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Introduction

The aim of this dissertation is to explore the use of intervals as a formal tool for
modeling and reasoning about time in logics and computer science.

Temporal reasoning has been devoted great attention in computer science since it
has been proved useful in the specification and verification of programs and reactive
systems [Pnu77]. In this context, time is viewed as a linear (and often discrete)
sequence of points representing the evolution of the system, or as a branching structure
where every path starting at a given point d is a possible evolution from the state
represented by d. Linear Temporal Logic (LTL) and Computational Tree Logic (CTL)
are well-known modal logics that correspond to such models of time and that have
been deeply investigated in the literature [Eme90].

In this dissertation we follow an alternative approach, and we consider time as
a set of intervals, that is, periods of time with a duration. In many contexts, such
a notion of time provides a more intuitive, adequate and compact description of the
considered portion of reality.

In [AlI83], Allen compares time points and intervals as basic ontologies for talking
about temporal events, and the result is definitely in favour of the latter approach.
Real world events have a duration, and thus “durationless” time points cannot deal
very well with them. Conversely, intervals can support variations of the grain of
reasoning and relative imprecision of temporal information (e.g., an event may end
before another, but the exact relationship between them may be unknown) in a way
that a model of time based on points cannot support. Another detailed comparison
and analysis of point based and interval based time models is made in [vB91]. It turns
out that in the case of intervals several philosophical and logical paradoxes disappear:
as an example, Zeno’s flying arrow paradox (“if at each instant the flying arrow stands
still, how is movement possible?”) and the dividing instant dilemma (“if the light is
on and it is turned off, what is its state at the instant between the two events?”). In
such cases, a point based time model cannot represent correctly the way we perceive
reality.

The need for interval based temporal representations of knowledge arises in many
fields of computer science, such as artificial intelligence, planning, database systems,
and computational linguistics. The use of temporal intervals as a formalism for spec-
ifying and verifying hardware systems and programs was first studied in [Mos83]
and [HMMBS83], where the authors proposed a logic, called Interval Temporal Logic
(ITL), that is an extension of LTL where formulae are evaluated over sequences
of states (intervals) instead of single states. In such an approach, the behavior of
hardware and software systems is decomposed into successively smaller periods of
activity, and ITL provides a convenient language to specify and analyze such a be-
havior. Other interval based logics that have been proposed in the literature are
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Halpern and Shoham’s Modal Logic of Time Intervals (HS) [HS91], Venema’s CDT
logic [Ven91], and Goranko, Montanari, and Sciavicco’s Propositional Neighborhood
Logic (PNL) [GMS03b] (an up-to-date survey of the field can be found in [GMS04]).

Unfortunately, in the area of interval logics, undecidability is the rule and decid-
ability the exception, and most such logics turned out to be (highly) undecidable.
Interval logics make it possible to express properties of pairs of time points (think
of intervals as constructed out of points), rather than single time points. In most
cases, this feature precludes the possibility of reducing interval-based temporal logics
to point-based ones. However, there are a few exceptions where the logic satisfies
suitable syntactic and/or semantic restrictions, and such a reduction can be defined,
thus allowing one to benefit from the good computational properties of point-based
logics [Mon05].

One can get decidability by making a suitable choice of the interval modalities.

This is the case with the (B)(B) and (E)(E) fragments of HS. Given a formula ¢

and an interval [do, d1], (B)¢ (resp. (B)@) holds over [dy, d1] if ¢ holds over [dy, da],
for some dy < dy < dy (resp. di < d), and (E)¢ (resp. (E)¢) holds over [do,d1] if ¢
holds over [dg, d1], for some dy < dg < d; (resp. da < dy). Consider the case of (B)(B)

(the case of (E)(F) is similar). As shown by Goranko et al. [GMS04], the decidability
of (B)(B) can be obtained by embedding it into the propositional temporal logic of
linear time (TL[F,P]) with temporal modalities F' (sometime in the future) and P

(sometime in the past). The formulae of (B)(B) are simply translated into formulae
of TL[F,P] by a mapping that replaces (B) by P and (B) by F. TL[F,P] has the
finite model property and it is decidable.

As an alternative, decidability can be achieved by constraining the classes of tem-
poral structures over which the interval logic is interpreted. This is the case with
the so-called Split Logics (SLs) investigated by Montanari et al. in [MSV02]. SLs are
propositional interval logics equipped with operators borrowed from HS and CDT,
but interpreted over specific structures, called split structures. The distinctive feature
of split structures is that every interval can be ‘chopped’ in at most one way. The
decidability of various SLs has been proved by embedding them into the first-order
fragments of monadic second-order decidable theories of time granularity (which are
proper extensions of the well-known monadic second-order theory of one successor
S1S).

Another possibility is to constrain the relation between the truth value of a formula
over an interval and its truth value over subintervals of that interval. As an example,
one can constrain a propositional variable to be true over an interval if and only if it is
true at its starting point (locality) or can constrain it to be true over an interval if and
only it it is true over all its subintervals (homogeneity). A decidable fragment of ITL
extended with quantification over propositional variables (QPITL) has been obtained
by imposing the locality constraint. By exploiting such a constraint, decidability
of QPITL can be proved by embedding it into quantified LTL. (In fact, as already
noted by Venema, the locality assumption yields decidability even in the case of quite
expressive interval logics such as HS and CDT.)

A major challenge in the area of interval temporal logics is thus to identify gen-
uinely interval-based decidable logics, that is, logics which are not explicitly translated
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into point-based logics and not invoking locality, or other semantic restrictions.

The main objective of the dissertation will be the exploration of the boundary area
between decidability and undecidability in the field of Interval Temporal Logics, by
developing decision procedures for interval logics whose decidability is still unknown.

After an introductory part that describes the general framework of interval tem-
poral logics and some of the most interesting interval logics proposed in the literature,
this dissertation discusses existing tableau and dual-tableau methods for point-based
and interval-based temporal logics.

Chapters 3, 4, 5, and 6 are dedicated to Propositional Neighborhood Logic (PNL).
More precisely, in Chapter 3 we present a decision procedure for the future fragment
of PNL (RPNL), interpreted over the natural numbers. Then, in Chapter 4 such a
decision procedure is extended to an original branching-time temporal logic, called
Branching Time Neighborhood Logic (BTNL), that combines CTL operators with the
operators of RPNL. In Chapter 5 the decision procedure for RPNL is extended to full
PNL interpreted over the integers. We prove the soundness and completeness of these
decision procedures, and we study their complexity. Finally, Chapter 6 establishes
an interesting connection between PNL and the two-variable fragment of first-order
logic extended with a linear ordering. Such a connection allows us to obtain a general
decidability result for PNL over various linear orders as well as to get useful insights
about the relationships between PNL and other interval-based and point-based logics.

The last part of the thesis (Chapter 7) presents an original relational proof system
in the style of dual tableaux for relational logics associated with modal logics of tem-
poral intervals that allows one to prove validity and entailment in several propositional
interval logics, interpreted over various classes of linear orderings. Conclusions pro-
vide an assessment of the main results of the dissertation and outline future research
developments.
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Introduction




The Framework of Interval
Logics

In many formalization of time, for example in analysis, physics, geometry and in most
of the logical approaches, “points” or “instants” are taken as primitive objects. They
are usually defined as entities without a duration. However, this concept is not an
intuitive one. All temporal entities we experience have a duration in time!

In this dissertation we will refer to a more intuitive approach to time, where
“objects with a duration”, that we will call “intervals” or “periods”, are taken as
primitive, non definable, concepts. The first problem we have to face is how to trans-
late this intuitive notion into a precise mathematical formalism. Two approaches are
possible: either intervals are primitive objects of the model and studied on their own,
without referring to their internal structure, or they are built up from a traditional
point-based temporal domain.

The first approach has been followed by van Benthem in [vB91], where a “reason-
able choice of basic principles embodying the minimum conditions for a structure to
qualify as a ‘period structure’ ” has been studied and analyzed. The author started
from two examples of interval structures, namely, the closed intervals over the integers
and the open intervals over the reals, and defined general principles by abstracting
from those concrete structures. He considered the relations of inclusion T (“it is
a subinterval of”) and precedence < (“it is entirely before”) between intervals, and
studied the first-order theory of structures of the form (I,C, <), where [ is simply a
non-empty set of atomic objects called “intervals”. This same approach has been fol-
lowed by Montanari et al. in [MSV02] and by Vitacolonna in [Vit05], where a purely
interval theory of a particular class of interval structures (Split Structures) and of
interval logics (Split Logics) has been developed (see Section 1.3.6). While this ap-
proach seems cleaner from a “philosophical” point of view, it turns out that the basic
principles needed to directly define an interval structure are more involved than the
ones for point-based structures. Furthermore, many usual properties of flows of time,
like linearity, density, and discreteness, that are easily defined in terms of points do
not directly transfer to intervals.

The latter approach is the most common in the interval logics literature [GMS04,
HS91, Ven91] and the easiest way to define interval structures. In this view, an
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underlying flow of time is modelled as a strict partial ordering of time points, while
intervals are defined as sets of time points satisfying some particular constraints. By
doing so, all the usual properties of strict orderings (like linearity, density, discreteness,
unboundedness, ...) can be easily defined and transferred to interval structures.

In this dissertation we stick to this second approach, and define intervals as pairs
of points [dg, d1] such that dy < dy. This chapter is devoted to precisely formalizing
the concept of interval structure and to survey the main propositional interval logics
proposed in the literature, with respect to their expressivity, axiomatizability, and
(un)decidability results.

1.1 Structures for Time Intervals

Given a strict partial ordering D = (D, <), an interval in D is a pair [dy, d1] such that
do,dy € D and dy < dy. [do,dq] is a strict interval if dy < dy, while intervals of the
form [dy, do] are called point-intervals. A point d € D belongs to the interval [dy, d1]
if dy < d < dy. We denote the set of all strict intervals on I as I(ID)~, while the set of
all (strict and point) intervals on D will be denoted by I(D)". With I(D) we denote
either of these.

Definition 1.1. Given a strict partial ordering D = (D, <) and a set of intervals
I(D), we call a pair (D, I(D)) an interval structure. An interval structure of the form
(D,I(D)~) (resp. (D,I(D)")) is called a strict (resp. non-strict) interval structure.

In all interval structures considered in this dissertation, the intervals will be as-
sumed linear. Thus, we will concentrate on partial orders with the linear interval

property:
Ve,y(x <y —Vzi,20(x < 21 <yAx <ze<y—21 <29V 2a<21Vz1=29)).

Clearly, every linear order has the linear interval property. An example of a non-
linear order with this property is the following:

— .
—

while a non-example is:

Analogously to point structures, an interval structure can be:

e linear, if every two points are comparable;
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e discrete, if every point with a successor/predecessor has an immediate succes-
sor/predecessor along every path starting from/ending in it, namely,

Ve,yle <y — Jz(z < zAz<yAVw(lz <wAw <y — z <w))),
and

Ve,y(z <y - @z <zAz<yAVwEz <wAw<y—w<2)));

e dense, if for every pair of different comparable points there exists another point
in between:
Vo, ylz <y — Jz(z < 2 < y));

e unbounded above (resp. below), if every point has a successor (resp. prede-
cessor);

e Dedekind complete, if every non-empty and bounded above set of points has
a least upper bound.

Besides these interval structures, other interesting ones that will be considered in this
dissertation are those based on N, Z, Q, and R with their usual orderings.

Branching-time structures

A particular class of structures is the one of branching-time structures. According
to a commonly accepted perspective [Eme90], the underlying temporal structure of
branching-time temporal logics has a branching-like nature where each time point may
have many successor points. The structure of time thus corresponds to an infinite
tree. We shall further assume that the timeline defined by every (infinite) path in
the tree is isomorphic to (N, <). We allow a node in the tree to have infinitely many
(possibly, uncountably many) successors, while we require each node to have at least
one successor. It will turn out that, as far as our logics are concerned, such trees are
indistinguishable from trees with finite branching.

Given a directed graph G = (G, S), a finite S-sequence over G is a sequence of
nodes g1gs ... gn, with n > 2 and g; € G for ¢ = 1,...,n, such that S(g;,gi+1) for
1=1,...,n—1. Infinite S-sequences can be defined analogously. We define a path p
in G as a finite or infinite S-sequence. In the following, we shall take advantage of a
relation St C G x G such that ST (d;, d;) if and only if g; and g; are respectively the
first and the last element of a finite S-sequence.

Temporal structures for branching time logics are infinite trees defined as follows.

Definition 1.2. An infinite tree is an infinite directed graph T = (T,S), with a
distinguished element ¢y € T, called the root of the tree, where T is the set of nodes,
called time points, and the set of edges S C T x T is a relation such that:

e for every t(# to) € T, ST (to,t), that is, every point is S-reachable from the
root;
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o for every t(# to) € T, there exists at most one ¢’ € T such that S(t',t) (together
with the previous one, this condition guarantees that every point different from
the root has exactly one S-predecessor);

e there exists no ¢’ such that S(t', ), that is, ¢y has no S-predecessors;

o for every t(# to) € T, there exists at least one ¢ € T such that S(¢,¢'), that is,
every point has at least one S-successor.

It is not difficult to show that infinite trees are acyclic graphs, that is, there exist no
finite paths which start from and end at the same node.

Given an infinite tree T = (T, S), we can define a partial order < over T such that,
for every t,t' € T, t < t' if and only if ST(¢,¢'). It is immediate that, for every
infinite path p in T, (p, <) is isomorphic to (N, <). Given a tree T = (T, S), and the
corresponding partial ordering (T, <), we can generalize Definition 1.1 to trees, and

we denote the set of all strict intervals on T as I(T)~, and the set of all intervals as
I(T)*.

1.2 Relations between intervals
In linear orders, the 13 Allen’s binary relations between intervals are usually consid-

ered [All83]: equals, ends, during, begins, overlaps, meets, before together with their
inverses. These relations are graphically represented in Figure 1.1.

current interval:

ends:

during:

begins:

overlaps:

\M

meets:
before:

Figure 1.1: Allen’s relations

Another natural binary relation between intervals, definable in terms of the Allen’s
relations, is the sub-interval relation. Given a partial ordering D and two intervals
[s0, s1] and [dg, d1], we have that:

o [sp, s1] is a sub-interval of [dg,d1] (denoted by [so, s1] E [do, d1]), if dp < sp and
s1 < dy;

o [so,s1] is a proper sub-interval of [do,d;] (denoted by [so,s1] T [do,d1]), if
80, 81] C [do, d1] and [sg, s1] # [do, di];
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o [so, s1] is a strict sub-interval of [dy, d1] (denoted by [so, s1]E[do, d1]), if do < so
and s1 < dj.

Notice that the strict sub-interval relation [= corresponds to Allen’s relation during,
while C and C correspond to begins U during U ends and equals U begins U during U
ends, respectively.

As for ternary relations between intervals, there is one of particular importance
in the area of propositional interval logics. Such a ternary relation is the relation
A, that was introduced by Venema in [Ven91], and can be graphically depicted as in
Figure 1.2. Formally, we have that Aijk holds if and only if ¢ meets j, i begins k, and
j ends k, that is, k is the concatenation of ¢ and j.

1 k 1
I 1
7

Figure 1.2: Venema’s ternary relation A

In Chapters 3, 4, 5, and 6 we will focus our attention on the relation meets and
its inverse met, that we call left neighborhood and right neighborhood relation, respec-
tively. Interval temporal logics based on these relations are known as Neighborhood
Logics.

1.3 Some Propositional Interval Logics

In this section we introduce and analyze some well known propositional interval logics.

The generic language of propositional interval logics includes the set of propo-
sitional variables AP, the classical propositional connectives — and V (all others,
including the propositional constants T and L, are definable as usual), and a set of
interval temporal operators (modalities) specific for each logical system.

As pointed out in the previous sections, there are two different natural seman-
tics for interval logics, namely, the strict one, which excludes point intervals, and
a non-strict one, which includes them. A strict model for a formula is a tuple
M~ = (D,I(D)",V) where (D,I(ID)") is a strict interval structure with the linear
interval property, and V : AP — 2!®)" is the valuation function that assigns to every
propositional variables p the set of intervals on which p holds. Respectively, a non-
strict model is a tuple M = (D,I(D)*, V) where (D,I(D)") is a non-strict interval
structure with the linear interval property, and V : AP — 21" When we do not
wish to specify the strictness, we will simply write M, assuming either version.

The semantic of interval temporal logics is sometimes subjected to restrictions
justified by the specific applications for which a logical system has been designed, as,
for example:
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e [ocality, meaning that a propositional variable is true over an interval if and
only if it is true at its starting point;

e homogeneity, requiring that truth of a formula at an interval implies truth of
that formula at every sub-interval of it.

A different kind of restriction is imposed by the so-called split-structures (see Section
1.3.6), where not all sub-intervals of the current interval are “available”, but only
those two which are determined by the “split-point” of the current interval.

Unless otherwise specified, we interpret our interval logics over interval structures
where all intervals are present and do not assume any semantic restriction on the
valuation of formulae. As an example, given an interval [d;, d;], it may happen that
[d;,d;] € V(p) while [d],d}] & V(p) for all intervals [d}, d’] strictly contained in [d;, d;].

(2] 1)

1.3.1 The logic HS

The most expressive propositional interval logic with unary modal operators studied
in the literature is Halpern and Shoham’s logic HS [HS91]. HS contains (as primitive
or definable) all unary modalities that correspond to the relations between intervals
depicted in Figure 1.1, so it can be considered as the temporal logic of Allen’s relations.
It features, as primitives, the modalities (B) (begins) (E) (ends), and (A) (met by),
as well as their inverses (B), (E), and (A), which suffices to define all other modal
operators. HS was originally interpreted over non-strict models based on partial
orders with the linear interval property.
Formally, HS-formulae are generated by the following abstract syntax:

pu=pl-w|leVe | (By| (Bel| (Bl (E)]| (A ]| (Ae.

The semantics of HS is defined recursively by the satisfiability relation IF as follows.
Let M = (D, I(ID), V) be some given model, and let [d;, d;] € I(D):

e for every propositional letter p € AP, M, [d;, d;] I p iff [d;, d;] € V(p);
[ ] ].V[7 [di, d]] H_ ¢1 Vv 1/}2 lff 1\/[7 [d“ dj] ”‘ 1/)17 or 1\/[7 [dl,dj] ”‘ wg;

o M, [d;,d,] I (B) iff 3dj € D, d; < dy, < d;, such that M, [d;, dy] I );

— =

e M, [d;,d;] IF ¢ iff 3dy, € D, dj, > dj, such that M, [d;, di] IF ;

o M, [d;,d;] IF (E) iff 3dy, € D, d; < dy < dj, such that M, [dy, d;] IF ;

B
E
A

}_

-~

e M, [di,dj] 1ﬁ iff 3dy, € D, d; < d;, such that M, [dk,dj] I+ w

A

L4 M7 [dﬂd]] w
Ay

}_

(
(
(
( iff 3dy, € D, di, > dj, such that M, [d;, di] I+ 1;
(

~  ~

e M, [d;,d;] IF iff 3dy, € D, dj, < d;, such that M, [dg, d;] IF 4;
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It is worth noticing that no interval is a beginning/ending interval of itself, and that
point intervals have no beginning or ending intervals at all. Hence, on the non-strict
semantics, point intervals and strict intervals can be distinguished by the formula
[B] L, which is true only on the former ones.

The begin point and end point modalities (denoted [BP] and [EP]) relate an
interval with its beginning and ending point, respectively. A formula [BP]y (resp.,
[EP]y) is true over an interval [d;,d;] if and only if ¢ holds on the interval [d;, d;]
(resp., [dj,d;]). They can be defined in HS (over non-strict interval structures) as
follows.

[BPJe == ([B]LAg)V ([(B)([B]LAp))
[EPJe == ([B]LAg)V ({(E)[B]LAp))

In the non-strict semantics, the operators (A) and (A) can be defined using the other
ones:

(Ayp == [EPI(B)e  (A)p == [BP|(E)p
while in the strict semantics they have to be taken as primitives.

HS is a highly undecidable logic. In [HS91], the authors have obtained important
results about non-axiomatizability, undecidability, and complexity of the satisfiability
problem for HS in many natural classes of models. It turns out that the validity
problem for HS, interpreted over any class of ordered structures with an infinitely
ascending sequence is at least r.e.-hard. In the case of Dedekind-complete ordered
structures having an infinitely ascending sequence (e.g., natural numbers and reals),
it becomes I1}-hard. Furthermore, it is possible to show that undecidability occurs
even without existence of infinitely ascending sequences.

1.3.2 The logics CDT and BCDT*

Venema’s CDT logic [Ven91] is the most expressive propositional interval logic over
linear orderings. An extension of CDT to partial orderings with the linear interval
property, called BCDT™, has been investigated by Goranko, Montanari and Sciavicco
in [GMS03a, GMSS06]. The language of CDT and BCDT™ features the modal con-
stant 7, that holds only on point intervals,a and three binary operators C, D, and T,
based on the ternary relation A (Figure 1.2). Formulae of CDT are generated by the
following abstract syntax:

pu=plopleVe|m|leCpleDe|eT .

The satisfiability relation IF for the modal operators w, C', D, and T is defined as
follows.

,[di,dj] Ik 7 iff di = dj;

M

M, [di,d;] IF  C 4 iff 3dy, € D, d; < dy < d;, such that M, [d;, dy] IF  and
M
M

J|disdi] I o D o iff 3d, € D, d < d;, such that M, [di,d;] IF ¢ and
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e M, [d;,d;] IF ¢ T ¢ iff 3dy, € D, dp > dj, such that M, [d;,d] IF ¢ and
M, [d;, dg] IF 2.

As for the relationship with the other propositional interval logics, interpreted
over linear ordering, it is immediate that CDT subsumes HS:

(Byp = ¢ C (—m); (B)p = (—m) T ¢;

(E)p = (-m) C y; (E)p =@ D (-m);

(Ap=(mne) TT;,  (Ap=(mAp)DT;

Since HS is the propositional interval logic of Allen’s relations, every propositional
interval logic with unary modalities based on Allen’s relations is subsumed by CDT.
Furthermore, as a consequence of the previous results for HS, the satisfiability (resp.
validity) problem for CDT is not decidable over almost all interesting classes of linear
ordering, including N, Z, R, etc.

1.3.3 The logic BE

An interesting fragment of HS is the logic BE, that was first proposed and studied
by Lodaya in [Lod00]. BE features only the temporal operators (B) and (F), and it
was originally interpreted over linear, non-strict interval structures. Its syntax is the
following.

pu=plop Vel (By| (E)e.

As pointed out in the case of HS, the modal constant 7 is definable as [B] L. Hence,
the beginning point and ending point modalities [BP] and [EP] can be defined as
shown above. Another interesting modality that is definable in BE is the universal
modality [All], that forces a formula to hold over every interval of the model:

[Alllg ::= [Ble A [E]e A [B][Elep.

Despite its simplicity, BE is expressive enough to capture some relevant classes
of interval structures by means of constrant formulae. First, one can constrain an
interval [dp, d;] to be such that dy < dy and there are no points between dy and dy
by means of the following formula:

ly :=(B) TA[B][B] L.
Hence, discreteness can be defined as follows
discrete ::= [All] (7 Aly A ((B)l1 A (E)1)),
while density can be imposed by the following formula
dense ::= [All]-l;.

In [Lod00], Lodaya proved that BE is undecidable over non-strict, dense, linear
interval structures. Since density is expressible by a constant formula, the satisfiability
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of a formula ¢ in a dense model is equivalent to the satisfiability of [All]-l; Ay in any
linear non-strict model. Hence, the satisfiability problem for BE over all non-strict
linear orderings is undecidable.

To the best of our knowledge, the decidability of BE over special classes of linear
orderings (such as the natural numbers), or over strict models, and the definition of
a sound and complete axiomatic system for BE are still open.

1.3.4 The sub-interval Logic D

The logic D is the logic of the sub-interval relation. Since D can only look inside the
current interval, from the linear interval property it follows that we can restrict our
attention to the class of all linear structures.

The abstract syntax of the logic D is:

pu=p|op|eVel| (D).

Besides the strict and non-strict versions, the logic D admits different semantic
variations, depending on which sub-interval relation (C, C, or ) is assumed. Thus,
the formal semantics of the operator (D) is the following.

e M, [d;,d;] IF (D) iff there exists a sub-interval [dy,dy,] of [d;,d;] such that
M, [d, dim] IF .

In the following, we use D, D, and D¢ to distinguish among the various semantics
of the logic of subintervals.

The sub-interval logic was first studied by van Benthem in [vB91], where the
reflexive subinterval relation C is considered. The author proves that when the strict
semantics is considered and formulae are interpreted over the rational numbers, the
logic D becomes equivalent to the standard modal logic S4 (that is, the logic of
reflexive and transitive frames). Since in the case of the reflexive relation T every
subinterval frame is a reflexive and transitive frame, we have that D¢ is equivalent to
S4 also when interpreted over the class of all linear orderings. Moreover, van Benthem
considers also the case of D interpreted over the integers, and proves that such logic
is equivalent to the modal logic Grz, that is, S4 with the Grzegorczyk’s Axiom:

[DI([D](p — [Dlp) — p) — p,

expressing the fact that C is well-founded. The satisfiability problem for both S4 and
Grz is known to be PSPACE-complete [CR03, DGO00, Lad77].

In [SS03], Shapirowsky and Shehtman explored the relations between the logic
D¢ (where the strict subinterval relation [ is considered) and the logic of Minkowski
space-time. The authors proved that the following axiomatic system is sound and
complete for D over the class of dense orderings:

e the K axiom;
e transitivity: [D]p — [D][D]p,
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e seriality: (D) T,
e 2-density: (D)p1 A (D)p2 — (D)((D)p1 A (D)p2).

By means of a suitable filtration technique, they also proved decidability and PSPACE
completeness of this particular subinterval logic [Sha05].

We are not aware of published results about axiomatization and/or decidability of
the logic of subintervals when the non-strict semantics and/or the proper subinterval
relation [ is considered, over any class of linear orders.

1.3.5 The logics BB and EE

The logics BB and EE are the fragments of HS featuring the modal operators (B)/(B)
and (E)/(E), respectively. The syntax of BB is defined by the following grammar:

eu=p|-@|leVel (B)el (Be.

The syntax of EE is defined by replacing (B) with (E) and (B) with (E), respectively.

The BB and EE logics are two example of how decidability can be achieved by mak-
ing a suitable choice of the interval modalities. As shown by Goranko et al. [GMS04],
the decidability of BB and EE can be obtained by embedding them into the proposi-
tional temporal logic of linear time TL[F,P] with temporal modalities F' (sometime in
the future) and P (sometime in the past). The formulae of BB are simply translated
into formulae of TL[F,P] by a mapping that replaces (B) by P and (B) by F. TL[F,P]
has the finite model property and is decidable. EE can be translated into TL[F,P] in
a similar way.

1.3.6 Split Logics

Split Logics (SLs for short) can be viewed as an attempt to identify expressive, yet
decidable, propositional interval logics without imposing any locality principle. In
the case of SLs, decidability is achieved by restricting the interval structures over
which formulae are interpreted. In the following, we briefly describe such a semantic
restriction, we outline the basic features of SLs, and we provide a short summary of
the decidability results about them.

SLs have been proposed by Montanari, Sciavicco, and Vitacolonna in [MSV02].
They are propositional interval logics equipped with operators borrowed from HS and
CDT, but interpreted over specific structures, called split structures. The distinctive
feature of split structures is that every interval can be ‘chopped’ in at most one way,
and that at most two of its sub-intervals are ‘available’.

Formally, a split structure is a pair (D, H(ID)), where H(ID) is a proper subset of
I(D) (a precise characterization of H(ID) can be found in [MSV02]). As an example,
consider the split structure over the naturals (N, SPLIT(N)), where SPLIT(N) =
{[2%a,2"(a 4+ 1)] : i,a € N}. It can be viewed as an upward unbounded layered struc-
ture, where the base layer (Layer 0) contains all and only the atomic intervals
[a,a + 1] € SPLIT(N) (an interval is atomic when it cannot be chopped into smaller
subintervals), and the i-th layer contains all and only the intervals [2¢a,2!(a + 1)] €
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SPLIT(N). The relations between the split structure of the naturals and the cor-
responding upward unbounded layered structure is depicted in Figure 1.3. Arrows
represent the ‘chopping’ relation between intervals.

Layer 3 }

Layer 2 }

Layer 1 }

Layer 0 i I
0 1 2 3 4 5 6 7 8

Figure 1.3: The split structure of the naturals.

Formulae of SLs are generated by the following abstract syntax:

eu=p|-e|leVe| (Dp| (De|(Fle| (FleleCeleDe|eT .

Given a split structure (D,H(D)), a split model is a tuple (D,H(D), V), where
V: AP — 2H(®) The formal semantics for the modal operators (D), (D), (F), and
(F) are the following (the semantics for the 'chop’ operators C, D, and T are as
previously defined).

o M, [d;,d;] IF (D) iff there exists [dg,d,] € H(D) such that [dy,d] T [d;, d;]
and M, [dg, d,] IF ¢;

e M, [d;,d;] IF (D) iff there exists [dy,d,,] € H(D) such that [d;,d;] T [d, dy]
and M, [dg, dn] IF ¢;

o M, [d;,d;] IF (F)p iff there exists [dy,d,] € H(D) such that d; < dy and
M7 [dk7d’m] I 3
e M, [d;,d;] I+ (F)p iff there exists [dx,dmn] € H(D) such that d, < d; and

M, [dg, d] IF .

As for decidability results, in [MSV02] Montanari, Sciavicco and Vitacolonna show
that SLs can be viewed as the interval logic counterparts of the monadic first-order
(MFO) theories of time granularity. By embedding them into decidable MFO theories
of time granularity, the authors prove the decidability of various SLs, as well as their
completeness with respect to the guarded fragment of these theories.
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1.4 Neighborhood Logics

The interval logics based on Allen’s relation meet and its inverse met by are called
neighborhood logics. First-order neighborhood logics were introduced and studied by
Zhou and Hansen in [CH98], while their propositional variants, interpreted over linear
structures (both strict and non-strict), were first studied by Goranko, Montanari and
Sciavicco in [GMS03a].

1.4.1 Propositional Neighborhood Logic

There are various choices of the language of Propositional Neighborhood Logic (PNL
for short), depending on the choice for the temporal operators and on the considered
semantics (strict and non-strict). Its most general version is denoted PNL™ and it
includes the modal operators <, (met by) and <; (meets), and the modal constant
7. Its formulae are generated by the following abstract syntax:

e=p|lpleVel|r]| | .

The language where the modal constant 7 is not included will be denoted PNL™.
To make it easier to distinguish between the strict and the non-strict semantics, we
will reserve the above notation for the case of non-strict PNL, while for the strict
one, denoted PNL™, we use (A) and (A) instead of <, and <y, respectively (7 is not
included in PNL™).

The formal semantics of the modal constant 7 is defined as in CDT, while for the

non-strict operators <, and <; it is defined as follows:
e M*, [d;,d;] IF Opp iff 3dy € D, dj, > dj, such that M™, [d;, d] IF 4;
e M™,[d;,d;] IF O iff 3dy, € D, dy, < d;, such that M, [dy, d;] IF 4.
In the case of the non-strict operators, the formal semantics is the following:

o M~ [d;,dj] IF (A iff 3dy, € D, dy, > d;, such that M~ [d;, dy] I 1);

o M, [d;,d;] IF (Ayy iff 3dy, € D, di, < d;, such that M, [dy, d;] IF .

The non-strict operators (A) and (A) can be defined in PNL™" as follows:
(A)p ::= Op(mm A @) (A)p := (= A )

It will turn out that the logic PNL™ subsumes both PNL* and PNL~. The precise
formalization and the proof of this result is given in Chapter 6, where the expressive
power of PNL™T is compared with the one of the other propositional neighborhood
logics.

Propositional Neighborhood Logic are quite expressive. Indeed, in the strict se-
mantics various classes of linear structures can be characterized [GMS03b]:
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(A-SPNL") [A]p — (A)p, in conjunction with its inverse, defines the class of un-
bounded structures;

(A-SPNL?) ((A)(A)p — (A)(A)(A)p) A ((A)[A]p — (A)(A)[A]p), together with its
inverse, defines the class of dense structures;

(A-SPNL#) ([A]L — [A(AJ[A] LV(AY(A) T AAJIA] 1) A (((A) T A[A](pA
[?}dﬁp N [Alp)) — [A][A](A)((A)—p A [A][A]p)), with its inverse, defines the class
of discrete structures;

(A-SPNL?) ((A)(A)[A]p A (A)[A]-[Alp) — (A)((A)[A][A]p A [A](A)~[A]p), with its
inverse, defines the class of Dedekind complete structures.

