=,<,s]-formula α(x,y) and

every FO2[N,=,<,s]-model M = 〈N,VM〉, M |= ∀x∀yα(x,y)
if and only if ζ (M) 
 τ[x,y](α)∧ τ[y,x](α).

Theorem 5 FO2
r [N,=,<,s] ≡MPNL.

6.4 Extension of MPNL expressively complete for
FO2[N,=,<,s]

A natural way to extend MPNL to cover the entire FO2[N,=
,<,s] would be to add diamond modalities that shift respec-
tively the beginning, the end, or both endpoints of the cur-
rent interval to the right by a prescribed distance, viz:

– M, [i, j] 
 ♦+k
e ψ iff M, [i, j+ k] 
 ψ

– M, [i, j] 
 ♦+k
b ψ iff (i+ k ≤ j and M, [i+ k, j] 
 ψ) or

(i+ k > j and M, [ j, i+ k] 
 ψ).
– M, [i, j] 
 ♦+k

be ψ iff M, [i+ k, j+ k] 
 ψ

We denote the resulting language as MPNL+. The stan-
dard translation ST ′x,y of MPNL-formulae into FO2[N,=,<

,s] extends to MPNL+ as follows, where α[t/z] is the result
of simultaneous substitution of the term t for all free occur-
rences of z in α .

ST ′x,y(♦
+k
e ψ) = ST ′x,y(ψ)[sk(y)/y].

ST ′x,y(♦
+k
b ψ) = ST ′x,y(ψ)[sk(x)/x].

ST ′x,y(♦
+k
be ψ) = ST ′x,y(ψ)[sk(x)/x,sk(y)/y].

Note that if ST ′x,y(ψ)∈FO2[N,=,<,s] then ST ′x,y(ψ)[sk(x)/x,
sm(y)/y] ∈ FO2[N,=,<,s] for any k,m ∈ N, so the transla-
tion of all formulae of MPNL+ will remain within FO2[N,=

CDT FO3
2[=,<]

≡
@@ @@
≺ ≺

MPNL + FO2[N,=,<,s]

MPNL FO2
r [N,=,<,s]

@@ @@

≡

≡
≺ ≺

PNL+ FO2[N,=,<]

@@ @@
≡

≺ ≺

Fig. 1 Expressive completeness results for interval logics.

,<,s]. Conversely, we can now extend the translation τ of
FO2

r [N,=,<,s] into MPNL to a translation of FO2[N,=,<

,s] into MPNL+ by adding the clauses for the atomic formu-
lae in Table 2. The extensions of the expressive complete-
ness results are routine.

To conclude this subsection, we recall that Venema [33]
has shown in a similar way that the interval temporal logic
CDT, involving binary modalities based on the ternary in-
terval relation ’chop’ and its residuals (denoted respectively
C, D and T) is expressively complete for the fragment of
first-order logic with equality with three variables of which
at most two are free, denoted by FO3

2[=,<]. Note that, when
interpreted in N the successor function is definable in this
fragment, which therefore strictly extends FO2[N,=,<,s].
Thus, a hierarchy of expressive completeness results arises,
depicted in Fig. 1. Note also that the proposed translations
from the first order languages towards the interval ones are
exponential in the size of the input formula in all three cases,
due to the clauses for the existential quantifier1.

7 Classifying the Expressive Power of Metric
Propositional Neighborhood Interval Logics

In the previous sections, we discussed the expressive power
and the computational properties of MPNL. A natural ques-
tion is whether there exist other interesting variants of PNL