Since PNL™ can be encoded into PNL” T, we have that the above classes of structures
can be defined in PNL™ as well.

As for axiomatizability results, in [GMS03b], Goranko et al. proposes sound and
complete axiomatic systems for PNL™, PNL*, and PNL™ interpreted over the class
of all linear orders. By combining such axiomatic systems with the above formu-
lae, sound and complete axiomatic systems for PNL™ and PNL™ over the class of
unbounded, dense, discrete, and Dedekind complete structures (and all their combi-
nations) can be obtained.

1.4.2 Right Propositional Neighborhood Logic

In Chapter 3, we study a propositional interval temporal logic based on the right
neighborhood relation between intervals, that we call Right Propositional Neighbor-
hood Logic (RPNL for short). In its most general variant, called RPNL™ T, it is
interpreted over non-strict interval structures and its formulae are recursively defined
by the following grammar:

pu=p|opleVe || O

As in the case of PNL, we denote with RPNL™ the fragment without the modal
constant m, and with RPNL™ the fragment interpreted over strict interval structures,
where <,. is substituted with (A). The semantics of the temporal operators is the
same as the one of PNL.

1.4.3 Branching Time Neighborhood Logic

All logics described so far are usually interpreted over linear structures, and feature
temporal operators that only allow one to express properties of a single timeline. In
Chapter 4, we discuss the decidability of an original propositional interval-based tem-
poral logic, interpreted over infinite trees, that we call Branching Time Neighborhood
Logic (BTNL for short). Such a logic combines the interval modalities of RPNL with
the path quantifiers A and E of branching time temporal logics [Eme90]. To the best
of our knowledge, BTNL is the first temporal logic that extends an interval temporal
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logic with path quantifiers and that does not impose any semantic restriction (such
as locality or homogeneity) on the valuation of formulae.

Formulae of BTNL are built from a set AP of propositional letters p,q,..., by
using the Boolean connectives = and V, the modal constant 7, and the future temporal
operators <, and EO,.. The other classical propositional connectives, as well as the
logical constants T (true) and L (false), are defined in the usual way. Furthermore,
we introduce the temporal operator A0, as a shorthand for =E<,— and the temporal
operator A<, as a shorthand for -EO,.—.

The formal syntax of BTNL is recursively defined by the following grammar:

p=plpleVe|r|EOCp| EDp.

A formula of the form E<p, EQp, AOp or AO.4, is called a temporal formula.
A temporal formula whose main temporal operator is either £<,. or EO,. is called an
existential formula, while a temporal formula whose main temporal operator is either
A, or A, is called a universal formula.

A model for a formula is a tuple MT = (T,I(T)*,V), where T is a tree and
Vi AP — 2I®7 i the valuation function that assigns to every propositional letter
p the set of intervals where p holds. The semantics of BTNL is defined recursively by
the satisfiability relation |- as follows. Let M™ = (T, I(T)*, V) be some given model,
and let [t;,t;] € [(D)*:

° 1\/1"'_7 [ti,t]’} Ik 7 iff t; = tj;

o M™, [t;,t;] IF EO4 iff there exists ¢y, € D, tj < ty, such that M1, [t;, ;] IF 9

e M, [t;,t;] IF EO, iff there exists an infinite path p = ¢;t;11 ... rooted at ¢;

such that, for every ¢ in m, with ¢; < tg, M+, [t;, t] IF 9.

Putting together the tableau method for CTL [Eme90] and the one we devel-
oped for RPNL (Chapter 3), we build a doubly-exponential tableau-based decision
procedure for BTNL, that is discussed in Chapter 4.



Tableaux and Dual-tableaux for
Temporal Logics

In this chapter we first survey the main existing tableau methods for propositional
point-based and interval-based temporal logics. Then we briefly describe the dual-
tableau proof systems for standard relational logic, that will be used in Chapter 7 as
the starting point for the development of a general proof system for interval temporal
logics.

According to a common accepted perspective, tableau methods for modal and
temporal logics can be classified as explicit or implicit [DGHP99]. Explicit methods
keep track of the accessibility relation by means of some external device. One example
is to maintain an auxiliary graph of named nodes n;, n;, ..., where each node contains
a subformula, or a set of subformulae, of the formula to be checked. The existence of
an edge connecting n; to n; means that n; is accessible from 7n;. Another example
is to associate structured labels to the nodes that constraint the formula, or the set
of formulae, to hold only at the domain element(s) identified by the label. In this
case, the accessibility relation is captured by the tableau system by means of labeled
formulae. In implicit methods (c.f. [Fit83, Rau83]), the accessibility relation is built-
in into the structure of the tableau. In this case, the tableau represents a model of the
considered formula. The non-standard finite model property can then be exploited
to show that the considered tableau method is an effective decision procedure (it
does not lead to infinite computations). Another further classification is to partition
implicit methods into declarative and incremental ones [KMMP93]. Methods in the
former class first generate all possible sets of subformulae of a given formula, and
then eliminate some (possibly all) of them, while those in the latter generate only
‘meaningful’ sets of formulae.

Relational logics provide a common background for a large class of relational
structures used in computer science and can be used as a general framework for
specification and reasoning in nonclassical logics. They are logical languages that
describe how objects relates to other objects. In such logics, a set of primitive relations
take the place of propositional variables and of predicate symbols, while the operations
of relational algebra (e.g., negation, union, composition of relations) take the place
of boolean connectives, quantifiers, and modalities. Dual-tableau proof systems for
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relational logics were first developed in [Ori88] and further expanded in [GPOO0Ga,
Ort96]. The systems are founded on the Rasiowa-Sikorski system for the first order
logic [RS63] which is extended with the rules for equality predicate in [GPOO06D].

2.1 Tableaux for point-based temporal logics

The problem of devising tableau methods for propositional point-based temporal log-
ics, such as Linear Temporal Logic (LTL) and Computational Tree Logic (CTL) (and
various fragments and extensions of them), has been extensively investigated in the
literature. In this section we briefly discuss the tableau for LTL originally proposed
by Wolper in [Wol85], its incremental improvement (Kesten et al., [KMMP93]), and
the implicit tableau for CTL of Emerson and Halpern [EH85].

2.1.1 Tableaux for Linear Temporal Logic

LTL extends propositional logic by adding a unary modality X (next) and a binary
modality U (until). Past LTL (PLTL) extends LTL with the past modalities X
(previous) and S (since). These logics are usually interpreted over infinite sequences of
states, namely, over linear structures isomorphic to the set of natural/integer numbers,
with the usual ordering relation. Let us consider, for simplicity, the case of LTL. A
model M for LTL is a pair (S, V), where S is a state sequence dy,d;,ds, ..., and V is
a valuation function that associates to every propositional variable p the set of states
where p holds. We have that X¢ holds at a state d; if and only if ¢ holds at d;;1,
and U1 holds at d; if and only if there exist a state d; in the future of d; such
that v holds at d; and ¢ holds at every state between d; and d; (excluding d;). The
satisfiability problem for both LTL and PLTL is PSPACE-complete [SC85].

In the following, we first describe the exponential time declarative method for LTL
developed by Wolper [Wol85] and successively extended by Lichtenstein and Pnueli to
PLTL [LP00]. Then we discuss the improved incremental method for PLTL proposed
by Kesten et al. [KMMP93].

Wolper’s tableau method is a natural extension of the one for propositional logic.
In the classical setting, the formula to check for satisfiability is turned into a tree-
like structure, annotated with its subformulae, to take into account the different
possibilities that come from disjunctions. In the temporal setting, the situation is
a bit more complex because formulae are interpreted over sequences of states. The
key idea of the method is the so-called fizpoint definition of temporal operators, that
allows one to split every formula into a (possibly empty) part related to the current
state and a part related to the next (resp. previous) state. For example, the formula
U is split as follows: either ¥ holds now, or ¢ holds now and U1 holds at the
next state. The fact that only a finite set of different scenarios can be generated in
this way allows one to devise a mechanism to identify periodic situations in a finite
time.
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Let ¢ be the PLTL-formula to check for satisfiability. The set of all subformulae
of ¢ and their negations is called the closure of ¢, and it is denoted by CL(p). The
key notion of this method is the notion of atom, namely, any subset A of CL(y) such
that:

1. for all ¥ € CL(p), ¥ € A if and only if - &€ A;
2. for all p V& € CL(p), ¥ V& € A if and only if either ¢ € A, or £ € A;

3. for all YUE € CL(yp) (similarly for S¢€), if YUE € A then ¢p € A or £ € A, and
if £ € A then 9U¢ € A.

Intuitively, an atom is a consistent subset of CL(y). Wolper’s method builds a directed
graph G = (N, E), whose nodes are all the atoms and whose edges are such that
(n;,n;) € B if and only if:

1. for all X1 € CL(p) (similarly for X)), Xt € n; if and only if ¢ € nj;
2. for all YUE € CL(p) (similarly for S¢), if YUE € n; and —~§ € n;, then
YUE € ny, and if YUE € n; and ¢ € n;, then YUE € n;.

A node n; that does not contain any formula X1 € CL(y) and such that, for every
WYSE € ny, £ € ny, is called an initial node.

The procedure attempts to obtain a model for the formula by searching for a
suitable infinite path ng,ni,... starting from an initial node ng that contains ¢. To
this end, it exploits the notion of fulfilling path. An infinite path ng,ni,... is a
fulfilling path if and only if for every ¢ > 0, if YU € n;, then there exists j > ¢ such
that & € n;. We have that ¢ is satisfiable if and only if there exists a fulfilling path
for v in G.

Since fulfilling paths are infinite objects, we need a finite characterization of them.
This is given in terms of self-fulfilling maximal strongly connected components of
G. A strongly connected component C' is self-fulfilling if for every formula ypU¢&
that belongs to a node n; € C there exits a node n; € C such that { € n;. The
algorithm that checks for ¢ satisfiability works as follows: first (construction phase), it
builds the graph G; then (elimination phase), it removes maximal strongly connected
components that are either not reachable from an initial node, or are without outgoing
edges and not self fulfilling. It turns out that ¢ is satisfiable if and only if the final
graph G is not empty.

An efficient incremental variant of Wolper’s declarative procedure is the tableau
method of Kesten et al. [KMMP93]. This method extends to PLTL the incremental
method for LTL originally developed by Pnueli and Sherman [PS81]. Like Wolper’s
method, it is based on the notion of atom. However, instead of building the entire set
of atoms immediately (thus paying the worst case exponential complexity price), it
builds the tableau incrementally, introducing only those atoms that are necessary to
decide the satisfiability of the given formula. The construction starts from an initial
graph that contains all initial atoms including ¢, all connected to an empty node
no (initial phase). Then (correct-graph phase), as long as some edge (n;,n;) in the
current graph G violates some future (resp. past) constraints, that is, Xv¢ € n; and
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P € nj (resp. X € n; and ¢ & n;), it adds a possibly new atom ny that contains all
formulae of n; and some additional formulae that remove the violations. Furthermore,
it replaces the unsatisfactory edge (n;,n;) by a new edge (n;,ng) (resp. (ng,n;)).

Once all violations has been removed, the algorithm searches for a self-fulfilling
maximal strongly connected component that is reachable from an initial node con-
taining . If such a component exists, the formula is satisfiable, otherwise not. Even
though in the worst case the computational complexity of this procedure is still ex-
ponential, in many cases a much smaller number of atoms is generated.

2.1.2 Tableaux for Computational Tree Logic

A propositional temporal logic interpreted over branching structures for which a
tableau method has been devised is CTL. CTL extends propositional logic with two
unary temporal operators EX, AX and two binary temporal operators EU and AU.
A model for CTL is a tuple M = (S, R, V) where S is a set of states, R is a total
binary relation, and V is the valuation function. The unfolding of M produces a
tree, whose paths are isomorphic to the set of naturals. The formula EX¢ (resp.,
AX ) states that ¢ holds at some (resp., every) successor of the current state, while
the formula EU(p,1) states that along some (resp., every) path starting from the
current state, the formula ¢ holds until ¢ holds. The satisfiability problem for CTL
is EXPTIME-complete.

An implicit tableau method for CTL, that generalizes the one for LTL, has been
proposed by Emerson and Halpern in [EH85]. If ¢ is the formula to be checked,
the procedure generates a directed graph G = (N, E) whose nodes are maximal
propositionally consistent subsets of CL(p). Furthermore, it puts an edge from n; to
n; if and only if the following conditions hold:

1. for all AX1 € CL(yp), if AX1) € n; then ¢ € n; (the same for ~EX1);
2. for all AU(@,&) € CL(yp), if AU(¢,&) € n; then either £ € n; or ¥ € n; and
AU, ) € n;.

As in the case of Wolper’s tableau, after the initial construction phase there is an
elimination phase. In this case it encompass both a local pruning that removes local
inconsistencies and another pruning process that removes nodes including eventuali-
ties that are not fulfilled in the current graph. The formula is satisfiable if and only
if the final graph is not empty.

2.2 Tableaux for interval-based temporal logics and
Duration Calculi

In the literature there exist very few tableau methods for interval-based temporal
logics and duration calculi. Here we briefly survey the tableau decision procedure for
an extension of Local PITL interpreted over finite state sequences (LPITLy,,;) pro-
posed by Bowman and Thompson in [BT03], the one for a fragment of Propositional
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Duration Calculus (PDC,p,,) proposed by Chetcuti-Serandio and Farifias del Cerro in
[CSFDCO00], and the semi-decision tableau method for CDT interpreted over partial
orders (BCDT™) by Goranko et al. [GMS03a, GMSS06].

2.2.1 A tableau for LPITL

LPITL,,,; pairs the operators O (strong next) and C (chop) of LPITL with a new
binary operator proj (projection) that represents repetitive behaviors. The formula
Oy holds on the current interval if and only if ¢ holds over an interval of length
one less than the current interval, resulting from moving one state into the future.
¢ C 1 holds on the current interval if it can be partitioned into two sub-intervals,
the first of which satisfies ¢ and the second of which satisfies 1. For any given pair
of formulae ¢ and v, ¢ proj ¥ holds over an interval if it can be partitioned into a
series of sub-intervals each of which satisfies o, while ¢ (the projected formula) holds
on the interval formed by the end points of these sub-intervals. LPITL,,,; formulae
are interpreted over finite state sequences dg, d1, . .., di. The locality constraint forces
that, for any propositional variable p and any interval [d;,d;], [d;,d;] € V(p) if and
only if [d;,d;] € V(p). The satisfiability problem for LPITL,,,; is non-elementary
[GMS04].

Bowman and Thompson’s tableau method is based on the definition of a suitable
normal form for all operators of the logic, which reflects the locality constraint and
provides uniform inductive definitions of the operators. Starting from them, Bowman
and Thompson develop an implicit tableau-based decision procedure for satisfiability
checking in the style of Wolper [Wol85]. The normal form for LPITL,,,; formulae
has the following general form:

(T Ape) V \/(Wi A O,

proj

where 7 stands for the formula () L that holds only on point-intervals, ¢, and ¢; are
point formulae, and ¢} is an arbitrary LPITL,,,; formula. The first disjunct states
when a formula is satisfied on a point-interval, while the second disjunct states the
possible ways in which a formula can be satisfied over a strict interval, namely, a point
formula must holds over the initial point and an arbitrary formula must holds over
the remainder of the interval.

The tableau construction exploits this normal form to split the requirements im-
posed by a temporal formula into requirements about the present (the initial point of
the interval) and requirements into the future (the reminder of the interval). As in
the case of Wolper’s tableau, it generates a directed graph G = (N, E), where each
node corresponds to a state of the model and is labeled by a set of formulae. Given a
formula ¢ to test for satisfiability, the construction of G starts from the initial node
no labeled with the set {¢, T C' 7w}. The expansion rules for the Boolean connectives
are the standard ones, while formulae of the forms ¢ C £ and ¢ proj £ (as well as
=(p C &) and (¢ proj £)) are expanded by exploiting the normal forms of their
subformulae. Finally, formulae of the form ()i are expanded by adding a new node,
corresponding to a new state, labeled with .
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Figure 2.1: An example of the tableau method for LPITL,,;

Once that the construction of G has been terminated, the procedure looks for
unsatisfiable nodes in G and marks them. A node is unsatisfiable if one of the following
conditions hold:

1. it contains a formula and its negation;
2. it contains both a formula (O and ;

3. all of its successors are unsatisfiable.

It turns out that ¢ is satisfiable if and only if the initial node is not marked. Figure 2.1
depicts the tableau for the satisfiable formula () () p. Dashed arrows represent the
expansion of (O formulae, while marked nodes are identified by an asterisk (*).

2.2.2 A tableau for Propositional Duration Calculus

In [CSFDCO00], Chetcuti-Serandio e Farifias del Cerro isolate a fragment of Proposi-
tional Duration Calculus, called PDC,,s, which includes the operators A, V and C,
but not —. PDC,,, is expressive enough to capture Allen’s relations [All83] and decid-
able. The language is also characterized by a special constant, that is, the constant [,
whose interpretation can vary over time, denoting the length of the current interval. It
is combined with the structure of the additive group of the reals as temporal domain,
which allows computing lengths of concatenated intervals, and so on. Another specific
feature of Duration Calculus, that is preserved in PDC,,;, is the special category of
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terms called state expressions which are used to represent the duration for which a
system stays in a particular state.

Tableau nodes are conjunctions of labeled formulae, labeled state expressions, and
constraints. Labeled formulae (resp., labeled state expressions) are pairs (g, [d;, d;])
(resp., (o, [d;, d;])), where ¢ (resp., o) is a formula (resp., state expression) and [d;, d;]
is an interval. Constraints can be either qualitative, e.g., d; < dj, and quantitative,
e.g.,d; —d; =k or dj —d; >k, where k is a constant.

The tableau construction starts from an initial node including the labeled formula
(p, [do, d1]), where ¢ is the formula to be checked and [dy, d1] is a generic interval, and
it proceeds by applying suitable expansion rules to labeled formulae or labeled state
expressions in the leaf of the considered branch. Closing rules detect contradictory
formulae associated to the same interval, or sets of inconsistent constraints. The proof
of termination exploits the fact that each expansion rule can be applied only finitely
often to any branch, while the soundness and completeness proof exploits the fact
that the expansion rules preserve a suitable notion of satisfiability. Complexity issues
are not addressed.

2.2.3 A tableau for BCDT™"

The last tableau method we describe in this chapter is the one for BCDT* proposed
by Goranko et al. [GMS03a, GMSS06]. As shown in Chapter 1, BCDT™ is a gen-
eralization of Venema’s CDT logic to (non-strict) partial orderings with the linear
interval property, and it is undecidable. Thus, the proposed tableau method is not
guaranteed to be terminating, and it is only a semi-decision procedure. However,
it can easily adapted to variations and subsystems of BCDT™, providing a general
tableau method for propositional interval temporal logics.

The tableau construction generates a (possibly infinite) tree, whose nodes are dec-
orated with labeled formulae (¢, [d;, d;], D, u), where D = (D, <) is a finite partial
order with the linear interval property, [d;,d;] € I(D)*, and w is a local flag func-
tion which associates the values 0 or 1 with every branch B containing the node.
Intuitively, the value 0 for a node n in a branch B means that n can be expanded
on B. If B is a branch, then B - n is the result of expanding B with the node n,
while B - nq|...|ng is the result of expanding B with k& immediate successors nodes
ni,...,ng. With D we denote the finite partial ordering in the leaf of B.

The construction of a tableau for BCDT™ starts from a three-node initial tree built
up from an empty-decorated root and two leaves with decorations (y, [do, do], {do},0)
and (g, [do,d1], {do < d1},0), where ¢ is the formula to test for satisfiability. The
procedure exploits the following expansion rules to add new nodes to the tree.

Definition 2.1. Given a tree 7, a branch B in 7, and a node n € B decorated
with (¢, [d;, d;], D, up) such that u,(B) = 0, the branch expansion rule for B and n
is defined as follows. In all considered cases, u, (B’) = 0 for all new nodes n’ and
branches B’.

o If ) = ==¢, expand B to B-ng, where ng is decorated with (&, [d;, d;],Dp, tun,)-
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If v = & V &, then expand B to B - ng|n1, where ng is decorated with
(€0, [di, d;], Dp, uyn,) and ny is decorated with ({1, [ds, d;], Dp, up, ).

If p = =(& V &1), then expand B to B - ng - ny, where ng is decorated with
(=&o, [di, d;],Dp, un,) and ny is decorated with (=&, [d;, d;],Dp, un, ).

If ¢y = =(& C &) and d is an element of D such that d; < d < d; and d has not
been used yet to expand n in B, then expand B to B-ng|ni, where ng is decorated
with (—&o, [di, d], Dp, u,,) and n, is decorated with (—¢1, [d, d;],Dp, tn, ).

If ¢p = =(& D &) and d is an element of D g such that d < d; and d has not been
used yet to expand n in B, then expand B to B - ng|ni, where ng is decorated
with (—&o, [d, d;], Dp, un,) and n, is decorated with (—¢1, [d, d;],Dp, tn, ).

If p = =(& T &1) and d is an element of D such that d > d; and d has not been
used yet to expand n in B, then expand B to B - ng|ni, where ng is decorated
with (—&o, [d;,d], DB, u,,) and n; is decorated with (—¢1, [d;, d],Dp, un, ).

If v = & C &, then expand the branch B to B - (n; - my)|...|(n; - m;)|

(ng -mi)|...[(nj_y -m}_;), where:

1. for all d; < di, < dj, ny is decorated with (o, [d;, di], DB, un,) and my, is
decorated with (&1, [dk, d;], DB, tum,);

2. for alli < k < j—1, Dy is the partial ordering obtained by inserting a new
element d between dy and dg1, 1y, is decorated with (o, [d;, d], Dy, un; )
and m;, is decorated with (&1, [d, d;], D, tp ).

If v = & D &, then repeatedly expand the current branch, once for every
element d < d;, by adding the subtree (ng-mg)|(n1 - m1)|(ng - ms) to the leaf of
B, where:

1. ng is decorated with (&o,[d,d;],Dp,un,) and mg is decorated with
<£17 [d, dj]a Dp, umo>§

2. I is the partial ordering obtained by inserting a new element d’ < d which
is incomparable with all existing predecessors of d, n; is decorated with
(o, [d,d;], D, uy, ), and my is decorated with (&1, [d, d;], D, wpm, );

3. if d = d;, then do not add the subtree (ng - ms) to B;

4. if d < d;, D' is the partial ordering obtained by inserting a new immediate
successor d’ of d in [d, d;], ng is decorated with (£, [d', d;], D, up, ), and mq
is decorated with (&1, [d', d;], D, wp,)-

o If v = & T &, then repeatedly expand the current branch, once for every
element d > d;, by adding the subtree (ng - mo)|(n1 - m1)|(ng - mg) to the leaf
of B, where:

1. ng is decorated with (o, [d;,d],Dp,upn,) and mg is decorated with
<£17 [dh d]7DB7umU>;
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Root

(pT=(TCp), [do, do], {do}, 1)  (pPT—=(TCp),[do,d1], {do < d1},1)

(p: [do. dol {do}. 1) (p,[d1, o], {dy < dy < da},1)
(=(TCp), [do, o), {do},0) (=(TCp), [do, do], {do < dy < da},0)
(L. [do, do], {do}, 0)  {=p, [do, do]. {do},0) (L, [do, du], {do < dy < da},0) (=, [dy,da], {dp < dy < da},0)
Ylosed Closed Closed Closed

(p, [do, dv). {do < d1}, 1) (p.ld1, du], {do < di}, 1)
(=(TCp), do, di], {dp < d1},0)  (=(TCp),[do, d1], {dp < d1},0)

(L. [do, do], {do < d1},0)  (=p.[do, du], {do < d1},0) (L, [do.di], {do < d1},0) (=p.[d1,du], {dy < di},0)
Closed Closed Closed Closed

Figure 2.2: An example of the tableau method for BCDT™

2. I/ is the partial ordering obtained by inserting a new element d’ > d
which is incomparable with all existing successors of d, n; is decorated
with (&o, [d;, d'], D, uy, ), and my is decorated with (&1, [d;, d'], D, wupm, );

3. if d = dj, then do not add the subtree (ng - mg) to B;

4. if d > d;, D is the partial ordering obtained by inserting a new immediate
predecessor d’' of d in [d;, d], no is decorated with (&, [d;,d'],D’, uy,), and
maq is decorated with (&1, [d;, d'], D', up,)-

Finally, for every node m # n in B and any branch B’ extending B, let u,,(B’) =
um(B), while for every branch B’ extending B, u,(B’) = 1, unless v = —(§ C &),
¢ ==( D &), or p = =(§ T &) (in such cases u,(B') = 0).

We briefly explain the expansion rules for & C & and —(§y C &) (similar consid-
erations can be made for the cases of the temporal operators D and T'). The rule for
the formula & C & deals with two possible cases: either there exists di € Dp such
that & holds over [d;, dx] and & holds over [dy, d;], or such an element must be added
to Dp. On the converse, the formula —(& C &) states that, for all d; < d < d;, &
does not hold over [d;,d] or & does not hold over [d, d;]. The expansion rule imposes
such a condition for a single element d and keeps the flag equal to 0. In this way, all
elements of Dp are eventually considered, including those elements that will be added
in some subsequent steps of the tableau construction.

To determine whether a branch can be further expanded or not, suitable notions
of open and closed branch are defined. A branch is closed if one of the following
conditions holds:

1. there are two nodes n,n’ in B such that n is decorated with (¢, [d;, d;], D, u,,)
and n’ is decorated with (-, [d;, d;], D', u,), for some formula 1;

2. there is a node n decorated with (r, [d;, d;], D, u,) such that d; # dj;
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3. there is a node n decorated with (-, [d;, d;],D, u,) such that d; = d;.

If none of the above conditions hold, the branch is open. The expansion strategy for
the tableau expands a branch B only if it is open and it applies the branch expansion
rule to the closest to the root node for which the branch expansion rule is applicable.
Figure 2.2 depicts a closed tableau for the unsatisfiable formula p T =(T C p).

It can be proved that this method is sound and complete. However, it is not
guaranteed to be terminating: the expansion rules can be applied infinitely often,
and the resulting tableau can be an infinite object.

2.3 Dual-tableaux for standard relational logic

In this section we describe a proof system in the style of dual tableau for the clas-
sical relational logic of binary relations, RL, which provides a means for proving
the identities valid in the class of representable relation algebras [GPO06a, Ort96].
The vocabulary of RL consists of a set OV = {x,y,z,...} of object variables, a set
RV = {R,S,...} of relational variables and a set OP = {—,U,N,; } of relational op-
eration symbols. Formulae of RL are of the form = R y, where R is a relational term
built up by composing relational variables in RV with the operators in OP.

The semantics of RL is given in terms of RL-models defined as pairs (D, m), where
D is the domain over which RL-formulae are interpreted and m is a meaning function
that assigns to every relational variable R € RV a binary relation in D x D. The
semantics of compound relational terms reflects the semantics of the operators in OP.

The dual-tableau proof system for RL we present in this section is the one originally
developed in [Or188]. Such a proof system was subsequently expanded by including
equality and the universal relation in the language [GPOO06a, Ort96]. It consists of
axiomatic sets of formulae and rules which apply to finite sets of formulae. The
axiomatic sets take the place of axioms. The rules have the following general form:

(0]
S0 2
S N

where ®4,...,®,, are finite non-empty sets of formulae, n > 1, and ® is a finite
(possibly empty) set of formulae. ® is called the premise of the rule, and ®4,...,®,
are called its conclusions. A rule of the form (x) is said to be applicable to a set X
of formulae whenever ® C X. As a result of application of a rule of the form (x) to a
set X, we obtain the sets (X \ ®)U®;, i =1,...,n. As usual, any concrete rule will
always be presented in a short form without set brackets.

In dual tableau systems proofs have the form of finitely branching trees. Branching
is interpreted as conjunction and the sets of formulae in the nodes of the trees are
interpreted as disjunctions of their members. A branch of the proof tree is closed
whenever it contains a node with an axiomatic set of formulae. A tree is closed if all
of its branches are closed. A formula is provable whenever there exists a closed proof
tree for it.
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Let x,y, z be object variables and R, S relational terms. An aziomatic set is any
set of relational formulae that contains both x R y and  —R y. The rules for the
standard relational logic RL are the following.

v zRy,z Sy =) r—Rylz-Sy
z (RNS)y x—(RNS)y

R (ry 2o(BNS)y
xRylx Sy r —Ryz-Sy
r——Ry

O R,

() Ry oy EoB Ty
yRz y—Rx

z (R S)y . '

. ‘ 1

) rRzz(R;S)y|lzSy,z(R;S)y z is any variable

(=) % z is a new variable

In [Or188], the author proves that such a proof system is sound and complete for
RL. Soundness establishes that every formula with a closed proof tree is valid, while
completeness states that any valid formula has a closed proof tree. The latter is proved
by contradiction. She consider an open proof tree for the formula. It necessarily has
an infinite branch (this is guaranteed by Ko6nig’s lemma). Then she makes this tree
complete: whenever a rule is applicable to a node of the tree, then it has been applied.
Next, from the syntactic resources of an infinite branch she can construct a suitable
RL-model and she proves that it is a model that contradicts the formula. It is worth
noticing that the standard relational logic RL is not decidable. Hence, the dual-tableau
proof system presented here is not guaranteed to be terminating.

The applications of relational logics and dual-tableau proof systems to modal log-
ics was first explored by Ortowska in [Or188] and then formalized in the “formulas are
relations” paradigm [Or194]. Since then relational proof systems have been developed
for several logical theories, like Hoare relations [DOR94], intuitionistic logics [FO95],
finite-valued logics [KMO98], linear logics [Mac97], Lambek Calculus [Mac98, MO02],
temporal logics [Orl95], and other modal logics [Or196]. Building up from those ap-
proaches, in Chapter 7 we will devise an original relational proof system for interval
temporal logics.
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The tableau method for RPNL

This chapter is devoted to an optimal tableau-based procedure for the satisfiability
problem for RPNL over natural numbers and/or finite linear orderings. The pro-
posed tableau method partly resembles the tableau-based decision procedure for LTL
[Wol85]. However, while the latter takes advantage of the so-called fix-point definition
of temporal operators, which makes it possible to proceed by splitting every temporal
formula into a (possibly empty) part related to the current state and a part related
to the next state, and to completely forget the past, our method must also keep track
of universal and (pending) existential requests coming from the past.

3.1 An intuitive account of the method

Before describing the tableau-based decision procedure for RPNL in details, we give
an intuitive account of it by introducing a model building process that, given a formula
© to be checked for satisfiability, generates a model for it (if any) step by step. Such
a process takes into consideration one element of the temporal domain at a time and,
at each step, it progresses from one time point to the next one. For the moment, we
completely ignore the problem of termination. In the following, we shall show how to
turn this process into an effective procedure.

For the sake of simplicity we consider the strict semantics of RPNL. Later on, we
will show how to extend this process to the case of RPNL™ . Let D = {do, d1,da,...}
be the temporal domain, which we assumed to be isomorphic to N or to a prefix of it.
The model building process begins from the time point d; by considering the initial
interval [do, d1]. It associates with [do, d1] the set A4, 4,1 of all and only the formulae
which hold over it.

Next, it moves from d; to its immediate successor do and it takes into consideration
the two intervals ending in ds, namely, [dy,ds] and [dy,d3]. As before, it associates
with [dy, dy] (resp. [do, d2]) the set Ag, 4,) (resp. Ajg,, 4,]) of all and only the formulae
which hold over [dy,ds] (resp. [do,ds]). Since [dy,ds] is a right neighbor of [dy, di],
if [A]y holds over [dp, d;], then ¢ must hold over [dy,ds]. Hence, for every formula
[A]y) in Ajgy 4,7, it puts ¢ in Ajg, 4,). Moreover, since every interval which is a right
neighbor of [dy, d] is also a right neighbor of [d;, d3], and vice versa, for every formula
¢ of the form (A)¢ or [A]€, ¥ holds over [dy, ds] if and only if it holds over [dy,ds].
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Accordingly, it requires that ¢ € Ay, 4, if and only if ¢ € Ajg, 4,). Let us denote
by REQ(dz) the set of formulae of the form (A)1) or [A]y) which hold over an interval
ending in dy (by analogy, let REQ(d) be the set of formulae of the form (A)v or [A]y
which hold over an interval ending in dj, that is, the formulae (A)y or [A]y which
hold over [dy, d1]).

Next, the process moves from dsy to its immediate successor d3 and it takes into
consideration the three intervals ending in ds, namely, [dy,ds], [d1,ds], and [da, ds].
As at the previous steps, for i = 0,1, 2, it associates the set A, 4,) with [d;, ds]. Since
[d1,d3] is a right neighbor of [dy, di], for every formula [A]y) € REQ(d1), ¥ € Ajq,,dy]-
Moreover, [da,ds] is a right neighbor of both [dy, ds] and [d;, ds2], and thus for every
formula [A]y € REQ(d2), ¥ € A4,,q4,)- Finally, for every formula ¢ of the form (A)¢{
or [A]¢, we have that ¥ € Ay, q,) if and only if ¢ € A, 4,) if and only if ¢ € Ag, 4,

Next, the process moves from d3 to its successor d, and it repeats the same
operations, and so on.

dy
dz
ds

dy

Ady a,) Aga] 4

Figure 3.1: The layered structure

The layered structure generated by the process is graphically depicted in Figure
3.1. The first layer correspond to time point dy, and for all ¢ > 1, the i-th layer
corresponds to time point d;. If we associate with each node Ay, 4,1 the corresponding
interval [d;, d;], we can interpret the set of edges as the neighborhood relation between
pairs of intervals. As a general rule, given a time point d; € D, for every d; < d;, the
set A(g, 4,1 of all and only the formulae which hold over [d;, d;] satisfies the following
conditions:

e since [d;, d;] is a right neighbor of every interval ending in d;, for every formula
[Al) € REQ(d;), ¥ € Aa, 4,3
e since every right neighbor of [d;, d;] is also a right neighbor of all intervals [d, d;]
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belonging to layer d;, for every formula ) of the form (A)¢ or [A]¢, ¢ € Ald, d;)
if and only if it belongs to all sets A, 4,) belonging to the layer.

In [BMO5b], Bresolin and Montanari turn such a model building process into an
effective tableau-based decision procedure for RPNL™. Given an RPNL™ formula ¢,
the procedure builds a tableau for ¢ whose (macro)nodes correspond to the layers of
the structure in Figure 3.1 and whose edges connect pairs of nodes that correspond to
consecutive layers. Unlike other tableau methods for interval temporal logics, where
each node corresponds to a single interval [GMS03a, GMSS06], such a method as-
sociates any set of intervals [d;, d;] ending at the same point d; with a single node,
whose label consists of a set of sets of formulae A, 4,) (one for every interval ending
in d;). Moreover, two nodes are connected by an edge (only) if their labels satisfy
suitable constraints encoding the neighborhood relation among the associated inter-
vals. Formulae devoid of temporal operators as well as formulae of the form [A]y are
satisfied by construction. Establishing the satisfiability of ¢ thus reduces to finding a
(possibly infinite) path of nodes on which formulae of the form (A)t) are satisfied as
well (fulfilling path). To find such a path, the decision procedure first generates the
whole (finite) tableau for ¢; then it progressively removes parts of the tableau that
cannot participate in a fulfilling path. It can be proved that ¢ is satisfiable if and
only if the final tableau obtained by this pruning process is not empty.

As for the computational complexity, we have that the number of nodes of the
tableau is 227" and that, to determine the existence of a fulfilling path, the algo-
rithm may take time polynomial in the number of nodes. Hence, the algorithm has
a time complexity that is doubly exponential in the size of . Its performance can
be improved by exploiting nondeterminism to guess a fulfilling path for the formula
. In such a case, the fulfilling path can be built one node at a time: at each step,
the procedure guesses the next node in the path and it moves from the current node
to such a node. Since every (macro)node maintains the set of existential temporal
formulae which have not been satisfied yet, at any time the algorithm basically needs
to store only a pair of consecutive nodes in the path, namely, the current and the
next ones, rather than the entire path. Hence, such a nondeterministic variant of the
algorithm needs an amount of space which is exponential in the size of the formula,
thus providing an EXPSPACE decision procedure for RPNL™.

In the following, we shall develop an alternative NEXPTIME decision procedure
that works for all variants of RPNL (RPNL™", RPNL™, and RPNL™), interpreted
over natural numbers, and we shall prove its optimality. Such a procedure follows the
above-described approach, but its nodes are the single sets Ag, 4,], instead of layers,
of the structure depicted in Figure 3.1. In such a way, the procedure avoids the double
exponential blow-up of the method given in [BMO05b]. This chapter is a revised and
extended version of [BMS07b].
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3.2 Labelled Interval Structures and satisfiability

In this section we introduce some preliminary notions and we establish some basic
results on which our tableau method for RPNL relies. From now on, we will consider
the case of the logic RPNL™* (the cases of the logics RPNLT and RPNL™ are dis-
cussed in Section 3.5). Furthermore, we restrict our attention to non-strict interval
structures (D, I(D)*) where D is isomorphic to the set of natural numbers (with the
usual ordering) or to a prefix of them.

Let ¢ be an RPNL™ formula to be checked for satisfiability and let AP be the
set of its propositional letters. Since RPNL has no past-time operators we say that ¢
is satisfiable if and only if it holds over an interval [dy, d;], where dj is the least point
of D and dy < d;. In such a case, the initial interval [dy,dp] is such that <. holds
on it. For the sake of brevity, we use O, as a shorthand for both <, and O,.

Definition 3.1. The closure CL(p) of ¢ is the set of all subformulae of <, and of
their negations (we identify ——) with ).

Definition 3.2. The set of temporal requests of ¢ is the set TF(p) of all temporal
formulae in CL(¢p), that is, TF(¢) = {O,¢ € CL(y)}.

By induction on the structure of ¢, we can easily prove the following proposition.

Proposition 3.3. For every formula ¢, | CL(p)| is less than or equal to 2- (|¢| + 1),
while | TF(p)] is less than or equal to 2 - |y|.

The notion of p-atom is defined in the standard way.

Definition 3.4. A p-atom is a set A C CL(y) such that:

e for every ¢ € CL(p), v € A iff ) € A;
e for every 11 V1o € CL(p), 11 Vipo € Aiff 901 € A or 99 € A.

We denote the set of all p-atoms by A,. We have that |A,| < 2/¢1+1 Atoms are
connected by the following binary relation.

Definition 3.5. Let R, be a binary relation over A, such that, for every pair of
atoms A, A" € A,, A R, A’ if and only if, for every 0,9 € CL(y), if 0,9 € A, then
e A

We now introduce a suitable labelling of interval structures based on p-atoms.

Definition 3.6. A (non-strict) p-labelled interval structure (LIS for short) is a tu-
ple L = (D,I(D)*, £), where (D,I(D)") is a non-strict interval structure and L :
I(D)* — A, is a labelling function such that (a) for every interval [d;,d;] € I(D)*, 7 €
L([d;,d;]) iff d; = d;, and (b) for every pair of neighboring intervals [d;, d;], [d;, di] €
I(D)*, L([di, d;]) Ry L([d;, dk)).-
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If we interpret the labelling function as a valuation function, LISs represent can-
didate models for ¢. The truth of formulae devoid of temporal operators, that of
the modal constant m, and that of O,-formulae indeed follow from the definition of
-atom, the definition of the labelling function, and the definition of R, respectively.
However, to obtain a model for ¢ we must also guarantee the truth of <,.-formulae.
To this end, we introduce the notion of fulfilling LIS.

Definition 3.7. A ¢-labelled interval structure L = (D, (D)™, £) is fulfilling if and
only if, for every temporal formula <,v € TF(p) and every interval [d;,d;] € I(D)*,
if Opp € L([d;, dj]), then there exists dj, > d; such that ¢ € L([d;, dy]).

The following theorem proves that for any given formula ¢, the satisfiability of ¢
is equivalent to the existence of a fulfilling LIS with the interval [dy, do] labelled by
&r. The implication from left to right is straightforward; the opposite implication
is proved by induction on the structure of the formula.

Theorem 3.8. A formula ¢ is satisfiable if and only if there exists a fulfilling LIS
L= (D,I(D)*", L) with Crp € L([do, do))-

Proof. Let ¢ be a satisfiable formula and let M = (D,I(D)*,V) be a model for it.
We define a LIS Lyt = (D, I(D) ™, La) such that for every interval [d;, d;] € I(D)™,
Lm([di,d;]) = {4 € CL(p) : M, [d;, d;] IF ¢} Tt is immediate that Ly is a fulfilling
LIS and <, € La([do, do]).

As for the opposite implication, let L = (D,I(D)*, £) be a fulfilling LIS with
Orp € L([do,dg]). We define a model My, = (D, I(D)",V,) such that for every
interval [d;,d;] € I(D)* and every propositional letter p € AP, [d;,d;] € Vi(p) if
and only if p € L([d;,d;]). We prove by induction on the structure of ¢ that for
every 1 € CL(p) and every interval [d;,d;] € I(D)*, My, [d;,d;] IF ¢ if and only if
Y € L([d;, d;]). Since O € L([do, do]), we can conclude that My, [do, do] IF Ore.

e If ¢ is the propositional letter p, then p € L([d;,d;]) Vedet [di,d;] € Vu(p)
< ML, [di; d_]] - p.

o If ¢ is the formula —¢, then ¢ € L((di,d;]) "3 ¢ ¢ £([d;,d;]) "EE>
My, [di, d;] IV € <= My, [d;, d;] IF =¢.

o If ¢ is the formula & V &, then & V & € L([d;, d;]) “ &5 ¢ € L£([d;, d}]) or

ind. hyp.
& € L([d;,d}]) P My, [di, d;] IF & or My, [dy,d;] I & <= My, [d;, d;] IF
&1V &

e If 1) is the modal constant 7, then © € L([d;,d,])
[di, dj] I .

e Let ¢ be the formula ¢,&. Suppose that <¢,.& € £([d;,d;]). Since L is fulfilling,
there exists an interval [d;, di] € I(D)" such that £ € £([d},dy]). By inductive
hypothesis, we have that My, [d;,ds] IF &, and hence My, [d;, d;] IF &8 As
for the opposite implication, assume by contradiction that My, [d;, d;] IF <€,
but ¢,& € L([d;,d;]). By atom definition, this implies that =06 = 0,-¢ €
L([d;,d;]). By definition of LIS, we have that, for every d > d;, L([d;, d;]) Ry,

L def.
<:e> d; = dj <~ My,
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L([dj,dg]), and thus = € L£([d;,di]). By inductive hypothesis, this implies
that My, [d;, di] IF —¢ for every di > d;, and hence My, [d;, d;] IF O,—¢, which
contradicts the hypothesis that My, [d;, d;] IF <,€. O

Theorem 3.8 reduces the satisfiability problem for ¢ to the problem of finding a
fulfilling LIS with the initial interval [dp, do] labelled by <. From now on, we say
that a fulfilling LIS L = (D, I(D)*, £) satisfies ¢ if and only if C.¢ € L([dg, do]).

Since fulfilling LISs satisfying ¢ may be arbitrarily large or even infinite, we must
find a way to finitely establish their existence. In the following, we first give a bound on
the size of finite fulfilling LISs that must be checked for satisfiability, when searching
for finite p-models; then, we show that we can restrict ourselves to infinite fulfilling
LISs with a finite bounded representation, when searching for infinite ¢-models. To
prove these results, we take advantage of the following two fundamental properties of
LISs:

1. The labelling of a pair of intervals [d;,d;], [d, d;] with the same right endpoint
must agree on temporal formulae.
Since every right neighbor of [d;,d;] is also a right neighbor of [d,d;], we
have that for every existential formula <.y € TF(p), O € L([di, d;]) iff
Opp € L([dg,d;]) (it easily follows from Definitions 3.4, 3.5, and 3.6). The
same holds for universal formulae O,..

2. M right neighboring intervals suffice to fulfill the existential formulae be-
longing to the labelling of an interval [d;,d;].
The number of right neighboring intervals which are needed to fulfill all existen-
tial formulae of £([d;,d;]) is bounded by the number of <,-formulae in TF(¢p),

which is equal to m (in the worst case, different existential formulae are
satisfied by different right neighboring intervals).

Definition 3.9. Given a LIS L = (D,I(D)*, £) and d € D, we denote by REQ¥(d)
the set of all and only the temporal formulae belonging to the labelling of the intervals
ending in d.

We denote by REQ,, the set of all possible sets of requests. It is not difficult to

. TF (¢)
show that | REQ,, | is equal to 27=".
Definition 3.10. Given a LIS L = (D,I(D)*, £), a set of points D’ C D, and a set
of temporal formulae R C TF(p), we say that R occurs n times in D’ if and only if
there exist exactly n distinct points d;,,...,d;, € D’ such that REQL(dij) =R, for
all1 <j<n.

in

We describe the process of removing a point from a LIS. Given L = (D,I(D)*, £)
and d € D, let L_4 be the set of all LIS L' = (D, [(D')*, £’) such that D’ = D\ {d}
and REQY (d) = REQY(d), for all d € D\ {d}. L and L’ do not necessarily agree on
the labeling of intervals, but they agree on the sets of requests of points.

Given a fulfilling LIS L and a point d, it is not guaranteed that L_; contains
a fulfilling LIS. The removal of d indeed causes the removal of all intervals either
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beginning or ending at it and thus there can be a point d < d such that there exists
a formula ©,1) € REQ™(d) which is fulfilled in L, but not in any L/ € L_g4. The
following lemma provides a sufficient condition for preserving the fulfilling property
when removing a point from L.

Lemma 3.11. Let L = (D,I(D)", L) be a fulfilling LIS satisfying ¢ and let m =
%. If there exists a point d. > dy such that there exist at least m distinct points
d > d. such that REQY(d) = REQY(d.), then there is one fulfilling LIS L € L_g4,
that satisfies .

Proof. Let L = (D,I(D)*, L) be a fulfilling LIS satisfying ¢ and let d. > dy be a
point such that there exist at least m distinct points d > d. such that REQL(d) =
REQ"(d.).

A fulfilling LIS L € L_,4,_ can be obtained as follows. Let D' = (D \ {d.}, <) and
L' = L|ypy+ (the restriction of £ to the intervals on D). L' = (D', I(D")*, L’) is
obviously a LIS, but it is not necessarily a fulfilling one. The removal of d. causes the
removal of all intervals either beginning or ending at d.. While the removal of intervals
beginning at d. is not critical (intervals ending at d. are removed as well), there can
be some points d < d, such that some formulae <. € REQLI (d) are fulfilled in L,
but they are not fulfilled in I/ anymore. We fix such defects (if any) one-by-one by
properly redefining £'. Let d < d. and ©,1) € REQY (d) be such that ¢ € £([d, d.])
and there exists no d’ € D\ {d.} such that ¢ € £/([d,d']). Since REQY (d) contains
at most m <,-formulae, there exists at least one point d; > d. such that the atom
L'([d,d;]) either fulfills no <,-formulae or it fulfills only <,-formulae which are also
fulfilled by some other atom £'([d,d']). Let d; one of such “useless” points. We can
redefine £'([d, d;]) by putting L'([d, d;]) = L([d,d.]), thus fixing the problem with
©.1p € REQY (d). Notice that, since REQL/(dj) = REQY(d,), such a change has
no impact on the right neighboring intervals of [d,d;]. In a similar way, we can fix
the other possible defects caused by the removal of d.. Let L = (D,1(D), L) be the
resulting LIS. It is immediate that it is fulfilling and that it satisfies . O

Lemma 3.11 can be exploited to provide a bound on the size of finite fulfilling
LISs, as shown by the following theorem.

Theorem 3.12. Let L = (D, I(D)*, L) be a finite fulfilling LIS that satisfies ¢ and let
m = %. Then there exists a finite fulfilling LIS L = (D,I(D)*, L) that satisfies
@ such that, for every d; € D, REQY“(d;) occurs at most m times in D \ {do}.

Proof. Let L = (D,I(D)*, £) be a finite fulfilling LIS that satisfies . If for every
d; € D, REQY(d;) occurs at most m times in D \ {do}, we are done. If this is
not the case, we show how to build a fulfilling LIS with the requested property by
progressively removing exceeding points from D.

Let Lo = L and let Ryp = {REQ;,REQ,,...,REQ} be the (arbitrarily ordered)
finite set of all and only the sets of requests that occur more than m times in D\ {dy}.
We show how to turn Ly into a fulfilling LIS Ly = (D, 1(ID1)*, £1) satisfying ¢, which,
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unlike Lo, contains exactly m points d € D; \ {do} such that REQ“ (d) = REQ,.
Such a fulfilling LIS can be obtained as follows. Let d, be the smallest point in D\ {dy}
such that REQ¥(d,) = REQ,. Since REQ, occurs more than m times in D\ {do} we
have that there exists n > m points d > d, such that REQ¥(d) = REQY(d.) = REQ;.
Hence, by Lemma 3.11, there exists a fulfilling LIS L' € L_,_ satisfying ¢. We repeat
the application of Lemma 3.11 until we obtain a fulfilling LIS L; that satisfies ¢ and
such that REQ; occurs exactly m times in D\ {dg}.

By iterating such a transformation k£ — 1 times, we can turn L; into a fulfilling
LIS devoid of exceeding points that satisfies (. O

To deal with the case of infinite (fulfilling) LISs, we introduce the notion of wulti-
mately periodic LIS.

Definition 3.13. An infinite LIS L = (D, (D)%, £) is ultimately periodic, with prefix
[ and period p > 0, if and only if for all ¢ > [, REQL(di) = REQY (ditp)-

The following theorem shows that if there exists an infinite fulfilling LIS that
satisfies ¢, then there exists an ultimately periodic fulfilling one that satisfies ¢.
Furthermore, it provides a bound to the prefix and period of such a fulfilling LIS
which closely resembles the one that we established for finite fulfilling LISs.

Theorem 3.14. Let L = (D,I(D)*, L) be an infinite fulfilling LIS that satisfies ¢
and let m = %, Then there exists an ultimately periodic fulfilling LIS L =
(D, I(D)*, L), with prefiz | and period p, that satisfies ¢ such that:

1. for every pair of points d;,dj € D, with dy < d; < d; and d; > dj, REQf(gi) *
REQL(EJ-), that is, points belonging to the prefix and points belonging to the
period have different sets of requests;

2. for every d; € D, with dy < d; < dj, REQL(Ei) occurs at most m times in
{dl, ey dl},'

3. for every pair of points d;,d; € D, with diy1 < di,d; < diyp, if i # j, then
REQ"(d;) # REQ™(d;).

Proof. Let ¢ be a satisfiable formula and let L = (D, (D)™, £) be an infinite fulfilling
LIS that satisfies . We define the following sets:

e Fin(L) = {REQ"(d;) : there exists a finite number of points d € D such that
REQ™(d) = REQ™(d:)};

e Inf(L) = {REQ"(d;) : there exists an infinite number of points d € D such
that REQ™(d) = REQ¥(d;)}.

We build an infinite ultimately periodic LIS L, with prefix | < m - |Fin(L)| + 1 and
period p = |Inf(L)|, that satisfies ¢ and respects Conditions 1 - 3, as follows.

1. Let d; be the greatest point in D such that REQY(d;) € Fin(L). The set
{do,...,d;} will be the prefix of L. By repeatedly applying Lemma 3.11 we can
remove from the prefix all points d such that REQY(d) € Inf(L).
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2. Once we have removed all points d such that REQ™(d) € Inf(L), we can exploit
Lemma 3.11 to remove from the prefix all points d’ such that REQY(d’) occurs
more than m times in {di,...,d;}.

3. To turn L into an ultimately periodic LIS respecting Condition 3, we must
show how to define the period of L. We first collect and (arbitrarily) enumer-
ate the elements of Inf(L), that is, let Inf(L) = {REQq,...,REQ,_;}. The
cardinality p of Inf(L) will be the period of L. We inductively define L in
such a way that, for all k& > 0, REQ™(dj;1.1) = REQgmopp- Let & =0,
and consider REQ™(d;41): if REQY(d;41) = REQ,, we are done. Otherwise,
let d, > di+1 be the first occurrence of REQ, after d;+;. We have that, for
every point diyq < d' < dp, there exist sufficiently many points d’ > dj,
such that REQY(d”) = REQ™(d’). Hence, by Lemma 3.11, there exists a LIS
Lo where all points d;1; < d’ < dj have been removed. Thus, Ly is such
that REQ™ (d;1) = REQY(d,) = REQ,. Now, let k¥ > 0 and suppose that
Ly 1 = (Dk_1,1(D_1)", Ls_1) respect the condition for all h < k. We can
proceed as in the case of k = 0 and define a LIS Ly = (D, I(Dg)™, L) such
that REQ" (dis144) = REQ mop p- O

3.3 The complexity of the satisfiability problem for
RPNL™

In this section we provide a precise characterization of the computational complexity
of the satisfiability problem for RPNL™ .

3.3.1 An upper bound to the computational complexity

A decision procedure for RPNL™ can be derived from the results of Section 3.2 in a
straightforward way. Theorems 3.12 and 3.14 indeed provide a bound on the size of
the LISs to be checked:

e by Theorem 3.12, we have that if there exists a finite LIS satisfying ¢, then
there exists a finite one of size less than or equal to | REQ,, |- % + 1 which
satisfies ;

e by Theorem 3.14, we have that if there exists an infinite LIS satisfying ¢, then
there exists an ultimately periodic one, with prefix [ <|[REQ,, |- M +1 and
period p < |REQ,, |, which satisfies .

A simple decision algorithm to check the satisfiability of an RPNL™ formula ¢
that nondeterministically guesses a LIS L satisfying it can be defined as follows.

First, the algorithm guesses the set Inf(L) = {REQq,...,REQ,}, with Inf(L) C
REQ,, of the sets of requests that occur infinitely often in L. If p = 0, then it guesses
the length I < | REQ, |% +1 of a finite LIS. Otherwise, it takes p as the period of

an ultimately periodic LIS and it guesses the length I < (|REQ,, [—p)- M +1 of its
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prefix. Next, the algorithm guesses the labelling of the initial interval [dg, do], taking
an atom Apg, 4] that includes &,.¢ and 7 ([do, do] is a point interval), and it initializes
a counter ¢ to 0. If ¢ < [, then it guesses the labelling of the intervals ending in d;, that
is, it associates an atom Apg, 4,) (that does not contain 7) with [do,d;] and an atom
A[d1,d1] (containing 7) with [dy,d;] such that A[do,do] R, A[dmdl] R, A[dhdl]’ with
REQY(d,) € REQ, \Inf(L), and it increments c by one. The algorithm proceeds in
this way, incrementing ¢ by one for every point d; it considers and checking that, for
every pair of atoms A[g, q4,) and A(g, a,), A[a,,d;] By Aja;,a;) and that m € A, 4,7 if and
only if d; = d;. For each point d;, it must guarantee that REQ™(d;) € REQ, \Inf(L)
and that REQ® L(d,) occurs at most % times in {d1,...,d;}.

When ¢ reaches the value [, two cases are possible. If p = 0, then d; is the last
point of the finite LIS L, and the algorithm checks whether it is fulfilling. If p > 0,
it checks if the guessed prefix and period represent a fulfilling LIS by proceeding as
follows:

e for every atom A, 4,7 in the prefix and for every formula ¢,¢ € Ag, 4, it
checks if either there exists an atom A, 4, in the prefix that contains ¢ or
there exists an atom A’ and a set REQ;, € Inf(L) such that ¢ and -7 belong
to A', REQ;, = A'NTF(p) and Ajg, 4,) Ry A';

e for every atom A, 4;) in the prefix and for every set REQ,, € Inf(L), it checks
if there exists an atom A’ such that 7 ¢ A, REQ;, = A'NTF(y), and Ay, 4, Ry
A

o for every set REQ,, € Inf(L) it checks if there exists an atom A such that
m € Ap, REQ;, = A, N TF(p), and and REQ;, R, Ap;

e for every set REQ,;, € Inf(L) and for every formula <,1 € REQ, such that
Y & Ap, it checks if there exists an atom A’ and a set REQ, € Inf(L) such
that ¥ and -7 belong to A’, REQ, = A’ N TF(y), and REQ,, R, A’;

e for every pair of sets REQ,;,, REQ, € Inf(L), it checks if there exists an atom
A" such that 7 ¢ A’, REQ, = A’ N TF(¢), and REQ,, R, A".

By Theorems 3.12 and 3.14, it follows that the algorithm returns true if and only
if o is satisfiable. As for the computational complexity of the algorithm, we observe
that:

—_

. 1 is less than or equal to |REQ¥, | - M + 1, while p is less than or equal to
|REQ,, |;
2. for every point dy < d; < dy, the algorithm guesses exactly j + 1 atoms Apg, 4,7;

3. checking for the fulfillness of the guessed LIS takes time polynomial in p and in
the number of guessed atoms;

4. | TF(y)| is linear in the length of ¢, while [ REQ,, | is exponential in it.
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Hence, if || = n, the number of guessed sets in In f(L) plus number of guessed atoms
in the prefix is bounded by

TF
| REQw ‘ | 2(¢)| +1

IREQ, | + > i+1 = O<|REQW|

=0

2
_ (20<n> . O<n)) —  920() . O(p2)
_ 20(n) . O(n2) _ 2O(n)7

that is, it is exponential in the length of . This implies that the satisfiability problem
for RPNL™ can be solved by the above nondeterministic algorithm in nondetermin-
istic exponential time.

Theorem 3.15. The satisfiability problem for RPNL™T, over natural numbers or
over finite linear orderings, is in NEXPTIME.

3.3.2 A lower bound to the computational complexity

We now provide a NEXPTIME lower bound for the complexity of the satisfiability
problem for RPNL™ by reducing to it the exponential tiling problem, which is known
to be NEXPTIME-complete [BGGI7].

Let us denote by N,, the set of natural numbers less than m and by N(m) the
grid N,,, X N,,,. A domino system is a triple D = (C, H, V), where C is a finite set
of colors and H,V C C x C are the horizontal and vertical adjacency relations. We
say that D tiles N(m) if there exists a mapping 7 : N(m) — C such that, for all
(z,y) € N(m):

1. if 7(x,y) = cand 7(z + 1,y) = ¢, then (¢,¢') € H;
2. if 7(z,y) =cand 7(x,y + 1) = ¢, then (¢,) € V.

The exponential tiling problem consists in determining, given a natural number n
and a domino system D, whether D tiles N(2") or not. Proving that the satisfiability
problem for RPNL™* is NEXPTIME-hard can be done by encoding the exponential
tiling problem with a formula (D), of length polynomial in n, which uses proposi-
tional letters to represent positions in the grid and colors, and by showing that ¢(D)
is satisfiable if and only if D tiles N(2™). Such a formula consists of three main parts.
The first part imposes a sort of locality principle; the second part encodes the N(27)
grid; the third part imposes the condition that every point of the grid is tiled by
exactly one color and that the colors respect the adjacency conditions. Intervals are
exploited to express relations between pairs of points.

Theorem 3.16. The satisfiability problem for RPNL™  over natural numbers, is
NEXPTIME-hard.

Proof. Given a domino system D = (C, H,V), we build an RPNL™" formula ¢, of
length polynomial in n, that is satisfiable if and only if D tiles N(2").
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The models for ¢ encode a tiling 7 : N(2") — C in the following way. First, we
associate with every point z = (z,y) € N(2") a 2n-bit word (z2,—122n-2...2120) €
{0,1}%" such that = = Y0} 22" and y = Y-" " y;2°"". Pairs of points [z,1] of
N(2") are represented as intervals by means of the propositional letters Z;, T;, with
0 <i<2n—1, as follows:

Moreover, the colors of z = (z,y) and ¢t = (2,3’) are expressed by means of the
propositional letters Z., T., with ¢ € C, as follows:

Ze:1(x,y)=¢; Te.:71(2,y)=c
To ease the writing of the formula ¢ encoding the tiling problem, we use the auxiliary

propositional letters Z (for 0 <i < 2n —1) and ZH} (for n <i < 2n — 1), with the
following intended meaning;:

Z7forall0<j<i,z;=1;, ZH!: foralln<j<i,z; =1

To properly encode the tiling problem, we must constrain the relationships among
these propositional letters.

Definition of auxiliary propositional letters. As a preliminary step, we define
the auxiliary propositional letters Z, with 0 <¢ < 2n —1, and ZH, withn <i¢ <
2n — 1, as follows:

2n—1
0,0, <zg NN (2 - (2 AZ“))>

i=1

2n—1
0,0, (ZH;;A N\ (ZH; < (ZHj_l/\Zi_l))>.
1=n+1

Let us call « the conjunction of the above two formulae.

Locality conditions. Then, we impose a sort of “locality principle” on the inter-
pretation of the propositional letters. Given an interval [z, ], we encode the position
z = (z,y) (resp., t = (¢,y’)) and its color 7(z,y) (resp., 7(2’,y’)) by means of the
propositional letters Z;, ZF, ZH, and Z. (resp., T; and T;) by imposing the following
constraints:
e all intervals [z, w] starting in z must agree on the truth value of Z;, Z, ZH?,
and Z;
e for every pair of neighboring intervals [z, t], [t,w], the truth value of T; and T,
over [z,t] must agree with the truth value of Z; and Z, over [t, w].

From the above constraints, it easily follows that all intervals [w,t] ending in ¢ must
agree on the truth value of T; and T.
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Such constraints are encoded by the conjunction of the following formulae (let us
call it 3):

2n—1 2n—1
/\ (<>rZz - DrZi) A /\ DT(OTZi - DrZi)
i=0 i=0
2n—1 2n—1
N (©r2; — 0.2 AN 0027 — 0,Z))
i=0 i=0
2n—1 2n—1
N (©wZHf — 0.ZH;) A )\ O.(0.ZHf — O,ZH;)
N\ (©rZe = 0:Z:) N N\ Be(0rZe — 0.Z)
ceC ceC
2n—1 2n—1
/\ Dr(:ri Ad DrZi) N /\ DT’DT(Ti g DrZi)
=0 =0
/\ O0.(T, < 0,Z,) A /\ 0,0.(T, < 0,Z,)
ceC ceC

Encoding of the grid. Next, we must guarantee that every point z = (z,y) €
N(2™), with the exception of the upper-right corner (2" —1,2" —1), has a “successor”
t = (a',y'), that is, if  # 2™ — 1, then (2/,y') = (x 4+ 1,y); otherwise (x = 2™ — 1),
(z',9y") = (0,y+1). Note that, thanks to our encoding of z and ¢, the binary encoding
of the successor of z is equal to the binary encoding of z incremented by 1. Such a
successor relation can be encoded as follows. Given two 2n-bit words z = Zf:g b2
and t = 327" 1;2%, we have that t = z 4 1 if and only if there exists some 0 < j <
2n — 1 such that:

1. z;=0and, for all i < j, z; = 1;
2. tj =1and, for all i < j, ¢; = 0;
3. forall j <k<2n-—1, zp =t.
It is easy to show that, for every ¢, with 0 < i < 2n—1, we can write ¢; as z; ® /\k<i 2k,

where @ denotes the exclusive or. Taking advantage of this fact, the successor relation
can be expressed by the following formula (let us call it ~):

2n—1
O, (Orﬁ(Zgnl N Zap—1) — /\ (T; < (Zi@Zf))> :
i=0
Furthermore, the left conjunct of the following formula (let us call it §) encodes the
initial point (0, 0) of the grid, while the right one encodes the final point (27 —1,2"—1):

2n—1 2n—1

0,0, /\ —Z; N OrOy /\ Z;.
1=0 1=0
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Grid coloring. To complete the reduction, we must properly define the tiling of the
grid. To this end, we preliminary need to express the relations of right (horizontal)
neighborhood and upper (vertical) neighborhood over the grid. We have that the
following formula ¢y (resp., ¢y ) holds over any interval [z, t] such that ¢ is the right
(resp. upper) neighbor of z in N(2"):

2n—1 n—1
b= N\ (Z = T)N N = (ZieZ)))
i=n =0
n—1 2n—1
v = N\(Z < T)n N\ (T < (ZioZH)))
i=0 i=n

By using ¢y and 1y, we can impose the adjacency conditions by means of the fol-
lowing formula (let us call it €):

0.0

T '(/]H - \/ Zc A Tc’ A '(/)V - \/ Zc A Tc’
(e,¢/)EH (c,e")eVv

The fact that every point is tiled by exactly one color can be forced by the following

formula (let us call it ¢):
0,0, (\/ Z.n\/ Tc> :

ceC ceC

where \/ is a generalized exclusive or which is true if and only if exactly one of its
arguments is true.