1 At present we do not know whether a polynomial translation for
any of these cases exists.
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♦<k
o ψ⇔ ⊥ (k = 0) ♦oψ ⇔ ♦≥0

o ψ

♦≤k−1
o ψ (k > 0) ♦[0,∞]

o ψ

♦[k,k′]
o ψ⇔ ♦[k,k′)

o ψ (k′ = ∞) ♦<k
o ψ⇔ ♦=0

o ψ ∨ . . . ∨
♦=k−1

o ψ

♦[k,k′+1)
o ψ (k′ 6= ∞) ♦=k

o ψ⇔ ♦[k,k]
o ψ

♦[k,k′)
o ψ⇔ ⊥ (k′ = 0) ♦>k

o ψ⇔ ♦≥k+1
o ψ

♦[k,k′−1]
o (k′ > 0) ♦(k,∞)

o ψ

♦[k,k′]
o ψ (k′ = ∞) ♦≥k

o ψ⇔ ♦[k,∞]
o ψ

♦(k,k′]
o ψ⇔ ♦(k,k′+1)

o ψ (k′ 6= ∞) ♦(k,k′)
o ψ⇔ ⊥ (k′ = 0)

♦(k,k′)
o ψ (k′ = ∞) ♦[k+1,k′−1]

o ψ (k′ > 0)
♦(k,k′)

o ψ⇔ ⊥ (k′ = 0) ♦[k+1,k′]
o ψ (k′ = ∞)

♦(k,k′−1]
o ( k′ > 0)

♦(k,k′]
o ψ (k′ = ∞)

Table 3 Equivalences between metric operators, o ∈ {r, l}.

that can be further analyzed. In this section we define a fam-
ily of metric languages, and we compare their expressive
power. As it will be proved in the following, MPNL is able
to encode all the languages in the family, thus being the most
expressive metric extension of PNL.

Let ∼∈ {<,≤,=,≥,>}, k ∈ N, and k′ ∈ N∪{∞}. We
consider a set of metric modalities of the type ♦∼k

r , ♦[k,k′]
r ,

♦(k,k′)
r , ♦[k,k′)

r , ♦(k,k′]
r , as well as their inverses ♦∼k

l , ♦[k,k′]
l ,

♦(k,k′)
l , ♦[k,k′)

l , ♦(k,k′]
l , with the following semantics:

– M, [i, j]
♦∼k
r ψ iff there exists m≥ j such that δ ( j,m)∼

k and M, [ j,m] 
 ψ;
– M, [i, j] 
 ♦[k,k′]

r ψ iff there exists m ≥ j such that k ≤
δ ( j,m)≤ k′ and M, [ j,m] 
 ψ;

– M, [i, j] 
 ♦(k,k′)
r ψ iff there exists m ≥ j such that k <

δ ( j,m)< k′ and M, [ j,m] 
 ψ;

The truth clauses for ♦[k,k′)
r and ♦[k,k′)

r , as well as those for
the inverse modalities, are defined likewise. It is easy to
show that all metric modalities are definable by exploiting
the length constraints, e.g.:

♦∼k
r ψ := ♦r(ψ ∧ len∼k),

and thus that all languages of the family are fragments of
MPNL. Let κ ∈ {< k,≤ k,= k,≥ k,> k, [k,k′],(k,k′), [k,k′),
(k,k′]}, and let ♦κ

o be any of the two operators ♦κ
l or ♦κ

r . The
dual operators are defined as usual, that is, �κ

o ψ = ¬♦κ
o¬ψ .

Let ε be a special symbol such that ♦εk
r = ♦r and ♦εk

l = ♦l
for any k and let S ⊆ {ε,<,≤,=,≥,>, [],(), [),(]}. We will
denote by MPNLS the language that features:

(i) the modal operators ♦∼k
l and ♦∼k

r for each k ∈ N and
∼∈ S∩{ε,<,≤,=,≥,>};

(ii) the modal operators ♦[k,k′]
l and ♦[k,k′]

r (resp., ♦(k,k′)
l and

♦(k,k′)
r , ♦[k,k′)

l and ♦[k,k′)
r , ♦(k,k′]

l and ♦(k,k′]
r ), for each

k ∈ N, k′ ∈ N∪ {∞}, if [] ∈ S (resp., () ∈ S, [) ∈ S,
(] ∈ S).