Let us define ¢ as the conjunction a ASAYAIAeAC. The length of ¢ is polynomial
in n as requested. It remains to show that ¢ is satisfiable if and only if D tiles N (2").
As for the implication from left to right, if a correct tiling exists, then let D = (D, <)
be a linear ordering such that:

o D= {do,dl} U N(?n) U {d‘r};

e dy < dy < (z,y) <dT, for every (z,y) € N(2");

e given two points (x,y) and (2/,y’) of N(2"), (z,y) < (x,y') if y < ¢’ V (y =
Yy A <al).

Notice that we take as the domain of the interval structure the set of elements of
the grid extended with the elements dy,d;, and d+. The elements dy,d; define the
initial interval [dg,d;] over which our formula will be interpreted. The element d+
is the right endpoint of the only interval having the last point of the grid as its left
endpoint, namely, [(2" —1,2" — 1), d7].

As for the valuation V, for any interval [z,t], with z = (z,y),t = (2/,3'), and 2,t €
N(2"), [2,t] € V(Z;) if and only z; = 1 and [z,t] € V(T;) if and only ¢; = 1. Moreover,
[2,t] € V(Z.) (resp., [z,t] € V(T¢)) if and only if 7(x,y) = ¢ (resp., 7(z',y) = ¢).
Whenever, the left (resp. right) endpoint of an interval does not belong to N(2"), the
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valuation of the propositional letters Z; and Z. (resp. T; and T.) over the interval is
arbitrary. It is not difficult to prove that M = (D, I(D)*, V) is a model of ¢, that is,
M, [do, dl] I @.

Conversely, let M = (D,I(D)", V) be a model for ¢, that is, M, [do, d1] IF ¢. To
provide a tiling of N(2"), we first define a function f : N(2") — D that associates a
point d € D with every point (x,y) € N(2") in such a way that:

1. the binary representation of (z,y) coincides with the sequence of truth values of
the propositional letters Za,_1, Zon_2,. .., Zo over the intervals [d,d'] € I(D)*;

2. for every (x,y), (¢/,y") € N(2™), (z,y) < (2',y) iff f(z,y) < f(2',y).

The formula ¢ ensures that such a function exists. Note that the definition of f
guarantees commutativity: by moving first one step right and then one step up on
the grid one reaches the same point that can be reached by moving first one step
up and then one step right. On the basis of such a function, we define the tiling
7(x,y) = ¢, where ¢ is the unique element of C' such that M, [f(z,y),d'] IF Z., for
every d' > f(x,y). It is not difficult to prove that 7 defines a tiling of N(2"). O

From Theorems 3.15 and 3.16, we have the following corollary.

Corollary 3.17. The satisfiability problem for RPNL™™, over natural numbers, is
NEXPTIME-complete.

3.4 A tableau-based decision procedure for RPNL™"

In this section, we define a tableau-based decision procedure for RPNL™, whose
behavior is illustrated by means of a simple example, and we analyze its computational
complexity. Then, we prove its soundness and completeness. The procedure is based
on two expansion rules, respectively called step rule and fill-in rule, and a blocking
condition, that guarantees the termination of the method. Unlike the naive procedure
described in the previous section, it does not need to differentiate the search for a
finite model from that for an infinite one.

3.4.1 The tableau method

We first define the structure of a tableau for an RPNL™ formula and then we show
how to construct it. A tableau for RPNL™ " is a suitable decorated tree T. Each branch
B of a tableau is associated with a finite prefix of the natural numbers D = (Dp, <).
The decoration of each node n in T, denoted by v(n), is a pair ([d;, d;|, A), where d;,
d;, with d; < d;, belong to Dp (for all branches B containing n) and A is an atom.
The root r of T is labelled by the empty decoration (@, (). Given a node n, we denote
by A(n) the atom component of v(n).

Given a branch B, we define a function REQ? : Dp — 2TF(®) as follows. For
every d; € Dp, REQ®(d;) = (N; 4j) N TF(¢), where n; is a node such that v(n;) =
([dj,d;],A;) and dy < d; < d;. Moreover, given a node n € B, with decoration
([di,d;], A), and an existential formula <9 € A, we say that ¢4 is fulfilled on B if
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and only if there exists a node n’ € B such that v(n') = ([d;,di], A’) and v € A". A
node n is said to be active on B if and only if A(n) contains at least one existential
formula that is not fulfilled on B.

Expansion rules. The construction of a tableau is based on the following expansion
rules. Let B be a branch of a decorated tree 7 and let d; be the greatest point in
Dpg. The following expansion rules can be possibly applied to extend B:

1. Step rule: if there exists at least one active node n € B, with v(n) = ([d;, d;], A),
then take an atom A’ such that A R, A’ and 7 ¢ A’, and expand B to B -/,
with Z/(TL/) = <[dj7 dk+1]v A/>

2. Fill-in rule: if there exists a node n € B, with decoration ([d;,d;], A) and
d; < dj, such that there are no nodes n’ in B with decoration ([d;, dy], A"), for
some A" € A, then take any atom A” € A, such that 7 € A" iff d; = dj,
AR, A" and REQ®(d),) = A” N'TF(p), and expand B to B -n", with v(n”) =
<[dj7 dk]7 AH>'

Both rules add a new node to the branch B. However, while the step rule decorates
such a node with a new interval ending at a new point dg1, the fill-in rule decorates
it with a new interval whose endpoints were already in Dp.

Blocking condition. To guarantee the termination of the method, we need a suitable
blocking condition to avoid the infinite application of the expansion rules in case of
infinite models. Given a branch B, with Dg = {doy,ds,...,dx}, we say that B is

blocked if REQ® (dy,) occurs ‘Tiﬂ + 1 times in Dp.

Expansion strategy. Given a decorated tree 7 and a branch B, we say that an
expansion rule is applicable on B if B is non-blocked and the application of the rule
generates a new node. The branch expansion strategy for a branch B is the following
one:

1. if the fill-in rule is applicable, apply the fill-in rule to B and, for every possible
choice for the atom A”, add an immediate successor to the last node in B;

2. if the fill-in rule is not applicable and there exists a node n € B, with decoration
([di,d;], A) and dj < dj, such that there are no nodes in B with decoration
([dj,dg], A”), for some A’ € A, close the branch;

3. if the fill-in rule is not applicable, B is not closed, and there exists at least one
active node in B, then apply the step rule to B and, for every possible choice
of the atom A’, add an immediate successor to the last node in B.

Tableau. Let ¢ be the formula to be checked for satisfiability and let Aj,..., Ag
be all and only the atoms containing <,y and m, and such that A; R, A; for all
1 < i < k. The initial tableau for ¢ is the following:

(0,0)

_—/ T~

([do, do], A1) ([do,do], A2) -+ -+ ([do,do], A)
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A tableau for ¢ is any decorated tree 7 obtained by expanding the initial tableau
for ¢ through successive applications of the branch-expansion strategy to currently
existing branches, until the branch-expansion strategy cannot be applied anymore.

Fulfilling branches. Given a branch B of a tableau 7 for ¢, we say that B is a
fulfilling branch if and only if B is not closed and one of the following conditions
holds:

1. B is non-blocked and for every node n € B and existential formula <,.¢) € A(n),
there exists a node n’ € B fulfilling ¢4 (finite model case);

2. B is blocked, dj is the greatest point of Dp, d; (# dj) is the smallest point in
Dp such that REQ®(d;) = REQ®(dy), and the following conditions hold:

(a) for every node n € B and every formula .1 € A(n) not fulfilled on B,
there exist a point d; < d; < di and an atom A’ such that 7 ¢ A’, ¢ € A’,
A(n) Ry, A', and REQ® (d;)) = A’ N TF(p);

(b) for every node n € B and every point d; < d,,, < di, there exists an atom
A’ such that 7 ¢ A’, A(n) R, A" and REQ®(d,,) = A’ N TF ().

The decision procedure works as follows: given a formula ¢, it constructs a tableau
T for ¢ and it returns “satisfiable” if and only if there exists at least one fulfilling
branch in 7.

We conclude the section by showing how the proposed method works on the simple
case of the formula ¢ = O, 7. The set of p-atoms is the following one:

Ay = {o.0.m0,m 7} Ay = {0,0,-m Opm, 7}
Ay = {007, 0,7, 7} Ay = {0,0.~m 0.7, 7}
Ay = {O.0,7,Cpm, )} Ag = {0,007, O, T}
A; = {00, Opom,—rh A = {007, O, o}

Figure 3.2, where dashed arrows represent applications of the step rule, depicts
a portion of a tableau for ¢ which is sufficiently large to include a fulfilling branch,
and thus to prove that ¢ is satisfiable. Indeed, it is easy to see that, over natural
numbers, ¢ is satisfiable and it admits only finite models.

3.4.2 Computational complexity

As a preliminary step, we show that the proposed tableau method terminates; then
we analyze its computational complexity.

In order to prove termination of the tableau method, we give a bound on the
length of any branch B of any tableau for ¢:

[ TF ()]

L. by the blocking condition, after at most |REQ,, | - =+ applications of the

step rule, the expansion strategy cannot be applied anymore to a branch;

2. given a branch B, between two successive applications of the step rule, the fill-in
rule can be applied at most &k times, where k is the current number of elements
in Dp (k is exactly the number of applications of the step rule up to that point);
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Fulfilling:
O T E Ao

Closed: no atom
/ for [di,di]

Fulfilling: )
Dlivr emAi [do, do], A3 [do, do], Az
Blocked: Ay
repeated 2
times
Closed: no
atom for
[da, da)
Fulfilling:
O,m e A(j

Figure 3.2: A tableau for O,.

3. | TF ()| is linear in the length of ¢, while | REQ,, | is exponential in it.
Hence, if |p| = n, the length of any branch B of a tableau 7 for ¢ is bounded by

‘ REQw | | TE(e)|
| TF (¢ ’

IN

LG e

(IR, 1
_ (20<n) . O(n))2

22~O(n) . O(TLQ)
20 . 0(n?)
90(n)

that is, the length of a branch is (at most) exponential in |¢p|.

Theorem 3.18 (Termination). The tableau method for RPNL™ terminates.
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Proof. Given a formula ¢, let 7 be a tableau for . Since, by construction, every
node of 7 has a finite outgoing degree and every branch of it is of finite length, by
Konig’s Lemma, 7 is finite. O

The computational complexity of the tableau-based decision procedure depends
on the strategy used to search for a fulfilling branch in the tableau. The strategy
that first builds the entire tableau and then looks for a fulfilling branch requires an
amount of time and space that can be doubly exponential in the length of ¢. However,
by exploiting nondeterminism, the existence of a fulfilling branch can be determined
without visiting the entire tableau, by exploiting the following alternative strategy.
First, select one of the nodes decorated with ([dg, dp], A) of the initial tableau and
expand it as follows. Instead of generating all successors nodes, nondeterministically
select one of them and expand it. Iterate such a revised expansion strategy until it
cannot be applied anymore. Finally, return “satisfiable” if and only if the guessed
branch is a fulfilling one.

Such a procedure has a nondeterministic time complexity which is polynomial
in the length of the branch, and thus exponential in the size of ¢. Giving the
NEXPTIME-completeness of the satisfiability problem for RPNL”™ T, this allows us to
conclude that the proposed tableau-based decision procedure is optimal.

3.4.3 Soundness and completeness

The soundness and completeness of the proposed method can be proved as follows.
Soundness is proved by showing how it is possible to construct a fulfilling LIS satisfying
o from a fulfilling branch B in a tableau 7 for ¢ (by Theorem 3.8, it follows that
© has a model). The proof must encompass both the case of blocked branches and
that of non-blocked ones. Proving completeness consists in showing, by induction on
the height of 7', that for any satisfiable formula ¢, there exists a fulfilling branch B
in any tableau 7 for . To this end, we take a model for ¢ and the corresponding
fulfilling LIS L, and we prove the existence of a fulfilling branch in 7 by exploiting
Theorems 3.12 and 3.14.

Theorem 3.19 (Soundness). Given a formula ¢ and a tableau T for o, if there exists
a fulfilling branch in T, then @ is satisfiable.

Proof. Let T be a tableau for ¢ and B a fulfilling branch in 7. We show that, starting
from B, we can build up a fulfilling LIS L satisfying ¢. By the definition of fulfilling
branch, two cases may arise.

B is non-blocked (finite model case). Let L = (Dp,I(Dg)*, £) be a LIS such that,
for every [d;,d;] € (D), L([di,d;]) = A(n), where n is the unique node in B such
that v(n) = ([d;, d;], A(n)). Since B is not closed, such a node n exists; its uniqueness
follows from tableau rules. From the fact that B is a fulfilling branch it follows that
for every node n € B and every existential formula ¢,1 € A(n), there exists a node
n/ fulfilling ©,1). Hence, by the above construction, L is fulfilling.
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B is blocked (infinite model case). Let dj be the last point of Dp and d; # dj, be
the smallest point in Dp such that REQ®(d;) = REQ®(d)). We build an ultimately
periodic LIS L = (D, I(D’) ", £) with prefix [ =i — 1 and period p = k — i, as follows:

1.

let D' = {dy(= do),d}(=d1),...,d(=dr),d; ...} be any set isomorphic to
N;

for every dy < d; < dj, put REQL(d;) = REQB(dj);
for every d; > dj,, put REQ"(d}) = REQ” (d;4(j—1) mop p);

for every pair of points d7;, d;,, such that dg < d; < dj,, < dj, take the node n in
B such that v(n) = ([d;, dn], A) and put L([d},d},]) = A;

Jrom

for every point d; > dj, let h =i+ (j — ) MOD p. Take the node n in B such
that v(n) = ([dn, dn], A) and put L([d}, d}]) = A;

for every point d; € D' and every ¢,¢) € REQ" (d}) which has not been fulfilled
yet, proceed as follows. Let n be a node in B decorated with ([d, d'], A) such
that REQ"(d') = REQ"(d}). Since B is fulfilling, by condition (a) for fulfilling
branches, there exist a point d; < d,,, < di and an atom A’ such that ¢ € A’,
A R, A" and REQ®(d,,) = A’ N TF(p). By the definition of L, we have
that there exist infinitely many points d;, > dj in D’ such that REQ" d,) =
REQ”(d,,). We can take one of such points d’, such that L([d},dy,]) has not
been defined yet and put £([d},d;]) = A';

once we have fulfilled all ©,-formulae in REQ™(d’), for all d’ € I/, we arbitrarily
define the labelling of the remaining intervals [d’,d”]. Since B is fulfilling, we
can always define £([d’,d"]) by exploiting condition (b) for fulfilling branches;

Since ¢ € L([df),dp)), L is a fulfilling LIS satisfying ¢. O

Theorem 3.20 (Completeness). Given a satisfiable formula @, there exists a fulfilling
branch in every tableaw T for .

Proof. Let ¢ be a satisfiable formula and let L = (D,I(D)*, £) be a fulfilling LIS sat-
isfying ¢, whose existence is guaranteed by Theorem 3.8. Without loss of generality,
we may assume that L respects the constraints of Theorem 3.12 if it is finite, and of
Theorem 3.14, if it is infinite. We prove there exists a fulfilling branch B in 7 which
corresponds to L. To this end, we prove the following property: there exists a non-
closed branch B such that, for every node n € B, if n is decorated with ([d;,dy], A),
then A = L([d;, dx]). The proof is by induction on the height h(7) of 7.

If h(7) =1, then T is the initial tableau for ¢ and, by construction, it contains a
branch

By = {(0,0) - ([do, do], A),

with A = ﬂ([do, d()])
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Let h(7) = i + 1. By inductive hypothesis, there exists a branch B; of length
i that satisfies the property. Let Dp, = {do,d1,...,dr}. We distinguish two cases,
depending on the expansion rule that has been applied to B; in the construction of

7.

e The step rule has been applied.
Let n be the active node, decorated with ([d;, d;], A), which the step rule has
been applied to. By inductive hypothesis, A = L([d;,d;]). Since L is a LIS,
L([d;,di]) R, L([di,dk+1]). Hence, there must exists in 7 a successor n’ of
the last node of B; decorated with ([d;, di+1], £([di, dk+1])). Let Bir1 = B; -
([d1, di+1], £([d1, di+1])). Since the step rule can be been applied only to non-
closed branches (and it does not close any branch), B;; is non-closed.

e The fill-in rule has been applied.

Let n be the node decorated with ([d;,d;], A) such that there exist no nodes
in B; decorated with ([d;,d], A’) for some atom A’. By inductive hypothesis,
A = L([dj,d;]). Since L is a LIS, £([d;,d;]) R, £([di,d]). Hence, there must
exists in 7 a successor of the last node of B; decorated with ([d;, di], £([d1, di]))-
Let Bit1 = B; - ([di,dg], L([d;,dk])). As before, since the fill-in rule can be
applied only to non-closed branches (and it does not close any branch), B;;1 is
not closed.

Now we show that B is the fulfilling branch we are searching for. Since B is not
closed, two cases may arise.

e B is non-blocked and the expansion strategy cannot be applied anymore. Since B
is not closed, this means that there exist no active nodes in B, that is, for every
node n € B and every formula <. € A(n), there exists a node n' fulfilling
Orip. Hence, B is a fulfilling branch.

e B is blocked. This implies that REQ®(dy) is repeated M + 1 times in
B. Since B is decorated coherently to L from dy to di, by Theorem 3.12, we
can assume L to be infinite. Let d; be the smallest point in Dp such that
REQ”(d;) = REQ”(dy). We have that L is ultimately periodic, with prefix
Il = j—1, since (by Theorem 3.14) the only set of requests which has been
repeated |L2(M + 1 times in B is the one associated with the first point in the
period. Furthermore, we have that, between d;; and dj_1, there are exactly
% repetitions of the period of L. This allows us to exploit the structural
properties of L to prove that B is fulfilling.

For every node n € B decorated with ([d, d'], A) and for every formula <9 € A,
since L is fulfilling, there exists a point d” in D such that ¢ € L([d’,d"]). If
d’ < dj, then <. is fulfilled in B. Otherwise, there exists some point d,,,
with d; < d,, < d, such that REQ™(d”) = REQ%(d,,). Hence, the atom
A" = L([d',d"]) can be chosen in order to satisfy condition (a) of the definition
of fulfilling branch.

For every node n € B decorated with ([d, d'], A) and for every point d; < d,,, <
dy,, we have that REQ™(d,,,) € Inf(L). Hence, there exist infinitely many points
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d,, in L such that REQ"(d,,) = REQ"(d,,) and d’' < d,,. Let d,, be one of such
points. We can choose the atom A’ = L([d’,d,]) to satisfy condition (b) of the
definition of fulfilling branch. O

3.5 A tableau-based decision procedure for RPNL™
and RPNL~™

The tableau-based decision procedure for RPNL” T presented in the previous sections
can be easily adapted to a decision procedure for RPNL' by simply ignoring the
conditions on the 7 operator (that is not present in RPNLT). In this section we
briefly show how to adapt it to the case of RPNL™. First of all, we need to define
the notion of strict p-labelled interval structure as follows.

Definition 3.21. A strict p-labelled interval structure (strict LIS, for short) is a pair
L = (D, I(D)", L), where (D,I(D)~) is a strict interval structure and £ : I(D)~ —
A, is a labelling function such that, for every pair of neighboring intervals [d;, d;],
[dj, di.] € (D)™, L([ds, dj]) Ry L([d, d]).

It is possible to prove that Theorems 3.8, 3.12, and 3.14 hold also for strict LISs.
Furthermore, we can easily tailor the tableau-based decision method for RPNL™ ™" to
RPNL™ by ignoring the constraints on the m operator and by rewriting the fill-in rule
as follows. We recall that, given a branch B, dj, is the last point of the ordering Dp.

2. Fill-in rule: if there exists a node n € B, with decoration ([d;,d;], A) and
d; < dg, such that there are no nodes n’ in B with decoration ([d;,dx], A’),
for some A’ € Ay, then take any atom A” € A, such that A R, A” and
REQ” (dy) = A” N TF(p), and expand B to B -n”, with v(n") = ([d;, dy], A”).

The definition of initial tableau has to be modified as follows. Let ¢ be the formula to
be checked for satisfiability and let Ay,..., Ax be all and only the atoms containing
. The initial tableau for ¢ is composed by the empty root ((), ) with k¥ immediate
successors ny, ..., ng such that, for each 1 < ¢ <k, n; is labelled with ([do, d1], A;).
By contrast, the expansion strategy, the blocking condition and the definition of
fulfilling branch remain unchanged. Termination, soundness, and completeness of the
resulting tableau method for RPNL™ can be proved as in the case of RPNL™t.
Finally, to prove the optimality of the tableau for RPNL™, we can exploit the
reduction given in Section 3.3, provided that we replace <, by (A) and O, by [A].

Theorem 3.22. The satisfiability problem for RPNL™, over natural numbers, is
NEXPTIME-complete.



The tableau method for BTNL

When defining a temporal logic, there are basically two possible choices for the under-
lying temporal structure. Either time is linear (at any time there is only one possible
future) or it has a branching, tree-like structure (any time may have many different fu-
tures). In the case of point-based temporal logics, both these alternatives have been
successfully explored, and several meaningful logics have been developed (we only
mention the linear temporal logic LTL and its many variants, and the branching-time
temporal logics CTL and CTL* [Eme90]). By contrast, interval-based temporal log-
ics are usually interpreted over linear temporal structures. Even those interval logics
which are interpreted over branching-time temporal structures, such as Halpern and
Shoham’s HS (in its original formulation) and Goranko, Montanari, and Sciavicco’s
branching CDT (BCDT™), only feature temporal operators that express properties of
single timelines, with the only exception of Paech’s Branching Regular Logic (BRL)
[Pae89]. BRL is a branching-time interval logic with the locality assumption, whose
operators quantify over different timelines. In [Pae89] the author provides a Gentzen-
style system for BRL and she states some expressiveness and complexity results.

In this chapter we consider the branching-time interval neighborhood logic BTNL.
We recall from Chapter 1 that such logic interleaves operators that quantify over
possible timelines with operators that quantify over intervals belonging to a given
timeline. Formulae of BTNL are interpreted over infinite trees where every path
in the tree is isomorphic to (N, <). Unlike the case of BRL, we do not impose any
semantic restriction, such as locality, to get decidability. Putting together the tableau
method for CTL [Eme90] and the one we developed for RPNL in Chapter 3, we have
been able to devise a doubly-exponential tableau-based decision procedure for BTNL.
This chapter is an extension and a revision of [BMO05a].

4.1 Basic Notions

To check the satisfiability of a formula ¢, we build a tableau for ¢, whose nodes repre-
sent points of the infinite tree T and whose edges represent the relation S connecting
a point to its successors in the tree. We shall take advantage of such a construction
to reduce the problem of finding a model for ¢ to the problem of testing whether the
tableau satisfies some suitable properties or not. In contrast with the tableau method



50 4. The tableau method for BTNL

we presented in Chapter 3 for RPNL and with the one we will discuss in Chapter
5 for PNL, in the tableau method for BTNL every node represent a set of intervals
(corresponding to a layer of the structure in Figure 3.1) instead of a single interval.

Let Mt = (T,I(T)",V) be a model for ¢ and let ¢; be a point in T. We have
that, given an interval [t;,¢;] ending in t;, every right neighbor of it is also a right
neighbor of every other interval [ty,t;] ending in t;. Hence, every temporal formula
¢ holds over [t;, ;] if and only if it holds over every other interval [t;,t;] ending in
t;. We denote by REQ(t;) the set of temporal formulae which hold over all intervals
ending in ¢;.

The building blocks for the tableau construction are p-atoms. However, p-atoms
for BTNL are defined in a different way than atoms for the RPNL tableau. For every
interval [t;,t;] € I(T)", we introduce a pair of sets of formulae (Rit;,t;1, Clti 1)), that
we call an atom for ¢ (p-atom for short). The set Ry, 4,1 is a subset of REQ(Z;), which
collects the set of requests in REQ(%;) relevant to the interval [t;, ¢;]. In general, Ry, ;
may differ from Ry, 4,) for j # k. The set Cf, ;) contains all and only the formulae
that (should) hold over [¢t;,t;]. We can associate with every point ¢; € D the set of
(p-atoms {(R[thtj], C[t“m) :t; < t;}, which includes all p-atoms paired with intervals
ending in t;. These sets of atoms are the (macro)nodes of our tableau method for
BTNL.

Let ¢ be a BTNL-formula to be checked for satisfiability and let AP be the set
of its propositional variables. We define the closure CL(p) of ¢ as the set of all
subformulae of E<,¢ and their negations (we identify ——¢ with ), and the set
of temporal requests of ¢ as the set TF(p) of all temporal formulae in CL(p). By
induction on the structure of ¢, it can be easily proved that | CL(¢)| < 2 (J¢|+ 1)
and | TF()| < 2 (|ig| +1).

We are now ready to formally define the key notion of ¢-atom.

Definition 4.1. Let ¢ be a BTNL-formula. A @-atom is a pair (R,C), with R C
TF(¢) and C C CL(yp), such that:

e for every ¢ € CL(p), v € C iff ¢ & C;

e for every 11 Vg € CL(ip), 11 Vipo € C iff tp1 € C or ¢ € C;
e for every ¢ € TF(yp), if ¥ € R then ) € R;

for every A0, € R, ¢ € C;

e for every EO,v € R, ¢ € C.

Formulae in C are called current formulae, while (temporal) formulae in R are called
active requests. A p-atom (R, C) is called a point @-atom if and only if 7 € CL(p)
implies 7 € C and, for every 1) € TF(¢), ¢ € R if and only if ¢) € C. Point atoms
are used to represent point intervals.

As for the set R, it is worth pointing out that there may exist a p-atom (R, C) and a
temporal formula 1 such that neither 1) nor =1 belongs to R. We denote the set of
all p-atoms by A,,. It is not difficult to show that |A,| < 22(¢l+1),

Atoms come into play in the proposed tableau method as follows. The method
associates an atom (R, C) with any interval [¢;,¢;]. The set R includes all formulae of
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the form A0+ that belong to REQ(¢;) as well as some formulae of the forms EO, .1,
AC,, and E<) in REQ(t;); the set C includes all formulae ¢ € CL(p) which
(should) hold over [t;,t;]. Moreover, for all formulae of the forms A0, and EO,
in R, we put ¢ into C, while for any formula of the forms A4 and E<) in R, it
may happen that ¢y € C, but this is not necessarily the case.

Atoms are connected by the following binary relation.

Definition 4.2. Let X, be a binary relation over A, such that, for every pair of
atoms (R,C),(R',C") € A, (R,C) X, (R',C") if (and only if):

o T ¢ (C;

e RN CR;

e for every AO,4) € R, AO,) € R';

e for every AC,p € R, AO,4 € R iff - € C.

In the next section we shall show that for any pair of points ¢; < ¢;, the relation
X, connects the atom associated with the interval [t;,¢;] to the atom associated
with the interval [t;,t;41], where t;41 is an R-successor of ¢;. In particular, it will
turn out that, if (R, C) is associated with the interval [¢;,¢;], then for every formula
AO,¢ € REQ(t;) and every atom (R’,C") such that (R,C) X, (R',C"), we have that
A0, € R’ (and thus ¢ € C”), while for every formula AC, ¢ € R, if [t;,t,] satisfies
¢ then AC,¢p ¢ R'. This guarantees that temporal requests of the form AO,.1) are
propagated through X, -successors, while temporal requests of the form A<, are
discarded once that i has been satisfied by the set of current formulae of some atom.

4.2 Tableau construction

Nodes of the tableau for BTNL can be viewed as (maximal) collections of intervals
ending at the same point ¢; of the temporal domain. They are characterized by two
components: a designated point atom representing the point interval [t;,¢;] and a set
of atoms representing the proper intervals ending in ¢;.

Definition 4.3. A node of the tableau is a pair n = ((Ry, Cp), My) where (Ry, Cyp)
is a point atom and M, is a set of atoms such that, for any atom (R,C) € My:

(i) ¢ C;
(ii) for any ¥ € TF(p), ¢ € C implies ¢ € Ry,.

We denote by N, the set of all nodes that can be built from A, and by Init(N,) the
subset of all initial nodes, that is, the set {((R,C),0) € N, : EC,¢ € C}. Further-
more, for any node n, we denote by REQ(n) the set {¢) € TF(p) : ¢ € Rn}.

From Definition 4.3, it follows that |N,| < 22" We can associate every node
n with a point ¢; € T. The atom (Rn, Cp) is thus associated with the point interval
[tj,t;], while every atom (R,C) € M, is associated with some interval [¢;,¢;] such
that ¢; < t;. Accordingly, we have that REQ(n) = REQ(t;).



52 4. The tableau method for BTNL

The relation between a node n, associated with point ¢;, and a node m, associated
with an S-successor t;11 of ¢;, as well as the relations between intervals ending in ¢;
and intervals ending in ¢;11 (and, thus, between atoms in n and atoms in m), are
graphically depicted in Figure 4.1. We have that for every interval [t;,t;] (possibly,
with t; = t;), there exists an interval [t;,t;41]. Thus, m should contain

e an atom (R, C,) such that (Rn,Cn) X, (Ry, CL);
e for every atom (R,C) € My, an atom (R, C”) such that (R,C) X, (R',C").

é (R, Arm) )
4 . I
]
' )
\ . >
L )
. , 3 m
- J
d; T dj_3 dj_s dj_1 d; djt1

Figure 4.1: Connecting two nodes.

Definition 4.4. The tableau for a BTNL-formula ¢ is a (finite) directed graph 7, =
(Ny, Sy), where for any pair of nodes n = ((Ry,Cr), My) and m = ((Rm, Cm), Mm),
(n,m) € S, if and only if My, = {(R,,C,)} U M],, where

1. (R, C}) is an atom such that (Rn,Cn) X, (R, CL);

2. for every (R, C) € My, there exists (R',C") € M}, such that (R,C) X, (R',C");

3. for every (R',C") € M}, there exists (R, C) € M, such that (R,C) X, (R',C").

Let n,m € N,. If (n,m) € S,, we say that m is an S,,-successor of n. We say that
m is an S,-descendant of n if there exists a (finite) path from n to m in 7,. Given
a node n = ((Ry,Ch), My) and an atom (R,C) € A,, we say that (R, C) belongs to
n (and we denote it with (R,C) € n) if (R,C) = (Rn,Cpn) or (R,C) € My.

Definition 4.5. Given a (finite or infinite) path p =nin, ... in 7, an atom path in
p is a sequence of atoms (Ry,C1)(Rz2,C2) ... such that:

e for every i > 1, (R;,C;) € ny;
e for every 1 > 1, (R“Cl) X@ (Ri+170i+1).
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Given a node n and an atom (R,C) € n, we say that the atom (R/,C’) is an
X, -descendant of (R, C) if and only if there exists a node m such that (R, C’) € m,
and there exists a path p from n to m such that there is an atom path from (R, C)
to (R, C") in p.

Definition 4.6. An infinite path p = niny ... in 7, is a fulfilling path if and only if,
for every i > 1, every atom (R, C) € n;, and every formula A, € R, either ¢ € C
or there exist n;, with j > ¢, and (R, C’) € n; such that (R’, C") is an X -descendant
of (R,C)in p and ¢ € C’.

Definition 4.7. A substructure is a subgraph (N, S) C 7, such that:

e there exists a node ng € N' N Init(N,,) (initial node) such that all other nodes
in A/ are S-reachable from it;

e for every node n € N, there exists a fulfilling path (in (V,S)) starting from n.

Substructures represent candidate models for . The truth of formulae devoid of
temporal operators and of formulae of the form AO,.4), indeed, follows from Definition
4.1. Moreover, the truth of formulae of the form A1) follows from Definition 4.6.
However, to obtain a model for ¢ we must also guarantee the truth of formulae of the
forms E0,.¢ and E<,1. To this end, we introduce the notion of fulfilling substructure.

Definition 4.8. A substructure (NV,S) C 7, is fulfilling if and only if, for every node
n € N and every atom (R, C) € n, the following conditions hold:

(F1) for every formula E<C.1) € R, either ¢ € C or there exist an S-descendant m
of m and an X,-descendant (R',C") of (R,C) in m such that ¢ € C;

(F2) for every formula EO,t) € R, there exist a fulfilling path p = ngnj ny ... and an
atom path (Rg,Co)(R1,C1)(R2,C2) ... in p such that: (i) (Ro,Co) = (R, C);
(i) ng = n; (i) for every i > 0, EO,¢ € R;; (iv) for every formula A0 € Ry,
there exists j > 0 such that 6 € C;.

Theorem 4.9. If the formula ¢ is satisfiable (in an infinite tree), then there exists
a fulfilling substructure (N, S) C T,.

Proof. Let M* = (T*,I(T*)*,V*) be a model for ¢ and let [to,?1] be an interval
such that M* [to,¢1] IF ¢. Consider now the subtree T of T* rooted at tg. Since
BTNL features only future-time operators, the sub-model M+ = (T,I(T)*, V) of M*
generated by T is a model of ¢ as well. Furthermore, we have that M™, [to, o] I+
ESr .

For every interval [t;, t;] € I(T)", we define an atom (R, 4,1, Cjr, +,)) as follows.

e Ry, +,) contains exactly:

— all formulae A0,¢ € REQ(t;);
— all formulae A<, € REQ(¢;) such that for every ¢t; < t; < t;, M*,[t;, ;] IF
—;



54 4. The tableau method for BTNL

— all formulae EO,¢ € REQ(¢;) such that there exists an infinite path p =
titiy1...tjtj41 ..., starting from ¢; and containing t¢;, such that
M, [t;, tg] IF 9 for every ty € p;

— all formulae £ € REQ(t;) such that there exists t; > ¢; such that
M, [t;, tg] IF ¢ and, for every t; < t; < tg, M, [t;, t;] IF —;

e (|4, 1, contains exactly all formulae ¢ € CL(p) such that M*, [t;, t5] IF 9.

It is easy to check that, for every [t;,¢;] € I(T)" and for every S-successor tj11 of ¢;,
(R[ti,tj]vc[ti,tj]) is an atom such that (R[ti7t]’]7c[ti,t]‘]) X, (R[ti,tj+1]7 C[ti,tj+1])'

For every t; € T, let nj = {(Rp,+,),Clr,t,)) s tint}, N = {n;:t; € T}, and
S§=8,N(N xN). It is easy to check that for all ¢; # tg, n; is a node and that
(N, S) is a fulfilling substructure. O

The next theorem shows that a model for ¢ can be obtained by unfolding a fulfilling
substructure (A, S), starting from its initial node no.

Theorem 4.10. If there exists a fulfilling substructure (N',S) C T, then the formula
p 1s satisfiable.

Proof. Let (N, S) be a fulfilling substructure. To define a model for ¢, we first build
an infinite tree T = (T,5) by unfolding the fulfilling substructure (N, S) from its
initial node ng as follows:

e T is the (infinite) set of all finite non-empty S-sequences ngn; ...ny that stars
from the initial node ng;

e S is such that, for any pair of points ¢,t' € T, (¢t,t') € S if and only if ¢t =
ng...n; and ¢ =ng...ngng with ngq S-successor of ny.

Given an arbitrary order of the nodes of A/, we define a total order <1 over finite
S-sequences, that is, on points of T, as follows:

e given two S-sequences ¢ and ¢’ such that the length of ¢ is less than the length
of t', we have that t < t;

e given two S-sequences ¢ and ¢’ of the same length, ¢ < ¢’ if and only if ¢ precedes
t' on the lexicographical order based on the given (arbitrary) order of nodes in

N.

In order to build a model for ¢, we define a suitable (partial) labelling function
L:I(T)" — A,. For any ¢; = ng...ny, L associates an atom (R, C) € n; with any
interval [t;,t;]. We define L by (infinite) induction on the total order <.

Base case. We start by defining the labelling of the initial interval [to, o] (where
to = ngp is the root of T). Since ng is the initial node of (N,S), we have that
ng = ((Ry, Co),0). We put L([to, to]) = (Ro,Co). Two cases may arise.

Co contains no ezistential formulae. In such a case, we define the labelling of an
infinite branch starting from ¢y (remind that we admit only infinite models). Since
(N, 8) is a substructure, there exists a fulfilling path p = ngnn, . .. starting from ny.
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Let o0 = tot1ts ... be the corresponding infinite branch in T (where, for every ¢ > 0,
ti = ng...n;). For every j >0, let n; = ((Rn,,Ch,), Mn;). We define the labelling
L([t;,t;]) of every interval [t;,¢;], with ¢;,¢; € o, in such a way that:
e forall j >0, L([t,t;]) = (Rn,,Ch,);
e for all j > 0 and all intervals [t;,t;], with t; < t;, L([t;,;]) is an X,-descendant
e for every interval [t;,t;], with L([t;,t;]) =
AC.0 € R, then there exists a point t; >
and 6 € C” (see Definition 4.6).

(R',C"), if there exists a formula
t; such that L([t;,tx]) = (R”,C")

Definitions 4.4 and 4.6 guarantee that there exists a labelling with such properties.

Cy contains at least one existential formula. In such a case, for every existential
formula ¢y € Cj, we guarantee that ¢ gets satisfied by properly labelling an infinite
branch starting from ty. Two cases may arise (depending on the structure of ).

e ¢y = EC.0. By condition F1, either § € Cy (and thus 6 is satisfied over the
interval [to,to]) or there exists a path ngn;...n; and a corresponding atom
path (Rp,Co)(R1,C4)...(Ry,Ck), such that § € Cj. In the latter case, let
toty ...tx be the branch in T corresponding to ngn; ...ng. We put, for every
i < k, L([to, t:]) = (R;,C;), in order to satisfy 6 over [tg,tx]. In both cases,
we extend the finite branch to an infinite one and we define the labelling of all
other intervals on the branch as in the case in which Cj contains no existential
formulae.

e ¢y = E0,0. By condition F2, there exist a fulfilling infinite path ngn; ... and a
corresponding infinite atom path (R, Cy)(R1,C1) ..., such that FO,.0 € R; for
every © > 0. Let gty ... be the infinite branch in T corresponding to ngn; ... .
We put, for every i > 0, L([to,?:]) = (Ri, Ci), in order to satisty § over [to,t;].
As before, we define the labelling of all other intervals on the branch as in the
case in which Cj contains no existential formulae.

We repeat such a procedure for every existential formula in Cj.

Inductive step. Let ¢ € T such that (i) L is defined over all intervals [t',¢]; (%) for
all t' <1 t, either ¢’ has been already taken into consideration or L is not defined over
any interval [t”,¢']; (#4) t has not been taken into consideration yet.

Consider the set REQ(n), with n such that ¢ = ng...n, and suppose there exists
an existential formula ¢ € REQ(n). Two cases may arise. Either ¢ is satisfied by
the current labelling L, and we are done, or there are no branches starting from ¢
that satisfy ¢. In the latter case, we satisfy ¢ by defining a suitable labelling of an
unlabeled infinite branch starting from ¢, as we have done in the base case of the
induction. By repeating such a procedure for every existential formula ¢ € REQ(n),
we guarantee that all existential formulae in REQ(n) are satisfied.

The model satisfying ¢ contains all and only the labelled (infinite) branches of T.
Let T’ be the infinite tree obtained from T by removing all unlabeled branches and
let V be a valuation function V such that, for every p € AP and [t;,¢,;] € I(T")*,
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[ti,t;] € V(p) if and only if L([ti,t;]) = (R, 1,1, Ciei,1) @and p € Cly, ;). induction on
the structure of the formula that for every ¢ € CL(¢) and for every [t;,t;] € I(T')*, we
have that M, [t;, t;] IF ¢ if and only if L([ts,t;]) = (R, +,), Clt.t;) and ¥ € Cpy, 1)

e The base case, as well as the case of the propositional connectives — and V, are
straightforward.

e Let ¢ be the formula EF<O,x. Suppose that EC,x € Cy, ¢;)- By the definition
of L, there exists an infinite path ¢;t;41... and an interval [t;, ;] such that
X € Cy, .- By inductive hypothesis, we have that M, [t;,t;] IF x, and thus
M+, [tz,tj] I EOTX
As for the opposite implication, assume by contradiction that M, [¢;,¢;] IF
E<C.x and EC.x & Cly,¢;)- By atom definition, this implies that ~E<,x =
AO,=x € Cl, ;). By the definition of L, we have that AO,—x € Ry, 4, for
every t > t;, and thus =x € C, 4, By inductive hypothesis, this implies
that M, [t;,t] IF —x for every ¢, > t;, and thus M*,[t;,¢;] IF AD,—x, which
contradicts the hypothesis that M, [t;, ¢;] IF EO,x.

e Let ¢ be the formula EO,y. Suppose that EO,x € Cl, ;). By the definition

of L, there exists an infinite path p = ¢;t;4; ... such that, for every t; € p,
EO,x € Ry, By atom definition, this implies that x € C;,,) and, by
inductive hypothesis, we have that M, [t;,¢] b x, for every ti € p, ti > tj,
and thus M™, [t;,¢;] IF EO,x.
As for the opposite implication, assume by contradiction that M, [t;,¢,] IF
EO,x and EO,x ¢ Cy,+,)- By atom definition, this implies that —EO,x =
AS,=x € Cly, ¢;)- By the definition of L, we have that, for every infinite path
tjtj+1 ... starting from ¢;, there exists ¢ € p, ty, > ¢; such that —x € Cy, 4,1 By
inductive hypothesis, this implies that for every infinite path p = ¢;¢;41 ... there
exists a point ¢, € p, t > t;, such that M™, [¢;,t;] IF —x, and thus M, [t;, ;] IF
AS, =y, which contradicts the hypothesis that M™, [t;,¢;] IF EOQ, .

Since (N, R) is a substructure, EO@ € Cy, 4], and thus M is a model for ¢. [

4.3 The decision procedure

In this section, we present a decision procedure for BTNL, that progressively removes
from 7, nodes that cannot contribute to fulfilling substructures.

Algorithm 1. Let ¢ be the formula we want to test for satisfiability. The decision
procedure works as follows.

1. Build the (unique) initial tableau 7, = (N, S,).
2. Look for a fulfilling substructure by repeatedly applying the following deletion
rules, until no more nodes in the tableau can be deleted:
e delete any node which is not S,-reachable from an initial node;
e delete any node such that there are no fulfilling paths starting from it;
e delete any node which does not satisfy the conditions of Definition 4.8.
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3. Let T* = (N*,S*) be the final tableau. If 7* is not empty, return frue, other-
wise return false.

The check for the existence of fulfilling paths can be performed as follows. Given
a formula A, € CL(p), we execute the following marking procedure. First, for all
nodes n, mark all atoms (R,C) € n such that A0, € R and ¥ € C. Then, for all
nodes n, mark all unmarked atoms (R, C) € n such that there exists an S,-successor
m of n that contains a marked atom (R’,C’) such that (R,C) X, (R',C"). Repeat
this last step until no more atoms can be marked. Then, delete all nodes that either
contain an unmarked atom (R, C) with A1) € R or have no S,-successors.

The other non trivial step of the algorithm is the removal of nodes that do not
satisfy the conditions of Definition 4.8. Given a node n, condition F1 can be easily
checked by visiting the S -descendants of n. Given an atom (Ry,Cp) € n, and a
formula EO,.v € Ry, condition F2 is satisfied if we can find a finite path of nodes
n = non;...n;n;q;...n; and a corresponding path of atoms (Ry, Co)(R1,Ch) ...
(R]y CJ) (Rj+1, Cj+1) e (.Rk7 Ck) such that

(1) nj = ny, (it) (R;,C;j) = (R, Cy), (i) for all 0 < i < k, EO¢ € R;, (iv) for
every formula A0 € Ry, there exists ¢ > 0 such that 8 € C;.

Furthermore, to guarantee that the infinite path

nong...NyNG;47...Ng_10;N;17...0k_7...

is a fulfilling one, it suffices to check that, for every atom (R’,C’) € n; and every
formula AC,.£ € C’, either £ € C' or there exists a node n;, with j <l < k, and an
atom (R"”,C") € n; such that £ € C" and (R”,C") is a X,-descendant of (R’,C").

As for complexity issues, we have that:

200eD |
)

o [7T,] =2

e all tests of step (ii) of the algorithm can be done in time polynomial in the size
of [Tol;

e after deleting at most [N, | nodes, the algorithm terminates.

Hence, checking the satisfiability for a BTNL formula has an overall time bound of
20wl . . .
2 , that is, doubly exponential in the size of ¢.

4.4 The decision procedure at work

In this section we apply the proposed decision procedure to the (satisfiable) formula
p = Ed,p. We show only a portion of the whole tableau, which is sufficiently large
to include a fulfilling substructure, and thus to prove that ¢ is satisfiable.

When searching for a fulfilling substructure for ¢, we must take into consideration
atoms which have been obtained by suitably combining one set of active requests with
one set of current formulae. The non-empty sets of active requests are the following
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ones:
Ry = {EQTEDTP) EDrp} Ry = {EOTEDTP}
R = {EQTEDTP, A<>Tﬁp} R5 = {ADTAQTﬁp}
Ry = {ADTAOTﬁp, EDTp} Rg = {E\jrp}
R3 = {ADT.ADT—\p, A<>7.—|p} R; = {A<>r—|p}

while the sets of current formulae are the following ones:

C(O = {E<>7'ED7'p7ED7'pap} C’4 = {ADT'AOT'_‘pa EDer)}
€y = {EOTEDrpy EO,p, _‘p} Cs = {ADTAOT_‘pa EO,p, _'p}
Cy ={EC,EQ,p, A, —p,pt  Cg = {A0,AO,—p, AO,—p, p}
03 = {EQTEDTP» A<>T_‘p7 _‘p} C7 = {ADTAOT_‘p7 A<>r_‘p7 _'p}

As an example, consider the initial node ng = ((Ro, Co), ). Figure 4.2 depicts a
portion of 7, that is S,-reachable from ng. In every node n the atom above the line
is the designated atom (R, Cy), while the atoms below the line are the atoms in M.

Figure 4.2: A portion of the tableau for EO,.p.

In the considered portion of 7, the only atom with A<, -formulae in its set of
active requests is (R3,C7), since AC,—p € Rs. The atom (R3,C7) immediately
fulfills A, —p, since —p € C7. Hence, for every node of the substructure of Figure 4.2
there exists a fulfilling path. The only atom containing a formula of the form E<,.q)
is (Ro, Cy), since EC.EQ,.p € Ry. (Rp,Cp) immediately fulfills E<, EO,.p, and thus
condition F1 is trivially satisfied. As for condition F2, consider the atom (Rg,Cs).
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It is easy to see that, for every node n containing (Rg, Cs), there exists a fulfilling
infinite path starting from n such that every node contains (Rg, Cs). Thus, condition
F2 is satisfied. This allows us to conclude that the substructure depicted in Figure
4.2 is fulfilling, and thus our decision procedure correctly concludes that the formula
FEO,p is satisfiable.
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The tableau method for PNL

In Chapter 3 we have established the decidability of RPNL over the natural numbers.
We basically proved that an RPNL formula is satisfiable if and only if there exists
a finite model, or an ultimately periodic (infinite) one, with a finite representation
of bounded size. In both cases, such a model can be built starting from any model
satisfying the formula by progressively removing exceeding points from it until the
desired bound is reached. The removal of a point d from a model causes the removal
of all intervals either beginning or ending at it. Since RPNL features only future
time modalities, the removal of intervals beginning at d is not critical. By contrast,
the removal of intervals ending at d may introduce “defects”, that is, there may
be existential future temporal formulae that are not satisfied any more. However, by
properly choosing the point d to remove, we can guarantee that there exist sufficiently
many points in the future of d which allows us to fix such defects (by possibly changing
the truth value of formulas over intervals ending at them) without introducing new
defects.

In this chapter, we generalize the technique we used for RPNL to full PNL by
showing that a PNL formula is satisfiable if and only if there exists a finite model,
or an infinite one, with a finite representation of bounded size. As in the case of
RPNL, such a model can be obtained by removing exceeding points from a given
model satisfying the formula, but the removal process turns out to be much more
involved. In contrast with the case of RPNL, the removal of a point d from a PNL
model may affect the satisfiability of formulae over intervals in the past as well as in
the future of d . Hence, to fix the defects possibly caused by the removal of d, we
must guarantee that there exist sufficiently many points with the same characteristics
as d both in the future and in the past of d. Moreover, we must be sure that changing
the valuation of intervals that either end or start at these points does not generate
new defects. In the following, we show that this can actually be done. This chapter
is an extended version of [BMSO07a).

5.1 Labelled Interval Structures for PNL

In this section we introduce some preliminary notions and we establish some basic
results on which our tableau method for PNL relies. As in the previous chapter,
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we first consider the case of the most general variant of PNL, PNL™. Then, in
Section 5.3, we will show how the proposed method can be adapted to PNL* and
PNL™. Furthermore, we restrict our attention to the case of the integers. From now
on, all linear orderings we will consider are isomorphic to Z (with the usual ordering)
or to a subset of it.

Let ¢ be a PNL™" formula to be checked for satisfiability and let AP be the set
of its propositional letters.

Definition 5.1. The closure CL(p) of ¢ is the set of all subformulae of ¢, and of
their negations (we identify ——1 with ).

As will become clear later, we put the formula <,¢ and its negation in CL(¢p) to
guarantee the existence of at least one interval over which ¢ holds.

Definition 5.2. The set of temporal formulae of ¢ is the set TF(p) = {4,
DT¢7 <>l77[}a Dﬂ/’ E CL(@)}

By induction on the structure of ¢, we can easily prove that, for every formula ¢,
| CL(p)| is less than or equal to 2 - (|¢| 4+ 1), while | TF ()] is less than or equal to
2 - |¢|. We are now ready to introduce the notion of y-atom.

Definition 5.3. A p-atom is a set A C CL(y) such that:

e for every ¢ € CL(p), v € A iff ) € A;
e for every 11 Vg € CL(p), 11 Vipo € Aiff 901 € A or 99 € A.

We denote the set of all p-atoms by A,. We have that |A,| < 2/¢I*1. Atoms are
connected by the following binary relation.

Definition 5.4. Let LR, be a relation such that for every pair of atoms Ay, Ay € Ay,
Ay LR, A, if and only if (i) for every 0,9 € CL(yp), if O,¢ € A; then ¢ € Ay and
(ii) for every O;ip € CL(yp), if Oj1p € Ay then ¢ € A;.

We now introduce a suitable labeling of interval structures based on p-atoms.

Definition 5.5. A p-labeled interval structure (LIS for short) is a tuple L = (D,
I[(D)*, £), where (D,I(D)") is a non-strict interval structure and £ : I(D)* — A, is
a labeling function such that, (a) for every interval [d;,d;] € I(D)*, = € L([d;,d;])
iff d; = d;, and (b) for every pair of neighboring intervals [d;, d;|,[d;,d;] € I(D)*,
L([di, d;]) LR, L([d;, di])-

If we interpret the labeling function as a valuation function, LISs represent can-
didate models for . The truth of formulae devoid of temporal operators, that of the
modal constant 7m and that of O,./0; formulae indeed follow from the definition of
p-atom and LR, respectively. However, to obtain a model for ¢, we must also guar-
antee the truth of <, /<; formulae. To this end, we introduce the notion of fulfilling
LIS.
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Definition 5.6. A ¢-labeled interval structure L = (D, I(D)*, £) is fulfilling if and
only if (a) for every temporal formula <¢,¢ € TF(y) and every interval [d;,d;] €
I(D)*, if O, € L([d;,d,]), then there exists dj > d; such that ¢ € L([d;,dk]) and
(b) for every temporal formula ;) € TF(yp) and every interval [d;,d;] € I(D)™T, if
Oup € L([di, dj]), then there exists dy < d; such that ¢ € L([d, d;]).

The next theorem proves that for any given formula ¢, the satisfiability of ¢ is
equivalent to the existence of a fulfilling LIS with an interval labeled by .

Theorem 5.7. A formula ¢ is satisfiable if and only if there exists a fulfilling LIS
L = (D,I(D)*", L) with ¢ € L([d;,d;]) for some [d;,d;] € I(D)".

The implication from left to right is straightforward; the opposite implication is proved
by induction on the structure of the formula.

From now on, we say that a fulfilling LIS L = (D,I(D)", £) satisfies ¢ if and only
if there exists an interval [d;, d;] € I(D)* such that ¢ € £([d;,d;]). Since fulfilling
LISs satisfying ¢ may be arbitrarily large or even infinite, we must find a way to
finitely establish their existence. In the following, we first give a bound on the size of
finite fulfilling LISs that must be checked for satisfiability, when searching for finite
p-models; then, we show that we can restrict ourselves to infinite fulfilling LISs with
a finite bounded representation, when searching for infinite ¢-models.

Definition 5.8. Given a LIS L = (D,I(D)", £) and a point d € D, we define the
set of future temporal requests of d as the set REQ?(d) = {©,¢/0,¢6 € TF(yp) :
Ad' € D(<,.£/0,¢ € L([d',d]))} and the set of past temporal requests of d as the set
REQy (d) = {¢i£/0,€ € TF(p) : 3d’ € D(¢1£/0,€ € L([d,d']))}. The set of temporal
requests of d is defined as REQ™(d) = REQIIJ‘ (d)yU REQ?(d).

We denote by REQ,, the set of all possible sets of requests. It is not difficult to

show that | REQ,, | is equal to o

Definition 5.9. Given a LIS L = (D,I(D)*,£), D’ C D, and R € REQ,, we
say that R occurs n times in D’ if and only if there exist exactly n distinct points
di,,...,d;, € D' such that REQ"(d;,) = R, for all 1 < j < n.

We describe the process of removing a point from a LIS. Given L = (D,I(D)*, £)
and d € D, let L_, be the set of all LIS L' = (D', [(D’) ", L) such that D’ = D\ {d}
and REQY (d) = REQY(d), for all d € D\ {d}. L and L’ do not necessarily agree on
the labeling of intervals, but they agree on the sets of requests of points.

Given a fulfilling LIS L and a point d, it is not guaranteed that L_; contains
a fulfilling LIS. The removal of d indeed causes the removal of all intervals either
beginning or ending at it and thus there can be a point d < d (resp., d > d) such that
there exists a formula ¢, € REQ? (d) (resp., O1) € REQ;‘ (d)) which is fulfilled in
L, but not in any L’ € L_4. The following lemma provides a sufficient condition for
preserving the fulfilling property when removing a point from L.

Lemma 5.10. Let L = (D,I(D)", L) be a fulfilling LIS, f be the number of <.-
formulae in TF(p), and p be the number of Oi-formulae in TF(p). If there exists a
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point d. € D such that (i) there exist at least f-p+p distinct points d < d such that
REQY(d) = REQY(d,) and (i) there exist at least f - p + f distinct points d > d,
such that REQY(d) = REQ™(d.), then there is one fulfilling LIS L € L__ .

Proof. Let L = (D,I(D)*, £) be a fulfilling LIS and let d. € D be a point such that
there exist at least f - p + p distinct points d < d, such that REQY(d) = REQ¥(d,)
and at least f-p+ f distinct points d > d, such that REQ™(d) = REQ™(d.). We
define D' = (D \ {d}, <) and L' = L|yp)+ (the restriction of £ to the intervals on
D’). The pair L' = (D', I(D’)*, L) is obviously a LIS in L_g4_, but, as already pointed
out, it is not necessarily a fulfilling one. We show how the defects possibly caused by
the removal of d. can be fixed one-by-one by properly redefining £’

Consider the case of a point d < d. and a formula ¢ € REQ}‘(d) such that
Y € L£([d,d.]) and there are no d € D\ {d.} such that v € £'([d,d]) (the symmetric
case of d > d. and Oy € REQII)‘(d) can be dealt with in the same way). Let R =
{d, € D:d, >d, A\REQ"(d,) = REQ"(d.)}. To satisfy the request ©,1) € REQ"(d)
we change the labeling of an interval [d,d,], for a suitable d, € R. However, to
prevent such a change from making one or more requests in REQZI}‘(dT) no longer
satisfied, we preliminarily redefine the labeling £'. First, we take a minimal set of
points P% C D\ {d.} such that, for every ;9 € REQZI;(de) there exists a point
d; € P% such that ¢ € £([d;,d.]). We call P% the set of preserved past points for
d.. Then, for every point d; € P, let F% C D be a minimal set of points such that,
for every ¢ € REQ%(di) there is a point dy € F% such that ¢ € L£([d;,dy]). We
call F% the set of preserved future points for d,.

Let G be the set of points R\ Uy, ¢ pa. Fd . By the minimality requirements, |P% |
is bounded by p and | F%|, for each d; € P, is bounded by f. Hence, | Uy ¢ pa. F%| <
f-p and, by Condition (ii), |G| is greater than or equal to f. Now, we can use points
in G to fulfill ¢ € REQ?(d), without generating new defects, as follows. Since
REQ?(d) contains at most f <,-formulae, there exists at least one point d, € G
such that the atom L£'([d,dy]) either fulfills no <,-formulae or it fulfills only <,-
formulae which are also fulfilled by an p-atom £'([d, di]) for some dj. Let d, one of
these “useless” points. We can redefine £'([d, d,]) by putting £'([d,dy]) = L([d, d.]),
thus fixing the problem for &9 € REQJI;(d). Since REQL(dg) = REQ"(d,), such a
change has no impact on the right neighboring intervals of [d, d4]. By contrast, there
may exist one or more <;-formulae in REQ};(dQ) which, due to the change in the
labeling of [d, dg], are not satisfied anymore. In such a case, however, we can recover
satisfiability, without introducing any new defect, by putting £'([d;, dg4]) = L([d;, de])
for all d; € P%.

In the same way, we can fix all possible other defects caused by the removal of d..
Let L = (D', I(D’), £) be the resulting LIS. It is immediate that L is fulfilling and it
belongs to L_g,. O

By taking advantage of Lemma 5.10, we can prove the following theorem.

Theorem 5.11. Let L = (D, I(D)*, L) be a finite fulfilling LIS that satisfies ¢, [ be
the number of ©.-formulae in TF (), and p be the number of <;-formulae in TF(p).
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Then, there exists a finite fulfilling LIS L= <]]3),]I(]]3))+72> that satisfies ¢ such that,
for every d; € 15, REQL(C/I;) occurs at most m = 2fp+ f + p times in D.

Proof. Let L = (D,I(D)*, L) be a finite fulfilling LIS that satisfies . If for every
d; € D, REQ" (d;) occurs at most m times in D, we are done. If this is not the case,
we show how to build a fulfilling LIS with the requested property by progressively
removing exceeding points from D.

Let Lo = L and let Rp = {REQ;,REQ,,...,REQ,} be the (arbitrarily ordered)
finite set of all and only the sets of requests that occur more than m times in D. Lg
can be turned into a fulfilling LIS L; = (Dy,I(D;)", £1) satisfying ¢, which contains
exactly m points d € D; such that REQ™ (d) = REQ; as follows. Since REQ, occurs
more that m times in D, there exists a point d, € D such that REQ™ (d.) = REQ,
and there exist at least fp-+p distinct points d < d, such that REQ™ (d) = REQ™ (d.)
and at least fp+ f distinct points d > d. such that REQ™ (d) = REQ™(d,). Hence,
by Lemma 5.10, there exists a fulfilling LIS L’ € L_4_. We repeat the application of
Lemma 5.10 until we get a fulfilling LIS L; such that REQ; occurs exactly m times
in D;. It remains to show that L; satisfies ¢. Since Lg satisfies ¢, we have that
there exists an interval [d;, d;] such that ¢ € Lo([d;,d;]). By definition of CL(y),
Orp € CL(p), hence <, € REQM (d;). In Ly two cases are possible: either d; € Dq
or it does not. If d; € Dy, then ©,.p € REQM™ (d;) and, being L, fulfilling, there exists
an interval [d;, di] such that ¢ € £4([d;,dk]). If d; € Dy, then it has been deleted at
some stage of the construction of Ly. This implies that REQ™ (d;) = REQ, and thus
there exist m points d in L such that REQ™ (d) = REQ™ (d;). Since L, is fulfilling,
there exists an interval [d, d'] such that ¢ € £1([d,d’]). In both cases L satisfies .

By iterating such a transformation k£ — 1 times, we can turn L; into a fulfilling
LIS devoid of exceeding points that satisfies (. O

Let us consider now the case of infinite (fulfilling) LISs. We start with a classifi-
cation of points belonging the domain of the structure.

Definition 5.12. Given an infinite LIS L = (D,I(D)*, £), we partition the points in
D into the following sets:

e Fin(L) is the set of all points d € D such that REQ¥(d) occurs finitely many
times in D;

e Inf;(L) is the set of all points d € D such that REQ™(d) occurs infinitely
many times in D, but there exists a point d,,q, such that, for all d’ > d4z,
REQ"(d') # REQ"(d);

e Inf.(L) is the set of all points d € D such that REQ™(d) occurs infinitely
many times in D, but there exists a point d,,;, such that, for all d' < din,
REQ"(d') # REQ"(d);

e Inf(L) is the set of all points d € D such that REQ"(d) occurs infinitely many
times in D and, for every point d’, there exists d” < d’ such that REQ"™(d") =
REQY(d) and there exists d’’ > d’ such that REQ¥(d"’) = REQ¥(d).

The following definition captures a particular subclass of infinite LISs that enjoy
a finite representation.
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Definition 5.13. An infinite LIS L = (D,I(D)*, £) is ultimately periodic, with left
period [, infix 4 and right period r, if and only if there exists dy € D such that for all
k < 0, REQ™(dy) = REQY(dy_;) and for all k > 0, REQ"™(di; 1) = REQ¥(diysir).

The following theorem proves that if there exists an infinite fulfilling LIS that
satisfies o, then there exists also an ultimately periodic fulfilling LIS that satisfies it.
Furthermore, it provides a bound to the left period, infix, and right period of such a
fulfilling LIS which closely resembles the one that we established for finite ones.

Theorem 5.14. Let L = (D,I(D)", L) be an infinite fulfilling LIS that satisfies o,
f be the number of ©,.-formulae in TF(p), and p be the number of Oy-formulae in
TF(¢). Then, there exists an ultimately periodic fulfilling LIS L= (]ﬁ), ]I(]IA)))"’, E), with
left period 1, infix i and right period r, such that

1. for every d; € an(i), REQL(dj) occurs at most m = 2fp+ f + p times in D;

©

for every d; € Infr(fz), REQL(dj) occurs exactly fp+ p times in I, where I is
the set of points in the infix part of L;

for every d; € Infl(i), REQL(dj) occurs exactly fp+ f times in I;

for all points d; € Inf(f;), d; & 1;

r < |REQW\ and I <|REQ,, |;

for every d; € Fin(L) and every formula Opp € REQEJ (dj), there exists a point
d, < dit(ppif)r Such that € L([d;, dn]);

7. for every d; € Fin(L) and every formula O € REQi‘(dj), there exists a point
dn > d_(f.pip)1 such that ¢ € L([dy, d;])

S G e

that satisfies .

Proof. Let ¢ be a satisfiable formula and let L = (D,I(D)*, £) be an infinite fulfilling
LIS that satisfies ¢. By exploiting Lemma 5.10, we briefly show how to build a
fulfilling LIS L which respects Conditions 1-7.

1. Let dy be the smallest point in Fin(L) U Inf.(L) and d;—; be the greatest
point in Fin(L) U Infy(L). The set I = {do,...,d;_1} will be the infix of L.
By repeatedly applying Lemma 5.10 we can remove from the infix all points
d € Fin(L) such that REQY(d) occurs more that m times in D.