We will denote by MPNLS
l the extension of MPNLS with

the length constraints (this means that MPNL /0
l is exactly the

language MPNL of the previous sections). For the sake of
simplicity, we will omit the curly brackets in the superscript;
for example, if S = {<,>}, we will write simply MPNL<,>

instead of MPNL{<,>}. Thus, we have that MPNLε≡PNL
and MPNLε

l≡MPNLl . Moreover, by the following lemma,
we can reduce the number of interesting fragments:

Lemma 6 If o ∈ {r, l}, whenever ♦<k
o (resp., ♦[k,k′]

o ,♦(k,k′]
o )

is included in the language, then ♦≤k
o (resp., ♦[k,k′)

o ,♦(k,k′)
o )

can be defined, and the other way around.

Proof See Table 3, left column. ut

Thus, without loss of generality, from now on we can fo-
cus our attention on languages characterized by subsets of
{ε,<,=,>,≥, [],()}. As we will see, some languages will
be expressive enough to embed non-metric PNL, and some
others will not. We will use the term Weak Metric Proposi-
tional Neighborhood Logics (wMPNL) to denote the latter.

Definition 11 Let L and L’ be two languages for interval
logic. We say that L’ is at least as expressive as L denoted
by L � L’, if there exists an effective translation τ from L to
L’ (usually, defined inductively on the structure of formulae)
such that for every formula ϕ of L, M, [i, j] 
 ϕ if and only
if M, [i, j] 
 τ(ϕ), and we say that L is as expressive as L’,
denoted by L ≡ L’, if both L � L’ and L’ � L, while we say
that L’ is strictly more expressive than L, denoted by L≺ L’,
if L � L’ and L’ 6� L.

In order to compare the expressive power of interval lan-
guages, we use bisimulation games [?] and bisimulation [?];
since the former can be considered a generalization of the
latter, we give here a quick remind of bisimulation games
(defined here for interval logics).

We define the notion of a N-moves bisimulation game
(for the interval logic L) to be played by two players, Player
I and Player II, on a pair of L-models M, M′, with M =

〈D,I(D),V 〉 and M′ = 〈D′,I(D′),V ′〉. The game starts from
a given initial configuration, where a configuration is a pair
of intervals ([a,b], [a′,b′]), with [a,b] ∈ I(D) and [a′,b′] ∈
I(D′). A configuration ([a,b], [a′,b′]) is matching if [a,b] and
[a′,b′] satisfy the same atomic propositions in their respec-
tive models. The moves of the game depend on the modal
operators of L: for each ♦ in the language of L, where R♦

is the (interval) relation on which ♦ is based, Player I can
play the corresponding move: choose M (resp., M′), and an
interval [c,d] (resp., [c′,d′]) such that [a,b] R♦ [c,d] (resp.,
[a′,b′] R♦ [c′,d′]). Player II must reply by choosing an inter-
val [c′,d′] (resp., [c,d]) in M′ (resp., M), which leads to the
new configuration ([c,d], [c′,d′]). If after any given round
the current configuration is not matching, Player I wins the
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game; otherwise, after N rounds, Player II wins the game.
Intuitively, Player II has a winning strategy in the N-moves
bisimulation game on the models M and M′ with a given
initial configuration if she can win regardless of the moves
played by Player I; otherwise, Player I has a winning strat-
egy. A formal definition of winning strategy can be found
in [?]. The following key property of the N-move games can
be proved routinely, in analogy with similar results about
bisimulation games in modal logic [?]2.

Proposition 1 Let L be a finite interval language. For all
N ≥ 0, Player II has a winning strategy in the N-move L-
bisimulation game on M and M′ with initial configuration
([a,b], [a′,b′]) iff [a,b] and [a′,b′] satisfy the same N-formulas
over L with modal depth at most N.

7.1 The class of Weak Metric Propositional Neighborhood
Logics

Here we analyze the set of languages in wMPNL. Formally,
wMPNL is the subset of MPNL defined as follows:

wMPNL = {L | L ∈MPNL and PNL 6� L}.

The following lemma states some basic results which we
will use to classify languages in wMPNL.

Lemma 7 If o ∈ {r, l}, whenever any of the modalities in
{♦≥k

o ,♦[k,k′]
o } (resp., {♦=k

o ,♦[k,k′]
o }, {♦≥k

o ,♦(k,k′)
o ,♦[k,k′]

o }), are
included in the language, then ♦o (resp., ♦<k

o , ♦>k
o ) can be

defined. Similarly, whenever ♦[k,k′]
o is included, then ♦=k

o ,
♦≥k

o , and ♦(k,k′)
o can be defined.

Proof See Table 3, right column. ut

Theorem 6 Let Sw = {{<},{>},{=},{()}}. We have that
wMPNL = {MPNLS,MPNLS

l | S ∈ Sw}.

Proof First, we show that MPNLS and MPNLS
l belong to

wMPNL for each S ∈ Sw. We have to show that PNL 6�
MPNLS

l for each S ∈ Sw. As a consequence, we also have
that PNL 6�MPNLS for each S ∈ Sw. By Lemma 7, we have
that MPNL<

l � MPNL=
l and MPNL>

l � MPNL()
l . Thus, it

suffices to show that PNL 6�MPNL=
l and PNL 6�MPNL()

l ,
as follows.

PNL 6�MPNL=
l . It is easy to show that classical, non-metric

modal operators of PNL can be expressed using formulae of

2 We refer to the notion of modal depth of a L-formula ϕ , which
is defined in the usual way. Let us denote by mdepth(ϕ) the modal
depth of ϕ . It can be inductively defined as follows: (i) mdepth(p)
= 0, for each p ∈ AP; (ii) mdepth(¬ϕ) = mdepth(ϕ),mdepth(ϕ ∨
ψ) = max{mdepth(ϕ),mdepth(ψ)},mdepth(♦ϕ) = mdepth(ϕ)+ 1,
for each ♦ of the language

MPNL<

MPNL=

MPNL=
l ≡MPNL<

l

MPNL>

MPNL()

MPNL()
l ≡MPNL>

l

Fig. 2 Relative expressive power of the metric languages belonging to
wMPNL. An arrow going from L to L′ denotes that L′ is strictly more
expressive than L. Languages that are no connected through any path
are incomparable.

MPNL=
l of infinite length. For example, it is possible to ex-

press the formula ♦r p of PNL by means the infinite formu-
lae ♦=0

r p∨♦=1
r p∨ . . .♦=i

r p∨ . . .. Nevertheless, suppose, by
contradiction, that there exists a finite formula ϕ ∈MPNL=

l
such that ϕ ≡ ♦r p. This means that ϕ contains a finite num-
ber of modal operators. Let t ∈ N be the largest number
such that ♦=t

r or ♦=t
l occurs in ϕ , and, for any t ∈ N, define

tMPNL =
l as the restriction of MPNL=

l to the set of modali-
ties {♦=k

r , ♦=k
l | 0≤ k ≤ t}. Now, let M = 〈D= N,I(D),V 〉

and M′ = 〈D′ = N,I(D′),V ′〉, AP = {p}, V (p) = {[1, t+
2]}, V ′(p) = /0, and Z ⊂ I(D)× I(D′) defined as Z = {([i, j],
[i′, j′]) | δ (i, j)≤ t}. It is possible to show that Z is a bisimu-
lation for tMPNL =

l . Since M, [1,1]
♦r p, M′, [1′,1′] 6
♦r p,
and [1,1] is Z-related with [1′,1′], we have a contradiction.

PNL 6�MPNL()
l . Again, suppose that for some ϕ ∈MPNL()

l
it is the case that ϕ ≡ ♦r p. Consider M = 〈D= N,I(D),V 〉,
M′ = 〈D′ = N,I(D′),V ′〉, AP = {p}, V (p) = {[1,1]}, and
V ′(p) = /0, while Z ⊂ I(D)× I(D′) is defined as Z = {([i, j],
[i′, j′]) | i 6= j}. As before, Z is a bisimulation for MPNL()

l .
Since M, [0,1]
♦r p, M′, [0′,1′] 6
♦r p, and [0,1] is Z-related
with [0′,1′], we have a contradiction.