2. Suppose that there exists a point d; € Inf,.(L) such that REQL(dj) does not
occurs fp + p times in I: two cases may arise. If REQY (d;) occurs more than
fp+p times in I, we can exploit Lemma 5.10 to remove the exceeding occurrences
of REQL(dj). If REQL(dj) occurs less than fp + p times in I, let d > d;_1
be the point such that REQ™(dy) = REQY(d;) and REQ™(dy) occurs ezactly
fp+p times in {do,...,d;—1,...,dp}. I ={do,...,di—1,...,dr} becomes the
new infix of the ultimately periodic LIS. We repeat such a procedure until
REQY(d) occurs exactly fp + p times in I, for all d € Inf,(L).
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3. Suppose that there exists a point d; € Inf;(L) such that REQL(dj) does not
occurs fp+ f times in I. We proceed as in the previous case, either by removing
the exceeding occurrences of REQL( d;) or by extending the infix to the left if
REQY(d;) occurs less than fp + f times in I.

4. Suppose now that there exists a point d; € Inf(L) such that d; € I. By
the definition of Inf(L), there are infinitely many points d < d; such that
REQ"(d) = REQ"(d;) and infinitely many points d > d; such that REQ™(d) =
REQL( ;). Hence, by exploiting Lemma 5.10, we can obtain a fulfilling LIS
satisfying ¢ where d; is removed.

5. Let I = {dyp,...,d;—1} be the infix of L and suppose that it respects Conditions
1-4. To turn L into an ultimately periodic LIS respecting Condition 5, we
must show how to define the right and left period. Consider the set R =
{REQ"(d) : d € Inf(L) U Inf.(L)} and let R = {REQ,...,REQ,_,} be an
arbltrary enumeration of it. The cardinality r of R will be the right period of
L. We inductively define L in such a way that, for all £ > 0, REQL (d 2+1€) =
REQ, vop,- Let k& = 0, and consider REQ™(d;): if REQ¥(d;) = REQ,, we
are done. Otherwise, let d, > d; be the first occurrence of REQ, after d;.
Since L respects Conditions 1-4, we have that, for every point d; < d’ < dp,
there exist sufficiently many points d” < d; such that REQ™(d") = REQ"(d').
Hence, by Lemma 5.10, there exists a LIS Ly where all points d; < d’' < dj,
have been removed. Thus, Ly is such that REQ™ (d;) = REQ™(d),) = REQ,.
Now, let & > 0 and suppose that Ly_; = (Dr_1,I1(Dg_1), Lr—1) respect the
condition for all h < k. We can proceed as in the case of k = 0 and define a LIS
Ly, = (Dg, I(Dy), Li) such that REQ™* (d; 1) = REQy mon -

The left period of L can be defined in an analogous way starting from an arbi-
trary enumeration of the set £ = {REQY(d) : d € Inf(L) U Inf,(L)}.

6. Suppose that L respects Conditions 1-5. Let d; € Fin(L) and <9 € REQL(dj)
be a formula that is fulfilled only by intervals [d;, dy] such that dy > d;{ ¢(pt1)r-
Since L respects Condition 2, for every point d’ such that d; < d’ < dj, we have
that there exist at least fp + p points d”’ < d; with REQL(d”) = REQL(d’).
Hence, we can exploit Lemma 5.10 to remove points between d; and dj, thus
building a fulfilling LIS L that satisfies ¢ and such that ©,4 € REQ™(d;) is
fulfilled by an interval [d;, dp] with d, < dii(fptpyr-

7. To build a fulfilling LIS L that respects Condition 7, we suppose that L respects
Conditions 1-5, and we proceed with a removal procedure analogous to the one
for the previous case. O

5.2 A tableau-based decision procedure for PNL™"

In this section we define a tableau method for PNL™ T over the integers or a subset of
them, that resembles the one we developed for RPNL interpreted over the naturals
in the previous chapter.

Given a formula ¢, let m = 2fp + f + p, where f (resp. p) is the number
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of O,-formulae (resp. <;-formulae) in CL(p). A tableau for PNL™ is a special
decorated tree T. For each node n in a branch B, the decoration v(n) is a tuple
([d;, dj], Apn, REQ,,, Dy,), where:

[dia dj] € H(]D)n)+§

e REQ, : D, — REQ,, is a request function;

e D, = (D,,<) is a finite linear order;

o A, € A, is such that: (i) m € A, if and only if d; = d;, (it) for all 0,9 €
REQ,, (d;), ¥ € A, (W) for all O;¢p € REQ,,(d;), ¥ € A,, (iv) for all ¢ € A,
if v = O or ¢ = 0y, then v € REQ,,(d;), and (v) for all ¢ € A,,, if p = €
or ¥ = 0,¢, then v € REQ,,(d;);

The root 7 of the tree is decorated by the empty decoration (0,0, 0,0).

Given a node n € B, decorated with ([d;, d;], A,,, REQ,,,D,,), and a future exis-
tential formula <, € A,,, we say that <1 is fulfilled on B if and only if there exists
anode n’ € B such that v(n') = ([d;, di], An/, REQ,,,, D) and ¢ € A,,,. Conversely,
we say that a past existential formula < € A, is fulfilled on B if and only if there
exists a node n’ € B such that v(n') = ([dk,d;], An/, REQ,,,D,/) and ¢ € A,,. A
node n is said to be active on B if and only if A, contains at least one (future or
past) existential formula which is not fulfilled on B.

Expansion rules. Let B a branch of a decorated tree 7. We denote by Dp and
REQj the linear order and the request function of the decoration of the last node in
B, respectively. Moreover, let d; and d, be the minimum and maximum element of
Dp, respectively. The expansion rules for B are:

1. Right step rule: if there exists an active node n € B, with v(n) = ([d;, d;], An,
REQ,,, Dy, z) and a non-fulfilled future existential formula in A, then extend
Dp to D' = Dg U{d,41}, with d,11 > d,. Then, take an atom A’ such that
A, LR, A’ and extend REQp to REQ' : D' — REQ,, in such a way that for
all Oy € REQ'(d,11), ¥ € A’ and for all o € A, if ¢ = O£ or ¢ = O,.€, then
1 € REQ'(d,41). Finally, add an immediate successor n’ to the last node in B
decorated with ([dj, d, 1], A, REQ', D).

2. Left step rule: if there exists an active node n € B, with v(n) = ([d;, d;], A,
REQ,,,D,,z) and a non-fulfilled past existential formula in A,,, then extend
Dp to D' = D U{d;_1}, with d;—1 < d;. Then, take an atom A’ such that
A" LR, A, and extend REQp to REQ' : D’ — REQ,, in such a way that for
all 0,1 € REQ'(d;_1), ¥ € A" and for all ¢ € A, if ¢ = O€ or ¢ = O;€, then
1 € REQ'(d;_1). Finally, add an immediate successor n’ to the last node in B
decorated with {[d;_1,d;], A", REQ’, D).

3. Fill-in rule: if there exist two points d; < d; such that there are no nodes in
B decorated with the interval [d;, d;] and there exists a decoration ([d;, d;], 4’,
REQg,Dp), then expand B by adding an immediate successor n’, with such a
decoration, to the last node in B.

All rules expand the branch B with a new node. However, while the left and right
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step rules add a new point d to Dp and decorate the new node with a new inter-
val beginning or ending at d, the fill-in rule decorates it with a new interval whose
endpoints already belong to Dp.

Expansion strategy. Given a decorated tree 7 and a branch B, let d; and d, be
the least and the greatest point in Dp, respectively. We say that B is right-blocked
if REQg(d,) is occurs m + 1 times in Dpg, while it is left-blocked REQg(d;) is occurs
m ~+ 1 times in Dpg. A branch is blocked if it is both left and right blocked.

An expansion rule is applicable on B if B is non-blocked and the application of
the rule generates a new node. The branch expansion strategy for a branch B is the
following one:

1. if the fill-in rule is applicable, apply the fill-in rule to B and, for every possible
choice for the decoration, add an immediate successor to the last node in B;

2. if the fill-in rule is not applicable and there exist two points d; < d; € Dp such
that there are no nodes in B decorated with [d;, d;], close the branch;

3. if B is not right-blocked and the right-step rule is applicable, then apply it to
B and, for every possible choice for the decoration, add an immediate successor
to the last node in B;

4. if B is not left-blocked and the left-step rule is applicable, then apply it to B
and, for every possible choice for the decoration, add an immediate successor to
the last node in B.

Tableau. Let ¢ be the formula to be checked for satisfiability and let
([do, dol, A1, REQq, {do}), . - ., ([do, do], Ak, REQy, {do}) be the set of decorations with
Orp € REQ,(dp). The initial tableau for ¢ consists of the root, with the empty deco-
ration, and k immediate successors ni,...ng. For each 1 <17 < k, n; is decorated by
([do, do], A;, REQ;, {do}). A tableau for ¢ is any decorated tree 7 obtained by expand-
ing the initial tableau for ¢ through successive applications of the branch-expansion
strategy to existing branches, until the branch-expansion strategy cannot be applied
anymore.

Fulfilling branches. Given a branch B of a tableau 7 for ¢, we say that B is a
fulfilling branch if and only if B is not closed and one of the following conditions
holds:

1. B does not contain active nodes (finite model case);

2. B is right blocked and there exists at least one formula <, not fulfilled in B
(right unbounded model case). Moreover, let d, be the greatest point in Dg. By
the blocking condition, REQy(d,.) is repeated m+1 times in Dp. Let dj be the
greatest point in Dp, with dj, < d,., such that REQpz(dr) = REQg(d,). The set
{di+1,--.,dr}, called fulfilling right period, satisfies the following conditions:

(a) foralld;,d; € {dk+1,...,d,}, there exists an atom A;; such that (i) 7 &€ A,

(i) for all O,¢ € REQg(d;), ¥ € A;j, and (iit) for all O;9p € REQg(d;),
Y € Ayj;
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(b) for all d; € {dk+1,...,d,} and Opp € REQg(d;) not fulfilled in B, there
exist a point d; € {dg41,...,d,} and an atom A;; such that (i) 7 & A,j,
(ZZ) P € Aij, (ZZZ) for all O,¢ € REQB(dl), & e Aij, and (Z’U) for all 0;¢ €
REQp(d;), § € Aij;

(c) for all d; < dj, such that REQp(d;) does not occur in the right period, all
Op-formulae in REQg(d;) are fulfilled in B.

3. B is left blocked and there exists at least one formula <3 not fulfilled in B
(left unbounded model case). Moreover, let d; be the smallest point in Dg. By
the blocking condition, REQg(d;) is repeated m + 1 times in Dp. Let dj, be the
smallest point in Dp, with dj > d;, such that REQgz(dx) = REQg(d;). The set
{di,...,dx—1}, called fulfilling left period, satisfies the following conditions:

(a) foralld;,d; € {d;,...,dk_1}, there exists an atom A,; such that (i) 7 € A,
(it) for all O,¢ € REQg(d;), ¥ € Ajj, and (ui) for all O;¢p € REQp(d;),
Y € Ay

(b) for all d; € {dy,...,dr—1} and <) € REQg(d;) not fulfilled in B, there
exists a point d; € {dj,...,dk—1} and an atom A;; such that (i) 7 € A;;,
(i1) ¢ € Ay, (i11) for all O,& € REQg(d,), £ € Aj;, and (W) for all O,¢ €
REQp(di), § € Aji;

(c) for all d; > dj such that REQg(d;) does not occur in the left period, all
Oj-formulae in REQg(d;) are fulfilled in B.

4. if B is both right and left blocked, Conditions 2. and 3. must hold.

The decision procedure works as follows: given a formula ¢, it constructs a tableau
T for ¢ and it returns “satisfiable” if and only if there exists at least one fulfilling
branch in 7.

5.2.1 Soundness and completeness

Soundness and completeness of the proposed method can be proved as follows. Sound-
ness is proved by showing how to construct a fulfilling LIS satisfying ¢ from a fulfilling
branch B in a tableau 7 for ¢ (by Theorem 5.7, it follows that ¢ has a model). The
proof must encompass both the case of non-blocked branches (finite case) and of
blocked ones (infinite case). Proving completeness consists in showing that for any
satisfiable formula ¢, there exists a fulfilling branch B in any tableau 7 for ¢. Given
a model for ¢ and the corresponding fulfilling LIS L, we prove the existence of a
fulfilling branch in 7" by exploiting Theorems 5.11 and 5.14.

Theorem 5.15 (Soundness). Given a formula ¢ and a tableau T for o, if there exists
a fulfilling branch in T, then @ is satisfiable.

Proof. Let T be a tableau for ¢ and B a fulfilling branch in 7. We show that, starting
from B, we can build up a fulfilling LIS L satisfying . We first consider the LIS Lg =
(Dp,I(Dp)*, Lp), where Lp is such that, for every [d;,d;] € I(Dp)*, Lp([d;, d;]) =
A,,, with n being the unique node in B decorated with ([d;, d;], A,, REQ,,,D,,). Given
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the expansion rules of the tableau, we have that Lp is a LIS, but it is not necessarily
fulfilling. Four cases may arise.

B does not contains active nodes (finite model case). In this case, all <, and
O-formulae that occur in B are fulfilled in B and thus in Lg. By the definition of
initial tableau we have that ¢.¢ € REQg(dy). Hence, ¢ is satisfied in L.

B is right blocked and it contains at least one non-fulfilled <, formula, while all
Oj-formulae are fulfilled in B (right-unbounded model case). In this case, we extend
Lp to a right unbounded LIS L’ where all <,-formulae are fulfilled. Let d, be the
greatest point of Dp and di be the greatest point in Dp such that dy < d, and
REQg(dr) = REQg(d,). We extend Dp to D’ by putting an infinite sequence of
point d,41,dy12,. .. after d, and we build the right-periodic LIS L = (D', (D) *, L)
as follows:

o for all intervals [d, d'] € I(Dp)", £'(|d,d)) = Lp([d,d]);

o for all points d,ys > dy, let dy = djy(hmoD(r—k))- We put REQY (dy1n) =
REQ"? (dy) and L'([dy-yn, dryn]) = Lp([dg, dg]);

e for every point d,.i, > d., we fulfill the ¢;-formulae in REQL/ (dyspn) as fol-
lows. First, for every d; < dj such that REQL,(di) does not occur in the
period, we put L£'([d;,dry4]) = LB([ds, dit(hMoD(r—k)))- Then, for every for-
mula <y € REQL/(dTJrh) which has not been fulfilled yet, we consider the
point dyy(nMoD(r—k))- Since in B all O;-formulae are fulfilled, there exists an
interval [d, dj4(n MOD(r—rk))] such that ¢ € Lp([d, dp+(nMoDr—k))]). Two cases
may arise. Either REQY (d) occurs in the period or it does not. If REQLl(d)
does not occur in the period, then £'([d, d,1]) = LB([d, di+(n MODr—k))]) and
O € REQL/(dTJrh) is already fulfilled. If REQL,(d) occurs in the period,
we take the greatest point d’ < d,yp such that REQL/(d’) = REQY (d) and
the labeling of the interval [d',d, ;] has not been defined yet, and we put
L'([d,dryn]) = LB([d, diy(nMoOD(r—rky)]). By making such a choice for d’, we
guarantee that there always exist infinitely many points d” > d with the same
set of requests of d,.;;, such that the labeling of [d, d"] is still undefined;

e for every point d € D’ and every O, € REQL/ (d) which has not been fulfilled
yet, proceed as follows. By Condition 2.(c) of the definition of fulfilling branch,
there exists a point dxy1 < d; < d,- such that REQz(d) = REQg(d;). Hence,
by Condition 2.(b), there exist a point d; € {dk+1,...,d-} and an atom A,;;
such that 7 ¢ A;;, ¥ € A;;, for all 0,6 € REQg(d;), & € A;j, and for all
0,6 € REQp(dj), £ € Ai;. By the definition of L', we have that there exist
infinitely many points d, > d, in D’ such that REQL,(dn) = REQg(d;). We
can take one of such points d,, such that £([d, d,,]) has not been defined yet and
put L([d, dn]) = Aij;
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e once we have fulfilled all diamond formulae in REQL,(d), for all d € D', we
define the labeling of the remaining intervals [d,d’], where d' > d,. Since B
is fulfilling, we can always define £'([d,d’]) by exploiting Condition 2.(b) for
fulfilling branches.

B is left blocked and it contains at least one non-fulfilled <; formula, while all
Op-formulae are fulfilled in B (left-unbounded model case). In this case we proceed
as in the right-unbounded model case to extend Lp to a left unbounded LIS where
all & -formulae are fulfilled.

B is left and right blocked and it contains both <, and <; non-fulfilled formulae
(unbounded model case). We apply the construction for the right unbounded model
case and that for the left unbounded model case to build an unbounded LIS where
all diamond formulae are fulfilled. O

Theorem 5.16 (Completeness). Given a satisfiable formula @, there exists a fulfilling
branch in every tableaw T for .

Proof. Let ¢ be a satisfiable formula and let L = (D,I(D)*, £) be a fulfilling LIS sat-
isfying ¢, whose existence is guaranteed by Theorem 5.7. Without loss of generality,
we may assume that L respects the constraints of Theorem 5.11, if it is finite, and of
Theorem 5.14, if it is infinite. Furthermore, we assume that <. € REQL(dO). Given
a linear order IV C I, we denote with REQ™ |p/ the restriction of REQY to the inter-
vals in I(ID")*. We prove that there exists a fulfilling branch B in 7 which corresponds
to L. To this end, we prove the following property: there exists a non-closed branch B
such that, for every node n € B, if n is decorated with ([d;,dy], Ay, REQ,,,Dy,), then
A, = L([d;,dx]) and REQ,, = REQ" |p,. The proof is by induction on the height
h(T) of T.

If h(T) =1, then 7 is the initial tableau for ¢ and, by construction, it contains a
branch By = (0,0,0,0) - ([do, do], An, REQ,,,D,,), with A,, = L([do, dp]) and REQ,, =
REQ" |14y}

Let h(T) = ¢+ 1. By the inductive hypothesis, there exists a branch B; of length i
that satisfies the property. Let Dp, = {d_p,...,do,d1,...,dr}. We distinguish three
cases, depending on the expansion rule that has been applied to B; in the construction
of 7.

e The right-step rule has been applied.

Let n be the active node, decorated with ([d;,di], An, REQ,,,Dy,), to which
the right-step rule has been applied to. By the inductive hypothesis, A, =
L([d;,d;]) and REQ,, = REQ" |p, . Let D’ = {d_p,...,dj11}. Since L is a LIS,
L([dj,d))) LR, L([d;,dr+1]) and REQ" | is a possible extension of REQ,,.
Hence, there must exist in 7 a successor n’ of the last node of B; decorated
with ([dl,dk+1],£([dl,dk+1]),REQL |pr, D). Let B;11 = B; -n'. Since the step
rule can be been applied only to non-closed branches (and it does not close any
branch), B;;1 is non-closed.
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e The left-step rule has been applied.
Let n be the active node, decorated with ([d;, di], An, REQ,,,Dy), to which the
left-step rule has been applied to. By proceeding as in the case of the right-step
rule, we can extend B; to a non closed branch B;;; that respects the property.

e The fill-in rule has been applied.

Let d; < d; be the points in Dp, such that there are no nodes in B; deco-
rated with [d;, d;]. By the inductive hypothesis (and by the definition of LIS),
we have that ([d;, d], L([d;,d;]), REQg,,Dy,) is a possible decoration. Hence,
there must exist in 7 a successor n’ of the last node of B; decorated with
([ds, dj], L([d;,di]),REQp,,Dy,). Let Bii1 = B; -n'. As before, since the fill-
in rule can be applied only to non-closed branches (and it does not close any
branch), B;;1 is not closed.

Now we show that B is the fulfilling branch we are searching for. Since B is not
closed, one of the following cases may arise.

e B is non-blocked and the expansion strategy cannot be applied anymore. Since
B is not closed, this means that there exist no active nodes in B, that is, for
every node n € B and every formula <9 € A, (resp. O € A,,), there exists
a node n’ fulfilling it. Hence, B is a fulfilling branch.

e B is right-blocked. This implies that REQg(dy) is repeated m + 1 times in B.
Since B is decorated coherently to L, by Theorem 5.11, we can assume L to
be infinite. Let d; < dj be the greatest point in Dp such that REQg(d;) =
REQg(di). We have that L is ultimately periodic, with right prefix r = k —
Jj, since (by Theorem 5.14) the only set of requests which has been repeated
m + 1 times in B is the one associated with the first point in the right period.
Furthermore, we have that there are exactly fp + f repetitions of the right
period in B. This allows us to exploit the structural properties of L to prove
that B is fulfilling.

For every pair of points d,d’ € {d;, ..., dx}, we have that d,d’ € Inf(L). Hence,
there exist infinitely many points d” in L such that REQz(d”) = REQp(d') and
d < d". Let d’ be one of such points. We can choose the atom A” = L([d,d"])
to satisfy Condition 2.(a) of the definition of fulfilling branch.

For every point d € {d;,...,dx} and for every formula <,¢ € REQg(d), since
L is fulfilling, there exists a point d” in D such that ¢ € L([d',d"]). If d" < dy,
then <4 is fulfilled in B. Otherwise, there exists a point d,,, with d; < d,, <
d, such that REQg(d”) = REQg(d.,). Hence, the atom A" = L([d’,d"]) can
be chosen in order to satisfy Condition 2.(b) of the definition of fulfilling branch.
For every point d € D such that REQp(d;) does not occur in the period, we
have that d € Fin(L). Hence, by Theorem 5.14, we have that every formula
Opp € REQp(d) is fulfilled by an interval [d,d’] such that d' < diy(fptp)r-
Since dj, corresponds to the first point of the (fp + f + 1)-th occurrence of the
right period, we have that d’ < dj and hence <, is fulfilled in B. This shows
that B respects Condition 2.(c) of the definition of fulfilling branch.
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e The cases when B is left-blocked, or both right and left-blocked can be proved
as the case when B is a right-blocked branch. O

5.2.2 Computational complexity

In this section we provide a precise characterization of the computational complexity
of the satisfiability problem for PNL™*.

As for the computational complexity of the proposed decision procedure, observe
that, by the blocking condition, after at most |REQ,, |- m + 1 applications of the
step rules, the expansion strategy cannot be applied anymore to a branch. Moreover,
given a branch B, between two successive applications of the step rules, the fill-in rule
can be applied at most k times, being k the number of points in Dp (as a matter of
fact, k is exactly the number of applications of the step rules up to that point). Since
m=2fp+p<2-|TF(p)|> + | TF(y)|, we have that m is polynomial in the length
of ¢, while |REQ,, | is exponential in it. If || = n, the length of any branch B of

a tableau T for ¢ is bounded by (|REQ,, |- (2| TF(p)|* + |TF(<,0)|))2 =20 that
is, the length of a branch is exponential in |p|. This implies that the satisfiability
problem for PNL™™ can be solved by a nondeterministic algorithm that guesses a
fulfilling branch B for the formula ¢ in nondeterministic exponential time.

To give a NEXPTIME lower bound to the complexity of the satisfiability problem
for PNL™ we can exploit the computational complexity results for RPNL given in
the previous chapter. NEXPTIME-hardness of RPNL is proved by reducing the
exponential tiling problem to the satisfiability problem for RPNL. Since RPNL is
a fragment of PNL™, the reduction presented in Chapter 3 proves NEXPTIME-
hardness of PNL™ as well.

Theorem 5.17. The satisfiability problem for PNL™" is NEXPTIME-complete.

5.3 A tableau for PNLT and PNL™

As in the case of RPNL, the tableau-based decision procedure for PNL™t presented
in the previous sections can be easily adapted to a decision procedure for PNL™T by
simply ignoring the conditions on the m operator. To adapt it to the case of PNL™,
we need to define the notion of strict p-labelled interval structure.

Definition 5.18. A strict @-labelled interval structure (strict LIS, for short) is a pair
L = (D, I(D)~, £), where (D,I(D)~) is a strict interval structure and £ : I(D)~ —
A, is a labelling function such that, for every pair of neighboring intervals [d;, d;],
[dj, dr] € I(D)~, L([di, d;]) LR, L([d;, dy])-

Theorems 5.7, 5.11, and 5.14 hold also for strict LISs and thus we can easily tailor
the tableau-based decision method for PNL™ to PNL™ by ignoring the constraints
on the 7w operator and by rewriting the fill-in rule as follows.

3. Fill-in rule: if there exist two points d; < d; such that there are no nodes in
B decorated with the interval [d;, d;] and there exists a decoration ([d;, d;], A’,
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REQpg,Dp), then expand B by adding an immediate successor n’, with such a
decoration, to the last node in B.

The definition of initial tableau has to be modified as follows. Let ¢ be the formula
to be checked for satisfiability and let ([dy,d1], A1, REQq,{do,d1}),- .., {[do, d1], Ak,
REQy, {do,d1}) be the set of decorations with (A)p € REQ,(dp). The initial tableau
for ¢ consists of the root, with the empty decoration, and k immediate successors
ni,...ng. For each 1 <14 <k, n; is decorated by ([do, d1], 4;, REQ,;, {do, d1}).

By contrast, the expansion strategy, the blocking condition and the definition of
fulfilling branch remain unchanged. Termination, soundness, and completeness of the
resulting tableau method for PNL™ can be proved as in the case of PNL™T.

Finally, to prove the optimality of the tableau for RPNL™, we can exploit the
reduction given in Section 3.3, provided that we replace <, by (A) and O, by [A].

Theorem 5.19. The complexity of the satisfiability problem for PNL™, over the
integers, is NEXPTIME-complete.
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Decidability and expressiveness
of PNL

In the previous chapters we have discussed the decidability problem for various Propo-
sitional Neighborhood Logics interpreted over specific structures like the naturals, the
integers, and infinite trees. In this chapter we focus our attention on expressiveness
and decidability issues for Propositional Neighborhood Logics from a general point of
view [BGMSO07].

First, we compare the expressive power of PNL™, PNL™T, and PNL™, and we
show that PNL™ is strictly more expressive than PNL* and PNL~. Then, we
prove that the satisfiability problem for PNL™ over the class of all linear orders,
as well as over some natural subclasses of it, such as the class of all well-orders and
the class of all finite linear orders, can be decided in NEXPTIME by reducing it
to the satisfiability problem for the two-variable fragment of first-order logic over
the same classes of structures [Ott01]. This result extends the result of Chapter 5,
where we have proved the decidability of PNL™ over the integers. Next, we focus
our attention on expressive completeness, in the spirit of Kamp’s theorem [Kam?79].
Kamp proved the functional completeness of the Since (S) and Until (U) temporal
logic with respect to first-order definable connectives over Dedekind-complete linear
orders. This result has been later re-proved and generalized in several ways (see
[IK89, GHR94]). In particular, Stavi extended Kamp’s result to the class of all linear
orders by adding the binary operators S’ and U’ (see [GHR94] for details), while
Etessami et al. proved the functional completeness of the future (F) and past (P)
temporal logic (TL[F,P] for short) with respect to the monadic two-variable fragment
of first-order logic MFO?[<] over N [EVWO02]. As for interval-based logics, Venema
showed the functional completeness of CDT with respect to the three-variable (with
at most two of them free) fragment of first-order logic FO3 ,[<] over all linear orders.
Here we prove the expressive completeness of PNL™ with respect to the full two-
variable fragment of first-order logic over various classes of linear orders. We conclude
the chapter with a comparison of PNL™" expressive power with that of other HS
fragments.
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6.1 The two-variable fragment of first-order logic

In this section we give some basic definitions about first-order logic that will be
used in the rest of the chapter. Let us denote by FO? (resp., FO?[=]) the fragment
of first-order logic (resp., first-order logic with equality) whose language uses only
two distinet (possibly reused) variables. We denote its formulas by «,(,.... For
example, the formula Vz(P(z) — Vy3zQ(z,y)) belongs to FO?, while the formula
Va(P(x) — Yy3z(Q(z,y) A Q(z,x))) does not. We focus our attention on the logic
FO?[<] over a purely relational vocabulary {=, <, P,Q,...} including equality and
a distinguished binary relation < interpreted as a linear ordering. Since atoms in
the two-variable fragment can involve at most two distinct variables, we may further
assume without loss of generality that the arity of every relation is exactly 2.

Let « and y be the two variables of the language. The formulas of FO2[<] can be
defined recursively as follows:

a = A A | -a|laVvi|3za| Jya
Ag r=zlr=yly=zly=yle<yly<z
Ay n= P(z,2)| Plz,y) | Py, z) | P(y,y),

where A; deals with (uninterpreted) binary predicates. For technical convenience, we
assume that both variables « and y occur as (possibly vacuous) free variables in every
formula o € FO?[<], that is, a = a(z, 7).

Formulas of FO?[<] are interpreted over relational models of the form A = (D, V),
where D is a linear ordering and V4 is a valuation function that assigns to every binary
relation P a subset of D x D. When we evaluate a formula a(x, y) on a pair of elements
a,b, we write a(a,b) for afz :=a,y :=b).

The satisfiability problem for FO? without equality was proved decidable by
Scott [Sco62] by a satisfiability preserving reduction of any FO?-formula to a for-
mula of the form VaVyyo A A\ VaTyy;, which belongs to the Godel’s prefix-defined

i=1

decidable class of first-order formulas [BGG97]. Later on, Mortimer extended this
result by including equality in the language [Mor75]. More recently, Gradel, Kolaitis,
and Vardi improved Mortimer’s result by lowering the complexity bound [GKV97].
Finally, by building on techniques from [GKV97] and taking advantage of an in-depth
analysis of the basic 1-types and 2-types in F02[<]—models, Otto proved the decid-
ability of FO?[<] over the class of all linear orderings as well as on some natural
subclasses of it [Ott01].

Theorem 6.1 ([Ott01]). The satisfiability problem for formulas in FO?[<] is decid-
able in NEXPTIME on each of the classes of structures where < is interpreted as (i)
any linear ordering, (ii) any well-ordering, (iii) any finite linear ordering, and (iv)
the linear ordering on N.
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6.2 Comparing the expressive power of logics

In the following we will compare the expressive power of PNL™ with that of PNL™
and PNL™ as well as with that of other classical/temporal logics. There are several
ways to compare the expressive power of different modal languages/logics, e.g., they
can be compared with respect to frame validity, that is, with respect to the proper-
ties of frames that they can express (such a comparison for PNL has been done in
[GMS03b]). Here we compare the considered logics with respect to truth at a given el-
ement of a model. We distinguish three different cases: the case in which we compare
two interval logics over the same class of models, e.g., PNL™" and PNL™, the case in
which we compare strict and non-strict interval logics, e.g., PNL™ and PNL™*, and
the case in which we compare an interval logic with a first-order logic, e.g., PNL™*
and FO?[<].

Given two interval logics L and L’ interpreted over the same class of models C,
we say that L’ is at least as expressive as L (with respect to C), and we denote it
by L <¢ L’ (C is omitted whenever it is clear from the context), if there exists an
effective translation 7 from L to L’ (inductively defined on the structure of formulas)
such that for every model M in C, any interval [a,b] in M, and any formula ¢ of L,
M, [a,b] IF ¢ iff M, [a,b] I 7(p). Furthermore, we say that L is as expressive as L’,
denoted by L =¢ L/, if both L ¢ L/ and L’ =<¢ L, while we say that L is strictly more
ezpressive than L', denoted by L' <¢ L, if L’ <¢ L and L A¢ L.

When comparing an interval logic L™ interpreted over strict interval models with
an interval logic Lt interpreted over non-strict interval models, we need to slightly
revise the above definitions. Given a strict interval model M~ = (I(D)~, V—), we say
that a non-strict interval model M = (I(D)*, V™) is a non-strict extension of M~
(and that M~ is the strict restriction of MT) if V— and V' agree on the valuation
of strict intervals, that is, if for every strict interval [a,b] € I(D)~ and propositional
letter p € AP, [a,b] € V™ (p) if and only if [a,b] € VT (p). We say that Lt is at
least as expressive as L™, and we denote it by L™ <; LT, if there exists an effective
translation 7 from L™ to L™ such that for any strict interval model M ™, any interval
[a,b] in M~ and any formula ¢ of L™, M, [a,b] I ¢ iff MT, [a,b] IF 7(p) for every
non-strict extension M+ of M~. Conversely, we say that L™ is at least as expressive
as L*, and we denote it by L™ <; L, if there exists an effective translation 7/ from
L™ to L™ such that for any non-strict interval model M™, any strict interval [a,b] in
M, and any formula ¢ of LT, M™ [a,b] IF ¢ iff M ™, [a,b] IF 7/(p), where M~ is the
strict restriction of M*. L= =; Lt, L= <; L*, and LT <; L™ are defined in the
usual way.

Finally, we compare interval logics with first-order logics interpreted over rela-
tional models. In this case, the above criteria are no longer adequate, since we need
to compare logics which are interpreted over different types of models (interval models
and relational models). We deal with this complication, by following the approach
outlined by Venema in [Ven91]. First, we define suitable model transformations (from
interval models to relational models and vice versa); then, we compare the expres-
siveness of interval and first-order logics modulo these transformations. To define the
mapping from interval models to relational models, we associate a binary relation P
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with every propositional variable p € AP of the considered interval logic [Ven91].

Definition 6.2. Given an interval model M = (I(D), V), the corresponding rela-
tional model n(M) is a pair (D, V,)), where for all p € AP, V) (P) = {(a,b) €
D x D :la,b] € Vm(p)}-

As a matter of fact, the above relational models can be viewed as ‘point’ models for
logics over D? and the above transformation as a mapping of propositional letters of
the interval logic, interpreted over I(ID), into propositional letters of the target logic,
interpreted over D? [Ven90, SS03].

To define the mapping from relational models to interval ones, we have to solve a
technical problem: the truth of formulas in interval models is evaluated only on
ordered pairs [a, b], with @ < b, while in relational models there is not such a constraint.
To deal with this problem, we associate two propositional letters p< and p= of the
interval logic with every binary relation P.

Definition 6.3. Given a relational model A = (D, V1), the corresponding non-strict
interval model ((A) is a pair (I(D)", V¢ (4)) such that for any binary relation P and
any interval [a,b], [a,b] € Via)(pS) iff (a,b) € Va(P) and [a,b] € Viea)(p=) iff
(b,a) € V4(P).

Given an interval logic L; and a first-order logic Lrp, we say that Lpo is at least
as expressive as Ly, and we denote it by L; =g Lpo, if there exists an effective
translation 7 from L; to Lpo such that for any interval model M, any interval [a, b],
and any formula ¢ of Ly, M, [a, b] IF ¢ iff n(M) = 7(p)(a,b). Conversely, we say that
Ly is at least as expressive as Lro, and we denote it by Lpo =g Lj, if there exists
an effective translation 7/ from Lro to L such that for any relational model A, any
pair (a,b) of elements, and any formula ¢ of Lro, A = ¢(a,b) iff ((A), [a,b] IF 7/ (p)
if a < bor ¢(A),[b,a] IF 7'(¢) otherwise. We say that L; is as expressive as Lpo,
and we denote it by L; =x Lpo, if Ly =r Lro and Lro 2r L;. Ly <z Lro and
Lro <gr Ly are defined in the usual way.

6.3 PNL™, PNL', and PNL~ expressiveness

In this section we compare the relative expressive power of PNL™", PNL™, and
PNL~. The comparison of the expressive power of PNL™™ and PNL™T is based on
an application of the bisimulation game for modal logics [GO07]. More precisely,
we exploit a game-theoretic argument to show that there exist two models that can
be distinguished by a PNL™ formula, but not by a PNLT formula. To this end,
we define the notion of k-round PNL™T bisimulation game to be played on a pair
of PNLT models (Mo, M; ™), with Mg™ = (I(Dg)*, V) and Myt = (I(Dy)+, V3),
which starts from a given initial configuration, where a configuration is a pair of
intervals ([ag, bo], [a1, b1]), with [ag,bo] € (D)™ and [a1,b1] € I(Dy)". The game is
played by two players, Player I and Player II. If after any given round the current
position is not a local isomorphism between the submodels of Mgt and M7 " induced
by the corresponding configuration, Player I wins the game; otherwise, Player II wins.
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At every round, given a current configuration ([ag, bo], [a1, b1]), Player I plays one of
the following two moves:

O,-move: Player I chooses M;™, with i € {0,1}, and an interval [b;, ¢;];
Oj-move: Player I chooses M; T, with i € {0,1}, and an interval [c;, a;].

In the first case, Player II replies by choosing an interval [by_;, ¢1—;], which leads to
the new configuration ([bo, col, [b1, ¢1]); in the other case, Player II chooses an interval
[¢1—i, a1—;], which leads to the new configuration ([co, agl, [c1,a1]). Roughly speaking,
Player II has a winning strategy in the k-round PNL™ bisimulation game on the
models Mo" and My " with a given initial configuration if she can win regardless of
the moves played by Player I; otherwise, Player I has a winning strategy. A formal
definition of winning strategy can be found in [GOO07]. The following key property
of the k-round PNLT bisimulation game directly follows from standard results for
bisimulation games in modal logics.

Proposition 6.4. Let P be a finite set of propositional letters. For all k > 0, Player
II has a winning strategy in the k-round PNLT bisimulation game on Mg+ and M1 ™",
with initial configuration ([ag, bo], [a1, 1)), if and only if [ag, bo] and [a1, b1] satisfy the
same formulas of PNLT over P with operator depth at most k.

We exploit Proposition 6.4 to prove that the m operator of PNL™ cannot be expressed
in PNLT. We choose two models Mg and M; ™ that can be distinguished with a
PNL™ formula which makes an essential use of 7, but not by a PNL* formula. The
latter claim is proved by showing that for all k, Player II has a winning strategy in
the k-round PNL* bisimulation game on Mo™ and M;*.

Theorem 6.5. The interval operator ™ cannot be defined in PNLT.

Proof. Let M+ = (I(Z)", V), where V is such that p holds everywhere, be a non-strict
model. Consider the k-round PNL™ bisimulation game on (M™, M™) with initial con-
figuration ([0,1],[1,1]). The intervals [0,1] and [1,1] can be easily distinguished in
PNL™, since 7 holds in [1,1] but not in [0,1]. We show that this pair of intervals
cannot be distinguished in PNLT by providing a simple winning strategy for Player
IT in the k-round PNL™T bisimulation game on (M™*, M™) with initial configuration
([0,1],[1,1]), as follows: if Player I plays a <,-move on a given structure, then Player
IT arbitrarily chooses a right-neighbor of the current interval on the other structure.
Likewise, if Player I plays a <;-move on a given structure, then Player II arbitrarily
chooses a left-neighbor of the current interval on the other structure. Since the valu-
ation V is such that p holds everywhere, in any case the new configuration is a local
isomorphism. 0

The next theorem shows that PNL™ is strictly less expressive than PNL™ as well.

Theorem 6.6. PNL~ <; PNL™+.
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Proof. We prove the claim by showing that PNL™ <; PNL™" and PNL™ #A; PNL™.
To prove the former, we provide a translation 7 from PNL~ to PNL™*. Consider the
mapping 7y defined as follows:

To(p) = p To((A)p) = Cr(=m ATo())
To(~p) = —7o(p) ((A)p) = Oi(-m ATo(p))
To(p1 Va) = To(e1) V To(p2)

For every PNL™-formula ¢, let 7(¢) = =7 A 19(¢). Given a strict model M~ =
(I(D)~, V™), let M = (I(D)", V) be a non-strict extension of M. It is immediate
that for any interval [a,b] in M~ and any PNL™-formula ¢, M, [a,b] IF ¢ if and
only if M, [a,b] IF 7(¢). The proof is an easy induction on the structure of . This
proves that PNL~™ <; PNL™T.

To prove that PNL™ #; PNL™, suppose by contradiction that there exists a
translation 7/ from PNL™" to PNL™ such that, for any non-strict model M™, any
strict interval [a,b], and any formula ¢ of PNL™ M™ [a,b] I ¢ iff M~ [a,b] IF
7/(p), where M~ is the strict restriction of MT. Consider the non-strict models
M{ = ([(Z)*,Vp) and M| = (I(Z)*, V1), where Vo(p) = {[a,b] € (Z)* :a < b}
and Vi(p) = {[a,b] € (Z)* :a < b}. It is immediate that Mg, [0,1] IF O,p, while
M, [0,1] If O,p. Let M~ = (I(Z)~,V ™) be a strict interval model such that p holds
everywhere in [(Z)~. We have that M~ is the strict restriction of both Mg and M .
Hence, we may conclude that M~ [0, 1] IF 7/(0,p) and M, [0,1] I 7'(0,p), which is
a contradiction. O

Finally, we show that neither PNL™ <; PNL™ nor PNL~ =<; PNL™*.

Theorem 6.7. The expressive powers of PNL1 and PNL™ are incomparable, that
is, PNL™ £; PNL* and PNL* 4; PNL™.

Proof. We first prove that PNL™ ZA; PNL*. Let Myt = (I(Z)*,V,) and My " =
((Z\ {2})*, V1), where Vj is such that Vo(p) = {[1,1],[1,2],[2,2]} and V; is the
restriction of Vy to I(Z \ {2})™, be two PNL*-models. For any k > 0, consider the
k-round PNL™* bisimulation game between Mgt and M;*, with initial configuration
([0,1],[0,1]). Player II has the following winning strategy: at any round, if Player I
chooses an interval [a,b] € I(Z \ {2})T in one of the models, then Player II chooses
the same interval on the other model, while if Player I chooses an interval [a,2]
(resp., [2,0]) in Mo ™, then Player II chooses the interval [a, 1] (resp., [1,b]) in My*.
By contrast, the strict restrictions Mg~ of Mgt and My~ of M; " can be easily
distinguished by PNL™: we have that Mg, [0,1] IF (A)p, while M7, [0, 1] I (A)p.
Since Mo " and M; " satisfy the same formulas over the interval [0, 1], there cannot
exist a translation 7/ from PNL™ to PNL* such that Mo*,[0,1] IF 7/((A)p) and
M, [0, 1] ((A)p).

As for PNLT #£; PNL™, we can exploit the very same proof we give to show that
PNL™ A; PNL™ (it suffices to notice that O,.p is a PNLT formula). O
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6.4 Decidability of PNL

In this section we prove the decidability of PNL”™ T, and thus that of its proper frag-
ments PNLT and PNL~, by embedding it into the two-variable fragment of first-order
logic interpreted over linearly ordered domains.

PNL™ can be translated into FO?[<] as follows. Let AP be the set of proposi-
tional letters in PNL™. The signature for FO?[<] includes a binary relational symbol
P for every propositional variable p € AP. The translation function ST, ,, where
x,y are two first-order variables, is defined as follows:

STy y(p) =2 <y AST, (o),

where
STL,(0) = Pley)  STL(pve) = ST.,(9)VSTL, ()
! . . 7 . !/
wy(m0) = STy (9) ST, ,(C1p) = Jyly <z AST, (p))

Two variables are thus sufficient to translate PNL™ into FO?*[<]. As we will show
later, this is not the case with other interval temporal logics, such as, for instance,
HS and CDT. The next theorem proves that that FO?[<] is at least as expressive as
PNL™ (7 is the model transformation defined in Section 6.2).

Theorem 6.8. For any PNL™ -formula ¢, any non-strict interval model MT =
(I(D)*, V), and any interval [a,b] in MT:

M, [a, 0] IF ¢ iff n(MF) | ST, (9)[z = a,y := b].

Proof. The proof is by structural induction on . The base case, as well as the cases
of Boolean connectives, are straightforward, and thus omitted. Let ¢ = <. From
M, [a,b] IF o, it follows that there exists an element ¢ such that ¢ > band M™*, [b, ¢] IF
1. By inductive hypothesis, we have that n(M™") = ST, ,(¢)[y := b,z := ¢|. By
definition of STy, . (1), this is equivalent to n(M™) |y < 2 AST, ,(¢)[y := b,z := ].
This implies that n(M*) = 3z(y < x A ST}, ,.(¢))[y := b]. Since a <b ([a,b] in MT),
we can conclude that n(M™) = ST, ,(Cr9)[z := a,y := b]. The converse direction
can be proved in a similar way. The case ¢ = <) is completely analogous and thus
omitted. O

Corollary 6.9. A PNL™*-formula ¢ is satisfiable in a class of non-strict interval
structures built over a class of linear orderings C iff ST, ,(p) is satisfiable in the class
of all FO2[<]—m0dels expanding linear orderings from C.

Since the above translation is polynomial in the size of the input formula, decid-
ability of PNL™ follows from Theorem 6.1.

Corollary 6.10. The satisfiability problem for PNL™ is decidable in NEXPTIME
for each of the classes of non-strict interval structures built over (i) the class of all
linear orderings, (i) the class of all well-orderings, (i) the class of all finite linear
orderings, and (iv) the linear ordering on N.
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This result can be extended to decide the satisfiability problem for PNL™ over
any class of linear orderings, definable in FO2[<] within any of the above, e.g., the
class of all (un)bounded (above, below) linear orderings or all (un)bounded above well-
orderings, etc. By contrast, the decidability of the satisfiability problem for PNL™*
on any of the classes of all discrete, dense, or Dedekind complete linear orderings is
still open.

Since it holds that PNLT < PNL™* and PNL~ <; PNL™, both PNL* and PNL™
are decidable in NEXPTIME (at least) over the same classes of orderings as PNL™T.
Moreover, a translation from PNL* to FO?[<] can be obtained from that for PNL™*
by simply removing the rule for 7, while a translation from PNL™ to FO2[<] can be
obtained from that for PNL™ by removing the rule for 7, by substituting < for <,
and by replacing <, (resp., ;) with (A) (resp., (A)).

The NEXPTIME-hardness of the satisfiability problem for PNL™, PNL™, and
PNL™ can be proved by exploiting the very same reduction from the exponential
tiling problem given for RPNL future fragments in Chapter 3.

Theorem 6.11. The satisfiability problem for PNL™, PNLT, and PNL™ interpreted
in the class of all linear orderings, the class of all well-orderings, the class of all finite
linear orderings, and the linear ordering on N is NEXPTIME-complete.

6.5 Expressive Completeness

In this section, we show that PNL™T is at least as expressive as F02[<], that is, we
show that every formula of FO?[<] can be translated into an equivalent formula of
PNL™ (see Section 6.2). This allows us to conclude that PNL™ is as expressive as
FO?[<]. A similar result for CDT was given by Venema in [Ven91], where the expres-
sive completeness of CDT with respect to FO3  [<] (the fragment of first-order logic
interpreted over linear orderings whose language features only three, possibly reused
variables and at most two of them, x and y, can be free) was proved. Both results
can be viewed as interval-based counterparts of Kamp’s theorem for propositional
point-based linear time temporal logic [Kam79].
The translation 7 from FO?[<] to PNL™ is given by the following table:

Basic formulas Non-basic formulas
Tyl =) =7lr,yl(y=y) =T | 7z,y](-a) = =7[z, y)()

Tlz,yl(e =y) =7l iy = 2) =7 | 7l yl(aV B) = 7lz, yl(a) V 7[z, y)(5)

Tz, Y|y < x) = [z, y](3xp) =

Tl yl(z < y) = -7 Or(7ly, z](8)) V BTz, y](3))
o, y|(P(z,z)) = Oi(m Aps Ap=) | 7z, y](FyB) =

Tz, y)(P(y,y)) = Or(m Ap= A p=) Culrly, z](B)) V 0,10 ([z, y](8))
Tz, y](P(z,y)) = p=

lz,y)(Py, x)) = p=
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As stated by Theorem 6.13 below, every FO2[<]—formula a(z,y) is mapped into
two distinct PNL™-formulas 7[x,y]() and 7[y, z](«). The first one captures all and
only the models of a(z,y) where x < y (if any), while the second one captures all and
only the models of a(z,y) where y < z (if any).

Example 6.12. Consider the formula o = Fz—3y(x < y), which constrains the model
to be right-bounded. Let § = Jy(z < y). We have that

Tlz,y](8) = Oty al(@ <y)) VEOH (Tl yl(z <y)) =
= O LvOo, (E Dl<>r_‘7r)
and that
Tly,2l(B) = Otz yl(z <y) VOOurly, 2l(z <)) =
= O VOOl (= Op)
The resulting translation of « is:
Tlz,yl(@) = On(rly, 2](=6)) V BrOu(rlz, y](=0)) =
= Op(o7ly,2)(8) V BrOi (072, y](B) =

= OO,V 0,000, =
= <07 Vv0.0,00.7 (= .07V 0O,m)

which is a PNL™T-formula which constrains the model to be right-bounded.
Let A = (D, V4) be a FO*[<]-model and let ¢{(A) = (I(D)*, V¢(4)) be the corre-
sponding PNL™"-model (see Section 6.2).

Theorem 6.13. For every FO?[<]-formula a(z,y), every FO?*[<]-model A = (D,
V), and every pair a,b € D, with a <b, (i) A |E a(a,b) if and only if ((A), [a,b] IF
7z, y](a) and (ii) A |E a(b,a) if and only if ((A),[a,b] IF [y, z](x).

Proof. The proof is by simultaneous induction on the complexity of «.

e a=(xr=2x)ora=(y=y). Both a and 7[z,y](a) = T are true.

e a = (x <vy). Asfor claim (i), A= a(a,b) iff a < b iff ((A),[a,b] IF —-7. As
for claim (77) A [~ a(b,a), since a < b, and ((A), [a,d] I T[y,z](z < y)(= 1).
Likewise, for a = (y < ).

a = P(x,y) or a = P(y,z). Both claims follow from the valuation of p= and
p~ (given in Section 6.2).

a = P(z,z). As for claim (i), A = a(a,bd) iff A = P(a,a) iff ((A),[a,d] IF
7 ApS ApZ iff ((A),[a,b] IF Oi(m ApS ApZ). A similar argument can be used
to prove claim (4i). Likewise for a = P(y,y).

The Boolean cases are straightforward.



86 6. Decidability and expressiveness of PNL

e a = Jzf. As for claim (i), suppose that A = a(a,b). Then, there is ¢ € A
such that A = ((c¢,b). There are two (non-exclusive) cases: b < ¢ and ¢ < b.
If b < ¢, by the inductive hypothesis, we have that ((A),[b,c] IF 7[y,z](5)
and thus ((A),[a,b] I+ Op(T]y, x](8)). Likewise, if ¢ < b, by the inductive
hypothesis, we have that ((A), [¢,b] IF [z, y](5) and thus for every d such that
b <d,((A)), b d I Ci(T]x, y](5)), that is, ((A), [a, b] IF O, (7[z,y](5)). Hence
((A), a, 0] IF O (7ly, 2)(8)) V BrOu(7z,y)(8)), that is, ((A), [a,b] IF 7z, y)(a).
For the converse direction, it suffices to note that the interval [a, b] has at least
one right neighbor, viz. [b,b], and thus the above argument can be reversed.
Claim (%) can be proved in a similar way.

e o = Jyf. Analogous to the previous case. O

Corollary 6.14. For every formula o(z,y) and every FO?[<]-model A = (D, V),
A = Vavya(z,y) if and only if ((A) IF 7]z, y](a) A T[y, 2] ().

Definition 6.15. We say that a PNL™ " -model M of the considered language is
synchronized on a pair of variables p< and pZ if these variables are equally true at
any point interval [a,a] in M; M is synchronized for a FO*[<|-formula o if it is
synchronized on every pair of variables p< and pZ corresponding to a predicate p
occurring in o; M is synchronized if it is synchronized on every pair p< and p=.

It is immediate that every model ¢(.A), where A is a FO?[<]-model, is synchro-
nized. Conversely, every synchronized PNL™-model M can be represented as (.A)
for some model A for FO?[<]: the linear ordering of A is inherited from M and the
interpretation of every binary predicate P is defined in accordance with Theorem
6.13, that is, for any a,b € A we set P(a,b) to be true precisely when a < b and
M, [a,b] IF p< or b < a and M, [b,a] IF p~. Due to the synchronization, these two
conditions agree when a = b. Furthermore, the condition that a PNL™ -model M
is synchronized on a pair of variables p< and pZ can be expressed by the validity in
M of the formula [U](7 — (p= « pZ)), where [U] is the universal modality, which is
definable in PNL™* as follows [GMSO03b]:

[Ulp == 0,0,000 AO,.0,0,0 A ;00,0 A0;0,0,0.

Building on this observation, we associate with every FO?[<]-formula « the formulas

oo(@)=| N WUl — = < p?) | = (7lz,yl(a) A7y, 2](a))
and
oi(@) = | N Wi — 0% < p) | A(rlz,yl(@) vV rly, 2](@),

where the conjunctions range over all pairs p<, p= corresponding to predicates occur-
ring in a.
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Corollary 6.16. For any FO?[<]-formula o, (i) o is valid in all FO?[<]-models iff
oy(a) is a valid PNL™ -formula, and (ii) o is satisfiable in some FO?[<]-model iff
os(a) is a satisfiable PNL™ -formula.

CDT FO? (<]
NN
PNL™ — =E_ F0?[<]

Figure 6.1: Expressive completeness results for interval logics.

In Figure 1 we put together the expressive completeness results for CDT and
PNL"*, using the notation introduced in Section 2. Since FO?[<] is a proper fragment
of FO3 [<], from the equivalences between CDT and FO?  [<] and between PNL™*

and F02[<] it immediately follows that CDT is strictly more expressive than PNL™ T,

6.6 PNL™ and other HS fragments

In this section we explore the relationships between PNL™" and other fragments of
HS. More precisely, we describe the fragments of HS which are fragments of PNL™
as well. To this end, we consider all other interval modalities of HS, namely, (B),
(EY, (O), (D), (L), and their transposes, which correspond to Allen’s relations begins,
ends, overlaps, during, and after, and their inverse relations. The semantics of such
modalities can be given by their standard translations into first-order logic:

ST,y ((B)e) r<yAF2(z <yA STy .(p))

ST,y (E)p) = x<yA3Iz(x <zAST.,(¢))

ST y((O)p) = z<yAF(r<z<yAyly <zASTy,.(p)))
STy y((D)p) = z<yA3z(z<z<yAdylz<yAST,.(p)))
STey((L)p) = x<yAJa(y <zAJyST: ()

The standard translation of (L) is a two-variable formula, while the standard transla-
tions of the other modalities are three-variable formulas. By taking advantage of the
translation from FO?*[<] to PNL™, (L) can be defined in PNL™ as follows:

<L>§0 = <>7'(_'7T A <>7-<,0)-

We show that the other interval modalities cannot be defined in PNL™ by a
game-theoretic argument similar to the one of Theorem 6.5. To this end, we define the
k-round PNL™ bisimulation game played on a pair of PNL™ models (Mo ™, M; ")
starting from a given initial configuration as follows: the rules of the game are the same
of the k-round PNL* bisimulation game described in Section 6.3; the only difference
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is that a configuration ([ag, b, [a1, b1]) constitutes a local isomorphism between Mg ™
and M T if and only if (i) [ag, bo] and [ay, by] share the same valuation of propositional
variables, and (i) ag = by iff a1 = by, that is, Mo™, [ag, bo] IF 7 iff M1 T, [a,b1] IF 7.
The following proposition is analogous to Proposition 6.4.

Proposition 6.17. Let P be a finite set of propositional letters. For all k > 0,
Player II has a winning strategy in the k-round PNL™ bisimulation game on Mg™
and Myt with initial configuration ([ag,bo), [a1,b1]) if and only if [ag, bo] and [ay,bi]
satisfy the same formulas of PNL™ over P with operator depth at most k.

We exploit Proposition 6.17 to prove that none of the interval modalities (B), (E),
(O), and (D) is expressible in PNL™*. The proof structure is always the same: for
every operator (X), we choose two models Mo ' and Mt that can be distinguished
with a formula containing (X) and we prove that Player II has a winning strategy in
the k-rounds PNL™T bisimulation game.

Theorem 6.18. Neither of (B), (E), (O), and (D) can be defined in PNL™T.

Proof. We will prove the claim for (B) and (D); the other cases are analogous. Con-
sider the PNL™*-models Mot = (I(Z \ {1,2})*, Vo) and M; " = (I(Z)*, V3), where
V1 is such that p holds for all intervals [a, b] such that a < b and V} is the restriction of
Vi to I(Z\ {1,2})*. Note that M; ", [0, 3] I- (B)p, while Mo ™, [0, 3] I (B)p; likewise
for (D)p. Thus, to prove the claims it suffices to show that Player IT has a winning
strategy for the k-round PNL™ bisimulation game between Mg™ and M; ™, with
initial configuration ([0, 3], [0, 3]). In fact, Player II has a uniform strategy to play
forever that game, as follows: at any position, assuming that Player I has not won
yet, if he chooses a <,-move then Player II arbitrarily chooses a right-neighbor of
the current interval on the other structure, with the only constraint to take a point-
interval if and only if Player I has taken a point-interval as well. If Player I chooses
a ¢j-move, Player II acts likewise. O



A relational approach to interval
logics

In this chapter we present a relational proof system in the style of dual tableaux for
relational logics associated with propositional interval logics and we prove that the
systems enable us to verify satisfiability, validity, and entailment of these temporal
logics. In constructing the systems we apply the method known for various non-
classical logics, in particular for standard modal and temporal logics [Ort95, Orl96].
The key steps of the method are:

e Development of a relational logic RLy, appropriate for a given interval temporal
logic L.

e Development of a validity preserving translation from the language of logic L
into the language of logic RL .

e Construction of a proof system for RL;, such that for every formula ¢ of L, ¢ is
valid in L iff its translation 7(¢) is provable in RLy,.

Each logic RLy, is based on the classical relational logic of binary relations, RL.
RLy, is capable of expressing both binary relations holding between points of time and
binary relations holding between time intervals. The proof systems developed in this
chapter are extensions of the proof system for RL originated in [Orl88] and further
expanded in [GPO06a, Ort96], that we have described in Chapter 2. In constructing
deduction rules for our systems we follow the general principles of defining relational
deduction rules presented in [MO02].

This chapter is a revised version of [BGPOO06], and it is structured as follows. In
Sections 7.1, 7.2, 7.3, and 7.4 we develop a relational proof system for the Halpern
and Shoham’s logic HS [HS91] in accordance with the three steps mentioned above.
Next, in Section 7.5 we show how this system can be extended or modified in order
to incorporate the remaining interval relations of Allen [All83, LMS87] and/or other
time orderings.



90 7. A relational approach to interval logics

7.1 A relational logic for HS

The vocabulary of the language RLpys consists of the pairwise disjoint sets listed
below:

e a countable infinite set IV = {i, 4, k, ... } of interval variables;

e since intervals are meant to be certain pairs of points, to every interval variable i
we associate two point variables denoted i1, i2, with the intuition that i = [i1, i2].
We define the countable infinite set of point variables as PV = {iy,is : i € IV};

e a countable infinite set IRV of interval relational variables;

a set PRC = {=, <} of point relational constants;

a set IRC = {U, B, E} of interval relational constants;

aset OP = {—,U,N,;, 1} of relational operation symbols.

The point constants = and < are intended to represent the identity relation and the
ordering on the set of time points, respectively, while the interval constant U represent
the universal relation between intervals. The unary operators — and ~! bind stronger
than the binary U,N and ;.

The specific relational operations of converse (~!) and composition (;) are defined as
usual. For binary relations R, S on a set D:

Rt ={(x,y) € Dx D : (y,x) € R}
R;S={(z,y) e DxD:3z€ DJ(z,2) € RA(z,y) € S|}

The syntax of RLyg is defined as follows.

e The set of point relational terms PRT is the smallest set of expressions that
includes PRC and is closed with respect to the operation symbols from OP. In
the following, we will use # instead of —= and £ instead of —<.

e The set of interval relational terms TRT is the smallest set of expressions that
includes TRA = IRV U IRC and is closed with respect to the operation symbols
from OP.

e The set of point relational formulae PRF consists of expressions of the form
x Ry where z,y € PV and R € PRT.

e The set of interval relational formulae IFR consists of expressions of the form
1 R 7 where ¢,j € IV and R € IRT.

e The set RF of RL gg-formulae (or, simply formulae if it is clear from the context),
consists of expressions from PRF U IRF.

e R is said to be an atomic relational term whenever R € PRCUIRA. = Ry is
said to be an atomic formula whenever R is an atomic relational term.



7.1. A relational logic for HS 91

Semantics

An RLyg-model is a tuple M = (D, 1(D)*, m), where D and (D) " are non-empty sets
and m: PRT U IRT — 20*D2I(D) " xI(D)T jg 5 meaning function which assigns binary
relations on D X D to point relational terms and binary relations on I(D)* x I(D1)
to interval relational terms as follows:

(1) m(=) is the identity relation Idp on D;

(2) m(<) is a strict linear ordering on D, that is, for every ¢,d,e € D the following
holds:

(Trref) (c,¢) & m(<);
(Trans) if (¢,d) € m(<) and (d,e) € m(<), then (c,e) € m(<);
(Lin) (¢,d) € m(<) or (d,c¢) € m(<) or (¢,d) € m(=);

(3) m extends to all compound relational terms R € PRT as follows:

o m(=R) = (D x D)\ m(R);
o m(RUS) = (m(R)Um(S));
o m(RNS) = (m(R)Nm(S));
o m(R™') =m(R)";

o m(R;S) = (m(R);m(S5));

(4) I(D)* = {[e,d] € D x D : (¢,d) € m(<U=)};

(5) m(U) =1(D)* x (D)™

(6) m(B) ={([c,d], [, d]) e m(U) : (¢,c') € m(=) A (d',d) € m(<)};
(7) m(E) =A{([c,d], [, d']) e m(U) : (¢, ) € m(<) A (d,d’) € m(=)};

(8) m extends to all compound relational terms R € IRT as in (3) except for the
clause for —R: m(—R) = m(U) \ m(R).

An RLys-valuation in a model M = (D,I(D)*,m) is any function v: PV UIV —
D UI(D)™ such that:

e if z € PV then v(x) € D;
e if i € IV then v(i) = [v(41), v(iz)] € I(D)™T.

We say that v satisfies a formula x Ry (M,v |= x Ry for short) iff (v(x),v(y)) €
m(R). A formula is true in M whenever it is satisfied in M by every valuation v. A
formula is RL yg-valid whenever it is true in every RL yg-model.
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7.2 Translation

In this section we present a translation of the formulae of HS into relational terms
of RLyg. We follow the general principle of translation of modal formulae presented
in [Or188]: modal formulae should be mapped into terms which represent right ideal
relations, that is, relations satisfying the condition R;U = R. It is known that the
Boolean operations preserve the property of being a right ideal relation, and the
composition of any relation with a right ideal relation results in a right ideal relation.
So our definition of translation enforces the property of having a right ideal translation
for propositional variables. It follows that the property is guaranteed for the formulae
built with the classical propositional connectives. Moreover, since the translation of
modalities is defined as a composition of the constant denoting an accessibility relation
with the translation of the formula to which the modality is applied, the translation
results in a term representing a right ideal relation.

We consider the following translation function 7, that maps HS-formulae ¢ to
RLys-formulae of the form x Ry as follows. Since we consider non-strict interval
structures, we take as primitives only the interval modalities (B), (E), (B), and (E).
As pointed out in Section 1.3.1, the modalities (A) and (A) (that were originally
included in HS) can be derived from the other ones in the non-strict semantics.

e for every propositional letter p € AP, 7(p) = P; U, where P € IRV is a relational

variable;
o 7(—¢) = —7(¥);
o 7(1 Vaha) = 7(¢1) UT(v2);

i
S

L
L

(
(
(
o T((E)Y
(
(

Lemma 7.1. For every linear, non-strict HS-model M™ and for every HS-formula
Y there is an RLgg-model M such that 1) is true in M iff i 7(2p) j is true in M,
with i, 5 € IV.

Proof. Let 1) be an HS-formula, and let M = (D,I[(D)*,V) be an HS-model. We
define the corresponding RLys-model M = (D,1(D)",m) as follows:

o m(<)={(c,d) € D:c<d};

e m(U)=1(D)" xI(D)* and m(=) = Idp;

o for every p € AP, m(P) = {([¢,d],[¢/,d']) e m(U) : [¢,d] € V(p)};
e m(B) ={([¢,d],[¢",d]) e m(U) : c = ¢, d' < d};
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e m(E)={([e,d],[d,d]) emU):ec<,d =d}.