Now,we show that no other language belongs to wMPNL,
that is, neither MPNLS nor MPNLS

l belongs to wMPNL for
any S 6∈ Sw. Let S ⊆ {ε,<,=,>,≥, [],()} such that S 6∈ Sw.
We must show that PNL � MPNLS and PNL � MPNLS

l .
Since MPNLS � MPNLS

l , it suffices to show that PNL �
MPNLS. If ε ∈ S, then clearly PNL � MPNLS, since PNL
≡ MPNLε . If ≥∈ S or [] ∈ S, then the result immediately
follows from Lemma 7. If {<,>} ⊆ S, then the thesis im-
mediately follows by the fact that ♦oψ is defined by ♦<1

o ψ∨
♦>0

o ψ for each o ∈ {r, l}. The rest of the cases are conse-
quences of the others and of previous lemmas. ut

We now establish how the various languages of wMPNL
relate to each other in terms of expressive power.

Theorem 7 The relative expressive power of the languages
of the class wMPNL is as depicted in Fig. 2, where each
arrow means that the language at the top is strictly more
expressive than the one at the bottom.
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Proof By Lemma 7, we already know that MPNL< �
MPNL=, MPNL<

l �MPNL=
l , MPNL> �MPNL(), and that

MPNL>
l � MPNL()

l . To complete the proof, it remains to
show that MPNL= 6� MPNL<, MPNL=

l � MPNL<
l ,

MPNL() 6�MPNL>, and MPNL()
l �MPNL>

l .

MPNL= 6�MPNL<. It suffices to show that ♦=k
r cannot be

defined in MPNL<. Suppose the contrary, and let M = 〈D=

N,I(D),V 〉, M′= 〈D′= {0′}, I(D′),V ′〉,AP = {p}, V (p)=
I(D), V ′(p) = I(D′) = {[0′,0′]}, and Z = I(D)× I(D′). It is
possible to show that Z is a bisimulation for MPNL<. Since
it holds that M, [0,0] 
 ♦=1

r p, M′, [0′,0′] 6
 ♦=1
r p, and [0,0]

is Z-related to [0′,0′], we have a contradiction.

MPNL() 6�MPNL>. Consider, for any t ∈ N, the language
tMPNL>, that is, as before, the restriction of MPNL> to
the set of modalities {♦>k

r ,♦>k
l | 0≤ k ≤ t}. Let M = 〈D=

N,I(D),V 〉, M′ = 〈D′ = N, I(D′),V ′〉, AP = {p}, V (p) =
{[i, j] | δ (i, j) is odd and δ (i, j) ≤ t +N + 1}, V ′(p) = {[i′,
j′] | δ (i, j) is odd, δ (i, j)≤ t +N+1, and [i, j] 6= [a−1,a]},
where a=N(t+N+1), and consider the relation Z = {([i, j],
[k′, l′]) | δ (i, j) = δ (k, l)≤ t+N+1 and [k, l] 6= [a−1,a]}∪
{([i, j], [i′,k′]) | δ (i, j)> t+N+1 and δ (i,k)> t+N+1}∪
{([a− 1,a], [(a− 3)′,a′]),([a− 1,a], [(a− 1)′,(a+ 2)′])} ∪
{([i, j], [(a− 1)′,a′]) | δ (i, j) = 2}. It is possible to show
that Z represents a winning strategy for Player II at the ini-
tial configurarion ([a,b], [a′,b′]) (for any b) in the N-moves
bisimulation game for tMPNL>. But M, [a,b] 
 ♦(0,2)

l p and

M′, [a′,b′] 6
 ♦(0,2)
l p, which means that the formula ♦(0,2)

l p
cannot be expressed in tMPNL> for any t,N ∈ N. Thus, we
have the result.

MPNL=
l � MPNL<

l , MPNL()
l � MPNL>

l . This is imme-
diate by observing that, for each o ∈ {r, l}, ♦=k

o ψ is de-
fined by ♦<k+1

o (len=k ∧ψ), and that ♦(k,k′)
o ψ is defined by

♦>k
o (len<k′ ∧ψ) (if k′ 6= ∞) or by ♦>k

o ψ (if k′ = ∞).

We have MPNL< ≺MPNL=, MPNL<
l ≡MPNL=

l , MPNL>

≺ MPNL(), and MPNL>
l ≡ MPNL()

l as a consequence of
the above results. Now, we want to show that each language
in the set {MPNL<, MPNL=, MPNL=

l } is incomparable
with any of the languages of the set {MPNL>, MPNL(),
MPNL()

l }. To this end it suffices to show that MPNL< 6�
MPNL()

l and MPNL> 6� MPNL=
l , which can be done as in

Theorem 6. Finally, we must show that MPNL= ≺MPNL=
l

and MPNL() ≺ MPNL()
l . It is easy to see that MPNL= �

MPNL=
l and MPNL() � MPNL()

l . To show that MPNL=
l 6�

MPNL=, consider, for any t ∈ N, the language tMPNL=,
defined as usual. Let M = 〈D= N,I(D),V 〉, M′ = 〈D′ = N,
I(D′),V ′〉, AP = /0, V (p) =V ′(p) = /0, and consider the re-
lation Z = {([i, j], [i′, j′]) | i, j ∈ N} ∪ {([a,a + 1], [a′,(a +

2)′])}∪{([i, j], [(i+1)′,( j+1)′]) | i, j ∈ N}, where a = Nt.
It is possible to show that Z represents a winning strategy
for Player II at the initial configurarion ([a,a+ 1], [a′,(a+

2)′]) in the N-moves bisimulation game for tMPNL=. But
M, [a,a + 1] 
 len=1 and M′, [a′,(a + 2)′] 6
 len=1, which
means that the formula len=1 cannot be expressed in the lan-
guage tMPNL= for any t,N ∈ N. Thus, we have the result.
By exploiting a very similar argument, it is possible to show
that MPNL()

l 6�MPNL(). ut

7.2 Expressive Power of Languages of the Class MPNL

In this section we deal with the problem of classifying all the
fragments of the class MPNL with respect to their relative
expressive power. Fig. 3 shows how the various languages
are related to each other.

Lemma 8 The following equivalences hold:

1. MPNL<,> ≡MPNL<,≥;
2. MPNL<,() ≡ MPNL=,() ≡ MPNL=,> ≡ MPNL=,≥ ≡

MPNL[];
3. MPNL>,ε ≡MPNL≥;
4. MPNL≥,() ≡MPNL(),ε .

Proof It suffices to use Lemma 7 and the equivalences in
Table 4 (left column). ut

Corollary 3 If S = {ε,<,=,>,≥,(), []}, then we have that
MPNLS ≡MPNL[] and MPNLS

l ≡MPNL[]
l .

Theorem 8 The relative expressive power of the languages
of the class MPNL is as depicted in Fig. 3, where each arrow
means that the language at the top is strictly more expressive
than the one at the bottom.

Proof To prove this result, one can use very similar argu-
ments based on bisimulations (and bisimulation games) as
in the previous theorems, plus the equivalences in Table 4,
right column, and all the above results. As an example, we
present here only the proof of one case, namely MPNL< 6�
MPNL(),ε . To this end, consider, for any t ∈N, the language
tMPNL(),ε , defined as usual. Let M = 〈D=N,I(D),V 〉, M′=
〈D′ = N, I(D′),V ′〉, AP = p, V (p) = {[i, i], [i, i + 1] | i ∈
N},V ′(p) = {[i′, i′], [i′,(i + 1)′] | i ∈ N} \ {[a′,a′]}, where
a=N(t+2N), and consider the relation Z = {([i, j], [k′, l′]) |
δ (i, j) = δ (k, l) and [k, l] 6= [a,a]} ∪ {([a,a], [a′,(a + 1)′]),
([a,a], [(a−1)′,a′])}∪ {([i, i+2], [a′,a′]) | i ∈N}. It is pos-
sible to show that Z represents a winning strategy for Player
II at the initial configuration ([a,b], [a′,b′]) (for any b) in the
N-moves bisimulation game for tMPNL(),ε . But M, [a,b] 

♦<1

o p and M′, [a′,b′] 6
 ♦<1
o p, which means that the formula

♦<1
o p cannot be expressed in tMPNL(),ε for any t,N ∈ N.

Thus, we have the result. ut
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♦≥k
o ψ ⇔ ♦<1

o ψ ∨♦>0
o ψ k = 0 ♦<k

o ψ ⇔ ♦[0,k−1]
o ψ k > 0

♦>k−1
o ψ k > 0 ⊥ k = 0

♦(k,k′)
o ψ ⇔ ♦=k+1

o ψ ∨ . . .∨♦=k′−1
o ψ ∨⊥ k 6= ∞ ♦>k

o ψ ⇔ ♦[k+1,∞]
o ψ

♦>k
o ψ k = ∞ ♦[k,k′]

o ψ ⇔ ♦o(len≥k∧ len≤k′ ∧ψ) k′ 6= ∞

♦[k,k′]
o ψ ⇔ ♦(k−1,k′+1)

o ψ k > 0,k′ 6= ∞ ♦o(len≥k∧ψ) k′ = ∞

♦<k′+1
o ψ k = 0,k′ 6= ∞ ♦=k

o ψ ⇔ ♦o(len=k∧ψ)

♦(k−1,k′)
o ψ k > 0,k′ = ∞ ♦(k,k′)

o ψ ⇔ ♦o(len>k∧ len<k′ ∧ψ) k′ 6= ∞

♦(k,k′)
o ψ ∨♦<1

o ψ k = 0,k′ = ∞ ♦o(len>k∧ψ) k′ = ∞

♦≥k
o ψ ⇔ ♦oψ k = 0

♦>k−1
o ψ k > 0

Table 4 More equivalences between metric operators, o ∈ {r, l}.

MPNLε ≡ PNL

MPNL<,ε MPNL>,ε

MPNL=,ε MPNL<,> MPNL(),ε

MPNL[]

MPNL<

MPNL=

MPNL>

MPNL()

MPNL=
l MPNL()

l

MPNLl

Fig. 3 Relative expressive power of the metric languages belonging to MPNL. Fragments inside the boxes belong to wMPNL (see Fig. 2).

PNLπ NEXPTIME FO2[=,<] [8] NEXPTIME
complete complete [28]

MPNL 2NEXPTIME, FO2
r [N,=,<,s] 3NEXPTIME,

NEXPTIME NEXPTIME
hard hard

MPNL+ undecidable FO2[N,=,<,s] undecidable

Table 5 Complexity and expressive completeness results.

8 Concluding remarks

In this paper we have presented and studied metric exten-
sions of Propositional Neighborhood Logic over the inter-
val structure of natural numbers N. We have demonstrated
that these are expressive and natural languages to reason
about that structure by proving the complexity and expres-
sive completeness results summarized in Table 5. First, we
have considered the most expressive language of this class,
MPNL, and shown the decidability of its satisfiability prob-
lem. Then, we have considered an appropriate fragment,
called FO2

r [N,=,<,s], of FO2[N,=,<,s], that is, the two-
variable fragment of first order logic with equality, order,
successor, and any family of binary relations, interpreted
on the structure of natural numbers, and have proved that
MPNL is expressively complete for it. As a consequence, we

have obtained a decidability result for FO2
r [N,=,<,s]. We

have then showed how to extend MPNL to obtain an interval
logic expressively complete for the entire FO2[N,=,<,s],
which we have proved to be undecidable. Finally, we have
discussed the variety of metric logics and their expressive-
ness. The results obtained here are amenable to some fairly
straightforward generalizations, e.g., from N to Z.

One important open problem directly is the exact com-
plexity of MPNL, when constraints are represented in bi-
nary, and the identification of the fragment(s) of MPNL where
the complexity jumps occur. Another one is to identify more
precisely the (un)decidability border amongst the family of
MPNL logics.
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