Given a valuation v we show by induction on the structure of ¢ that the following
property holds:
M v(i) Ik iff M,vE=iT(y) ]

From that, we can conclude that 9 is true in M iff ¢ 7(¢) j is true in M. By the
definition of M, such a property trivially holds for propositional letters. We prove it
for formulae of the form 1 V 92, (B)t1 and (E)t1. The other cases can be proved
in a similar way.

o If ¢b = 1)1 V 4hy then MT v(3) I 1py V g iff MT,0(i) IF 41 or MT 0(i) IF s,
iff, by inductive hypothesis, M,v | i 7(¢1) j or M,v i 7(¢9) j, iff M,v |
i (T(1) UT(¥2)) j if Mo =i 7(¥1 Vib) 5.

o If ¢p = (B)y; then M™T v(i) IF (B)ty iff there exists ¢/ < wv(i2) such that
M, [v(i1),c] IF 4, iff, by inductive hypothesis and by definition of M, we
have that (v(i), [v(i1),c']) € m(B) and ([v(i1), ], [v(j1),v(j2)]) € m(T (1)), iff
M,v i (BiT(yn)) j it Mov i T((B)y) Jj.

e Finally, if v = (E)¢; then M* v(i) IF (E)¢; iff there exists ¢/ < v(i1) such
that M, [¢/,v(iz)] IF 41, iff, by inductive hypothesis and by definition of M,
(), ¢, o) € m(E-") and (¢, 0(i), [o(G1), 0(2)]) € mlr(en)), if M,
i (B~ 7(¢1)) jiff Myv =i m((E)yr) j. O

Lemma 7.2. For every RLgs-model M and for every HS-formula v there is an
HS-model MY such that v is true in MV iff i 7(x) j is true in M, where i,j € TV.

Proof. Let ¢ be an HS-formula, and let M = (D,I(D)*, m) be an RLggs-model. We
define the corresponding HS-model M+ = (D, I(D)*, V) as follows:

e D = (D, <) is such that for all ¢,d € D, ¢ < d iff (¢,d) € m(<);
e forall p e AP, [¢,d] € V(p) iff ([¢,d],[¢,d']) € m(P;U), for all [¢/,d'] € [(D)*.

Since m(<) is a strict linear ordering on D, then (D, <) is a strict linear ordering,
and thus M™ is correctly defined.
Given a valuation v we show by induction on the structure of ¢ that the following
property holds:
M,v i) iff Mt (i) I- .
From that, we can conclude that i 7(¢) j is true in M iff ¢ is true in M™. By the
definition of M, such a property trivially holds for propositional letters. We prove

the required condition for the formulae of the form —)q, (E)t; and (B)i, the other
cases are similar.

o If ¢ = —py then M, v Ei7(—py) jit Mo =i (—7(11)) 7 it Myv EiT(dr) j
iff, by inductive hypothesis, M™,v(3) Iff v iff, MT v(i) Ik —)q.
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o If i) = (EYipy then M,v =i 7({(E)1) j it M,v =i (E;7(¢1)) j iff, there exists
[,d'] € I(D)" such that (v(i),[c/,d']) € m(E) and ([¢,d'],v(j)) € m(r(¢1)),
iff, by the definition of m(FE) and by inductive hypothesis, v(iz) = d’, v(i1) < ¢,
and M*, [, d'] I 1, iff M*,0(i) IF (E),.

e If ¢y = (B)y; then M,v |= i 7((B)yy) j iff M,v |= i (B7Y;7(3)) j iff, there
exists [¢/,d’] € I(D)T such that (v(i),[c,d']) € m(B™!) and (|¢/,d'],v(j)) €
m(7(¢1)), iff, by the definition of m(B~') and by inductive hypothesis, v(i;) =
d,d > wv(iz), and M™*, [c/,d'] I abq, iff MT v(i) IF (B);. O

From the above lemmas we obtain:

Theorem 7.3. For every HS-formula ¥, v is HS-valid iff i 7(v) j is RLgg-valid.

7.3 The proof system for RL g

The proof system for the relational logic RLyg presented in this section belongs to
the family of dual tableau systems. It consists of axiomatic sets of formulae and
rules which apply to finite sets of formulae. There are three groups of rules: rules
which reflect definitions of the standard relational operations; rules which enable us to
decompose interval relations into point relations according to the definitions recalled
in Chapter 1; and rules which reflect the properties of the temporal ordering assumed
in the models.

7.3.1 Decomposition rules

In the following, we say that a variable in a rule is new whenever it appears in a
conclusion of the rule and does not appear in its premise.

Standard decomposition rules

The standard decomposition rules are the rules for the standard relational logic RL.
Let z,y,z € PV and R, S € PRT or x,y,2z € IV and R, S € IRT.

x (RUS)y x—(RUS)y
L) T Ry,xzSy (V) x—Rylx-Sy
x (RNS)y x—(RNS)y
() xRylxSy (=0) r—Ry,xz—-Sy
r——Ry
S T
&) TRty (—-1) r—Rly
yRzx y—Rzx
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;) v (1:5) y z is any variable
U wRzw(RS)ylz Sy (R:S)y ’
z—(R;S)y

-) — z is a new variable
(=) x—Rzz2z-Sy
Decomposition rules from interval relations to point relations

For i,j € IV and R € TRA:

(Ry) R T :“lifz RiTFRIIE with k any interval variable.

(R2) SRR iiiz RITi Rk R with k& any interval variable.
For i,5 € IV:

(B) i1 =j1,i33?jz <ig,i B j (=5 i1 79]'1,;2_7532']2,2'—3]'

(&) es () L2

ig=7Jo, i Ej|i1<j1,i Ej Qo # J2,i1 £ J1,0 —E
7.3.2 Specific rules
Rules for =

For z,y € PV and R € PRC:
xRy
(=1)

with z any point variable.

xRy

(=2)

2Rz, x Ry|ly=z,z Ry x=zxRy|lzRy,x Ry

Rules for <
For =,y € PV:
(Irref<)

<z
<y
r<y,r<zlx<yz<y

(Tran<) z is any point variable

7.3.3 Axiomatic sets

An axiomatic set is a set including a subset of any of the following forms:

(al) 2 Ry,z —R y, for either z,y € PV and R € PRT or z,y € IV and R € IRT;
(a2) = =z for x € PV;

(a3) z <y,z =y,y < x for z,y € PV;
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(ad) ¢ U j for i,5 € IV;

(ab) i1 < 42,141 = ig for ¢ € IV.

7.3.4 Proof trees and soundness of the proof system

A finite set of formulae {z1 Ry y1,...,%n Ry yn} is said to be an RlLyg-set if for
every RLyg-model M and every valuation v in M there exists ¢ € {1,...,n} such
that x; R; y; is satisfied by v in M.

Let ® be a non-empty set of RLgg-formulae. A rule is RL gg-correct

)
Dy ... | D,
whenever ® is an RLgg-set if and only if for every ¢ € {1,...,n}, ®; is an RLyg-set.

When @ is empty, RL yg-correctness can be expressed as follows: rule m is
1 A n

RL gg-correct if and only if there exists i € {1,...,n} such that ®; is not an RL yg-set.

Definition 7.4. Let z R y be an RLyg-formula. An RLyg-proof tree for x Ry is a
tree with the following properties:

e the formula x R y is at the root of the tree;

e cach node except the root is obtained by application of an RLyg-rule to its
predecessor node;

e a node does not have successors whenever it is an RL gg-axiomatic set.
Due to the forms of the rules we obtain the following:

Lemma 7.5. If a node of an RLgg-proof tree does not contain an axiomatic subset and
contains an RLgg-formula x Ry or x —R y, with R atomic, then all of its successors
contain this formula as well.

A branch of an RL gg-proof tree is said to be closed whenever it contains a node with
an axiomatic set of formulae. A proof tree is closed if and only if all of its branches
are closed.

A formula is provable whenever there is a closed RL gg-proof tree for it.

Lemma 7.6.
1. All RLyg-rules are correct.
2. All RLgg-aziomatic sets are RLyg-sets.

Proof. Proof of 1) We show the correctness of rules (B) and (—E). Proving correct-
ness of the other rules is similar. Let M = (D,1(D)™,m) be an RLygg-model and let
v be an RL yg-valuation.

It is easy to see that if {i B j} is an RLyg-set, then {i; = ji,4 B j} and {j2 < i2,i B j}
are RLyg-sets. Assume M, v =iy = j; and M, v |= ja < ig, that is v(i),v(j) € I(D)™,
(v(i1),v(j1)) € m(=) and (v(j2),v(i2)) € m(<). By the definition of m(B), we obtain
(v(7),v(§)) € m(B). In the remaining cases the proofs are similar.
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The proof of correctness of the rule (—F) is analogous. Assume M, v |= iy # jo or
M,v =iy £ i, that is v(i), v(j) € I(D)* and (v(iz), v(j2)) & m(=) or (v(ir), v(j1)) &
m(<). By the definition of m(E), we obtain (v(i),v(j)) &€ m(E), hence (v(i),v(j)) €

m(—FE). The remaining parts of the proof are obvious.

Proof of 2) Tt suffices to show that all sets of the forms (al)-(ab) are RLyg-sets. We
prove it for sets (a4) and (a5). In the remaining cases the proofs are similar.

By the definition of an RLpyg-model, for every RLpyg-valuation v and for every
i,j € IV, (v(i),v(j)) € (D)t x I(D)™*, hence (v(i),v(j)) € m(U). Therefore {i U j}
is an RL gg-set.

By the definition, for every RLpg-valuation v and for every i € IV, v(i) € I(D)*,
that is (v(i1),v(i2)) € m(<U=). Therefore in every RLyg-model M, M,v |11 < iy
or M,v =i =i9. Hence {i; < ig,4; = is} is an RLyg-set. O

Due to Lemma 7.6, we obtain the following theorem.

Theorem 7.7 (Soundness). Let © Ry be an RLyg-formula. If x Ry is provable,
then it is RL gg-valid.

7.3.5 Completion conditions

Given a proof tree and a branch b in it, we write, by abusing the notation, t Ry € b
if z R y belongs to a set of formulae of a node of branch b. A non-closed branch b is
said to be RLyg-complete whenever it satisfies the following completion conditions.

For all variables x,y, 2z and relational terms R, S such that either z,y,z € PV and
R,S € PRT, or x,y,z € IV and R, S € IRT:

e Cpl(U) (Cpl(—N)) If z (RUS)y € b (resp. =z —(RNS)y € b), then both
xRy€b(resp. x —Ryecb)and z Sy b (resp. x —S y € ).

Cpl(N) (Cpl(-V)) If z (RNS)y € b (resp. z —(RUS)y €b), thenx Ry €b
(resp. x —Ry €b)orx Sy b (resp. z —S y € ).

Cpl(—)Ifx (——R)y€b, thenaz Ry € b.
e Cpl("Y) Ifz R~'y €b, theny Rz €b.

(-

o Cpl(— HYIfr —R'yeb, theny —Rz €b.

e Cpl(;) f x (R; S) y € b, then for every z, t Rz€bor 2 Sy€b.
(—

e Cpl(—;) If & —(R;S) y € b, then for some z bothz —Rz€band 2 —S y € b.
For all z,y € PV and R € PRC:

e Cpl(=1) If z Ry € b then, for every z€ PV, 2 Rz €bory =2z €b.

e Cpl(=2) If z Ry € b then, for every z € PV, z=2€bor z Ry € b.
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For all z,y € PV:

o Cpl(Irref<) x < x € b.

e Cpl(Tran<) If x < y € b then, for every z e PV, x < z€bor z <y € b.
For all 7,5 € IV:

e Cpl(Ry)Ifi Rj€b,thenforeveryk € IV, iy = ki € b,io =ky €b,ork Rj €b.

Cpl(Ry) If i Rj € b, then for every k € TV, jy =k, € b, jo=ky € b, or
iRkeb.

Cpl(B)If i Bj€btheniy =j; €bor jo <ig €b.

(

( B)IfZ—B_]Ebthenll#jl,jgjélgeb
Cpl(E)Ifi E j € bthenia =jo €bori; < ji €0.
(=

e Cpl(—E) If i —FE j € b then iy # ja,41 £ j1 € b.

An RLyg-proof tree is said to be RL yg-complete if and only if all of its non-closed
branches are RLpyg-complete. An RLpyg-complete non-closed branch is said to be
RL f7g-open.

By Lemma 7.5 and since the set containing a subset {x R y,z —R y} is axiomatic,
the following fact can be easily proved by induction:

Lemma 7.8. Let b be an open branch of an RLgs-proof tree. Then there is no RLygg-
formula x Ry such that t Ry € b and x —R y € b.

7.3.6 Branch model

Let b be an open branch of a proof tree. The branch structure M® = (Db I(D®)*,
mb) is defined as follows:

e Db =PV,
e m*(R) = {(z,y) € D* x D* : x Ry & b} for R € PRC;
e m? extends to all compound relational terms R € PRT as in RL gg-models;

e [(D)* ={[e,d] : ¢,d € D (c,d) € mb(<U=)};

o mP(R) = {(4,§) € (D*)* x I(D*)* :i R j &b} for R € IRV;

o m(U) = [(D)*+ x I(D¥)*;

o m¥(B) = {([e.d), [, d]) € (D")* x I(DY)* : (¢,¢) € mb(=) A(d',d) € mb(<)};
o mH(E) = {([e,d},[¢, @) € I(D")* xI(DY)* : (¢,¢') € mb(<) A (d,d) € mb(=)};
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e m extends to all compound relational terms R € IRT as in RLzg-models.

Lemma 7.9. m®(=) is an equivalence relation on DP.

Proof. x =x ¢ b for every & € D°, because {r = x} is axiomatic. Thus, (z,7) €
mP(=) for every x € D°. Therefore m®(=) is reflexive. Assume (z,y) € m®(=),
that is x =y & b. Suppose (y,r) € mb(=). Then y =z € b. By the completion
condition Cpl(=1) we get y =y € b or x =y € b, a contradiction. Therefore m®(=)
is symmetric. Assume (x,y) € mb(=) and (y,2) € m®(=) that is x =y & b and
y =2z ¢ b. Suppose (z,2z) € m’(=). Then x = z € b. By the completion condition
Cpl(=1) we obtain x = y € bor z = y € b. In the first case we get a contradiction. In
the second case, by the application of the completion condition Cpl(=1) to z=y € b
we obtain z = z € bor y = z € b, and in both cases we get a contradiction. Therefore
mb(=) is transitive, and hence m®(=) is an equivalence relation. O

Lemma 7.10. Let b be an open branch. A structure M satisfies the conditions
(2)-(8) from the definition of RL gg-models.

Proof. The conditions (3)-(8) are satisfied by the definition of a branch structure.
Therefore it suffices to show that m®(<) satisfies the conditions (Irref), (Trans) and
(Lin).

By the completion condition Cpl(Irref<), for every z € D, we have z < x € b, but it
means that (z,7) € m®(<) for every x € DP, therefore m®(<) is irreflexive.

To prove transitivity, assume (z,y) € m®(<) and (y, z) € m®(<), thatisz <y € b
and y < z ¢ b. Suppose (z,2) € m?(<). Then z < z € b. By the completion condition
Cpl(Tran<) < y € bor y < z € b, a contradiction. Therefore m?(<) satisfies the
condition (Trans).

Since b is open, for all 2,y € D*, x <y &bory <z gborxz =y ¢b. It means
that (z,y) € m?(<) or (y,z) € m®(<) or (z,y) € m®(=), therefore m®(<) satisfies
the condition (Lin). O

Given a structure M® = (Db I(D?)*,m?), let v*: PVUIV — D’ UT(D")* be such
that v®(z) = x for every x € PV and v(i) = [iy, 2] for every i € IV.

Lemma 7.11. Let b be an open branch, and let M® be the corresponding branch
structure. The function v® satisfies the definition of RL ys-valuation.

Proof. By the definition of v°, if x € PV then v*(x) € D and, if i € IV then v®(i) =
[v°(i1),v"(i2)]. It remains to show that for every i € IV, (v°(i1),v%(i2)) € mb(< U
=). Suppose that there exists i € IV such that (v*(i1),v%(i2)) € m®(< U =). This
implies that (v®(i1),v°(i2)) & m®(<) and (v°(i1),v%(i2)) € mb(=). By the definition
of mb, this implies that i1 < 32 € b and i1 = iy € b, which means that b is closed, a
contradiction. O

Satisfiability of formulae in M? is defined as for RL gg-models.
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Lemma 7.12. Let b be an open branch and let x R y be an RLgg-formula. Then the
following holds:
() if MU =z Ry, thenx Ry &b

Proof. The proof is by induction on the complexity of formulae. For R € PRC UIRV
and its complement, (*) holds by the definition.

e For R =U, (x) holds trivially, since ¢ U j is axiomatic.

e Let R = B. Assume (i,j) € m®(B). This implies that (i1,51) € m®(=) and
(j2,i2) € m?(<). Then iy = j; € b and jo < io ¢ b. Suppose i B j € b. By the
completion condition Cpl(B), i1 = j1 € b or ja < iz € b, a contradiction.

e Let R = —B. Assume (i,7) ¢ m®(B). This implies that (i1,j;) & m®(=)
r (j2,i2) & mb(<). Then i; =j; € b or jo < iy € b. Suppose i —B j € b.
By the completion condition Cpl(—B), both i1 #j; € b and j, £is € b, a
contradiction.

e Let R = E. Assume (i,j) € m®(E). This implies that (i1,j;) € m®(<) and
(j2,72) € m®(=). Then iy < j; & b and j, =iy € b. Suppose i E j € b. By the
completion condition Cpl(E), i1 < j1 € b or jo = iz € b, a contradiction.

e Let R = —F. Assume (i,j) ¢ m®(E). This implies that (i1,71) ¢ m®(<)
r (j2,i2) & mP(=). Then i; < j; € b or jo =iy € b. Suppose i —E j € b.
By the completion condition Cpl(—FE), both i1 £ j1 € b and ja #is € b, a
contradiction.

Therefore (x) holds for all atomic formulae and their complements. The remain-
ing cases can be proved in a standard way using the completion conditions and the
property of Lemma 7.8. See also [GPOO06a]. O

It is easy to check that the branch structure satisfies the following extensionality
property.

Lemma 7.13. Let M be a branch structure determined by an open branch b. Then
the following hold:

e For every R € PRC and for all z,y, z,t € PV we have that if (x,y) € m*(R)
and (z, 2), (y,t) € mb(=), then (z,t) € m*(R).

e For every R € IRA and for all i, j,k,l € IV such that i = [i1,42],5 = [j1,J2], k =
[k, ko), 1 = [, 1] if (i,5) € mP(R) and (iy, k1), (iz, k2), (j1,11), (j2, l2) € mb(=
), then (k,1) € m*(R).

Since m®(=) is an equivalence relation on Db, given a branch structure M®, we
may define the quotient model MY = (D, I(DY)*, m!) as follows:

o D) ={||z|| : 2 € D"}, where ||z|| is the equivalence class of m’(=) generated by
;
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1D = {lllell, ldll] : [e,d] € L(D*)*};

ma(R) = {(lz], lyl)) € Dg x D : (,y) € m*(R)}, for every R € PRC;

mg extends to all compound relational terms R € PRT as in RL gg-models;

mg(R) = {([llell, Il [Il<'[l, ll'[1]) € T(Dg)* x I(Dg)* : ([e,d], [, d]) € m*(R)},
for every R € IRA;

° mg extends to all compound relational terms R € IRT as in RLgg-models.

Due to Lemma 7.13, the quotient model MZ is well defined, that is the definitions
of ml(R) and I(D))* do not depend on the choice of the representatives of the
equivalence classes.

Lemma 7.14. The structure Mg is an RLgg-model.

Proof. We have to show that mg(:) is the identity on qu’. Indeed, for every x,y € PV
we have:

(L=l Iyl) € mg(=) iff (2, y) € m"(=) iff |l = [ly]

O

Let v5 be such that v}(z) = ||z|, for every z € PV, and v5(i) = [|i1]], [i2]]], for every
1 € IV. It is easy to see that vg is an RLpg-valuation in /\/lg, since v® satisfies the
definition of RL zg-valuation.

By an easy induction we can prove the following:
Lemma 7.15. For every RLyg-formula x R y:

(*) MalExzRy iff MU wbEaxzRy

Vg
The above lemmas enable us to prove the completeness of the proof system.

Theorem 7.16 (Completeness of RLpgg-system). Let z Ry be an
RLys-formula. If x Ry is RLyg-valid, then x Ry is RLyg-provable.

Proof. Assume x Ry is RLyg-valid. Suppose there is no closed RL gg-proof tree for
z Ry. Consider a non-closed RLpyg-proof tree for z R y. We may assume that this
tree is complete. Let b be an open branch of the complete RL yg-proof tree for = R y.
Since z Ry € b, by Lemma 7.12, the branch structure M? does not satisfy z R y.
By Lemma 7.15 also the quotient model Mg does not satisfy R y. Since Mg is an
RLys-model, x R y is not RLgg-valid, a contradiction. O
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7.4 HS-validity and RLjyg-provability

In this section we conclude the discussion of Sections 7.2 and 7.3 and we show how
the proof system of logic RLyg can be used to verify the validity and entailment of
formulae of logic HS. We also present examples of derivations.

The following theorem follows from Theorems 7.3 and 7.16.

Theorem 7.17. For every HS-formula ¢, ¢ is HS-valid if and only if i 7(p) j is
RL f7g-provable.

U)) i

)y
i —(B; (B; (P;U))) 4,4 (B; (P;U)) j

, k new

, | new

i Bk k—(Bi(P;U)) j U))j

i =B k,k =Bl —(P;U)j,i(B;(P;U))j

/\

i—Bkk-BL1—(PU)jiBLi(B(PU) —(P;U) 4,1 (P5U) J..

Axiomatic
(-B)
iy # ki, kg £ da,
i—Bk,k—Bl1—(P;U)j,iBli(B;(P;U))j
(=B)
i1 7 ki, ko £ dn by # 1, Lo £ ko,
i —Bkk—BIlLI—(P,U)j,iBL i (B;(P;U))j
A IR Y O A Iy < iy, ... ko & in,
Axiomatic Axiomatic oy ly Lke
(Tran<), ko
by < koo ly o Koy o ky <iny orns ki iy
Axiomatic Axiomatic

Figure 7.1: Proof tree for (B)(B)p — (B)p

As an example of validity checking, consider the HS-formula ¢ = (B)(B)p — (B)p,
which express the fact that (B) is a transitive modality. By the semantics of HS, it is
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easy to see that ¢ is valid. The translation 7(¢) of the above formula into a relational
term of RLgg is —(B;(B;(P;U))) U (B; (P;U)). Figure 7.1 depicts an RLgg-proof
tree that shows that the relational formula ¢ 7(¢) j is RLgg-valid, and thus that ¢ is
HS-valid. In each node of the proof tree we underline the formula to which a rule has
been applied during the construction of the proof tree.

Let Ry,..., Ry, R be binary relations on I(D)* and let U = I(D)* x I(D)™". It is
known that Ry =U,...,R, =U imply R=U iff (U;—(R1N...NR,);U)UR=T.
Therefore, for every RLyg-model M, M Ei Ry j,.... MEi R, jimply M =i R j
it M =i (U;—(RiN...NR,);U)UR) j which means that entailment in RLyg can
be expressed in its language.

As an example of entailment in RLyg, suppose that < is a dense linear ordering.
It can be shown that density can be expressed in terms of the relation B by the
following axiom:

Densery,, := B C (B; B),

that is equivalent to —BU(B; B) = U. In [Ven90], the following HS-axiom is proposed
to express density: -

Denseps := (B)p — (B){(B)p.

Its RLpys-translation is 7(Denseys) = —(B~Y;(P;U)) U (B7 (B~ (P;U))). To
prove that Densery ,, entails Densegg it is sufficient to show that the relational for-
mula

i[(U;—=(=BU(B;B));U)U(=(B~(P;U))U(B~Y (B~ (P U))))]

is RLgyg-valid. Figure 7.2 depicts a closed proof tree for this formula, thus proving
that Densepg is valid for every dense ordering. As in the previous example, in each
node of the proof tree we underline the formula to which a rule has been applied
during the construction of the proof tree.

7.5 Extensions of the relational system

In the previous sections we have provided a relational proof system for the interval
temporal logic HS, interpreted over linear temporal domains. In this section we exploit
the modularity of the relational approach, and we show how to adapt it to cope with
other interval relations and other meaningful temporal domains.

7.5.1 Incorporating the other interval relations

In this section we show how to modify the relational logic RL 5 and its proof system to
obtain a relational logic RLy, (and a corresponding proof system) that is appropriate
to any interval logic L that is based on unary modalities corresponding to Allen’s
relations. As discussed in Chapter 1, any interval logic L. based on Allen’s relations
can be defined by choosing a subset of the following temporal operators:

T = {m,(E),(E),(D),(D),(B),(B),(0),(0), (A), (4), (F), (F)}.
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i(w

i (Us(=(=BU(B; B));U)) j,i (=(B_L (P 1)) U (B (B (P U))))
[

i (Us(=(=BU(B; B))UV)) 5.1 (B~ (P U)) 5.1 (B™H (B (P3U)) j

—;), k new

B
i (Ui (=(=BU(B; B);U)) j,i =B~ k. k —(P;U) 4,i (B~ (B (P U)))
l(")

Q
[sv]

i (U (=(=BU(B; B));U)) j,k =B i.k —(P;U) j,i (B~ (B~ (P;V))) j

L iUk,... ...,k(=(=BU(B;B)));U) j,...
Axiomatic.
‘/(')J
k—(=BU(B;B)) i,.. 1U],,..

k(- - B)i,.

'/7) \(‘7;), [ new

..,kBi,....,k—Bi,... ook =BlLl-Bi,....k—(P;U)j,i (B % (B (P;U))) 7,
Axiomatic.
/(;)‘Z \
A —Bi, iB 1, .. k=Bl,..., k—(P;U) j,1 (B~ (P;U)) 4, ...
l(") / (;)Jf\
., l=Bi,...,lBi,... .. k=Bl,..., IB k... o k=(P;U) j,k P;Uj,...
Axiomatic. Axiomatic.
i( D)
. k=Bl,....,kBIl...
Axiomatic.

Figure 7.2: Proof tree showing that Densery ,, entails Denseg s
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Given an interval logic L, the corresponding relational logic RLy, differs from RL ¢
only in the choice of the set of interval relational constants, that is defined as IRC =
{U}U{R:(R) € L}U{Il: 7 € L}. Models of RLj, are defined as in the case of RLyg
while the semantics of the relational constants R has to be defined in accordance
with the semantics of the chosen primitive interval relations. Any L-formula ¢ can
be translated to an RLz-formula i R j by means of the following validity preserving
translation 7:

e for propositional letters and for propositional connectives, 7 is defined as in the
case of RLyg;

e if the modal constant 7 is in the language, 7(7) = IT; U;

o for every basic modality (R), T7((R)y) = R; 7(¢);

e for every converse modality (R), 7((R)y) = R™%;7(¢).

A proof system for RL; can be obtained from the proof system for RLygs by
substituting rules (B), (F), (—B), and (—F) with rules that are appropriate for the
choice of basic Allen’s relations. Rules for begins and ends are presented in Section
7.3, while the rules for the remaining relations are the following.

For i,7 € IV:

il i~
m ) )y
) iy =i, Il j (=10 i1 # dg,i —1l j
D) iDj a i—Dj
i1 < j1,i D j|je<igiDj i1 £ J1,J2 £ 2,5 =D j
iM i —M j
(y M (cay M
iy =j1,1 M j iy # j1,i —M j
iPj i—Pj
L . (cr) =PI
ip < j1,4 Pj ig £ j1,1 —Pj
0
J1<i1,10 ] | i1 < Jo,i O j | jo <ia,i O j
i—0j
(-0)

J1 £ty < o, Jo <2, =0 j

It is easy to check that the rules correspond to the semantics of Allen’s relations,
as defined in Chapter 1. Hence, soundness of the rules is straightforward. To prove
completeness we need to appropriately expand the completion conditions and the
notion of branch structure. For instance, rules (A) and (—A) require the following
completion conditions:

Cpl(M) Ifi M j €bthen iy =j; €.
Cpl(—M) 1Ifi—M j € bthen is # j; € b.
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Consider now the branch structure M® = (D?, 1(D*)*, m?). The meaning of A in M?
is defined as follows:

m®(A) = {([¢,d],[c',d']) € I(D®) x I(D®) : (d,c) € m*(=)}.

The valuation v® and the notion of satisfiability in M? are defined as in RLzg. To
prove completeness, we have to show that M% v® =i R j if and only if i Rj & b,
where R can be either A or —A.

o Let R := A. Assume (i,j) € mb(A), that is (iz,j1) € m®(=). Then iy = j; &
b. Suppose i Aj € b. By the completion condition Cpl(A), i =j; € b, a
contradiction.

e Let R:= —A. Assume (4,7) & m®(A), that is (ia,j1) & m®(=). Then iy = j; € b.
Suppose ¢ —A j € b. By the completion condition Cpl(—A4), is #j1 € b, a
contradiction.

The remaining part of the completeness proof is as in RLyg.

Relational systems for other interval temporal logics.

The rules presented above allow us to easily adapt the proof system for RLyg to any
propositional interval temporal logic that is a proper fragment of HS. Here we show
two examples of such a modification.

The logic BE. The logic BE features the two modalities (B) and (E), and was
first studied in [Lod00], where its undecidability has been proved. Since BE does
not have converse modalities, the relational logic RLgg appropriate for BE is logic
RLys without the converse operator ~'. A relational proof system for RLgg can be
obtained from the one for RLys by removing rules (1) and (—~1).

Propositional neighborhood logics. The relational logic RLpy«+ (appropriate
for PNL™) is logic RLys where the interval relational constant IT and A takes place
of B and E. A proof system for RLpy;~+ can be obtained from the one for RLgg by
substituting rules (B), (—B), (F), and (—FE) with rules (II), (=II), (A) and (—A).

7.5.2 Considerations on the nature of intervals

In this chapter we always considered the non-strict semantics for interval logics.
As shown in Chapter 1, another natural semantics for interval logics is considered,
namely, the strict one, where point intervals are excluded.

Given a relational proof system RLj, for an interval logic L, we show how to modify
it in the case of the strict semantics. To this end, we define the relational logic RL}
(strict RLy,), characterized by the same syntax as non-strict RLy,, but with a different
semantics. An RL; -model is a tuple M~ = (D,I(D)~,m) where D and m are defined
as in RLz-models, and I(D)~ = {[¢,d] € D x D : (¢,d) € m(<)}. An RL} -valuation
is any function v: PV UIV — 2P U 2l(P)” xI(D)™ gych that:
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o if z € PV then v(x) € D;
e if i € IV then v() = [v(i1),v(i2)] € I(D)~.

The notions of satisfiability and validity of a formula are defined as in RL,.

A proof system for RL},

A proof system for RL; can be obtained from the proof system for RLz, by substituting
the axiomatic set (ab) with a new one:

(ab™) i1 < ig for i € IV.

In the case of the strict semantics, for every valuation v and every interval variable
i, we have v(i) = [v(i1),v(i2)] with v(i1) < v(i2). Hence, (ab~) is an RL -set.
Correctness of the other rules of the proof system follows directly from the correctness
of the rules for RL;. Thus, soundness of the RL} -proof system is straightforward.

Completeness of the proof system can be proved as in the case of RLy, with the
only difference that, given an open branch b, the branch structure M® = (D° 1(D%)~,
m?P) is defined such that I(D%)~ = {[c,d] : ¢,d € D, (c,d) € m*(<)}.

7.5.3 Properties of the temporal ordering

In all the relational systems RL presented above, the strict ordering < is considered
to be linear, without any further assumption. In this section we propose some possible
extensions and modifications of our systems in case of other temporal orderings.

Unbounded orderings

An ordering is said to be unboundend below (resp. above) if for every z there exists
z such that z < = (resp. « < z). Such a condition can be expressed in a relational
system RL; by means of the following rules.

For x € PV:
(No-min<)

(No-max<) with z new point variable.

Soundness of the rules can be easily proved. Suppose that < is unbounded below
(the case where < is unbounded above is similar). Then, for every x, there exists z
such that z < z. Thus, z £ = cannot be an RLz-set and rule (No-min<) is correct.

To prove completeness of the system, we need to add the following completion
conditions.

Cpl(No-min<)  For all x € PV, there exists z € PV such that z £ = € b.
Cpl(No-max<) For all € PV, there exists z € PV such that = £ z € b.

Consider now the branch structure M® = (D I(D?),mb) of RL,. To prove that
mb(<) is unbounded below, suppose by contradiction that there exists 2 € PV such
that, for all z € PV, (z,2) ¢ mb(<). This implies that z < x € b for all z € PV. By
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the completion condition Cpl(No-min<), there exists z € PV such that z £ « € b and
z < x € b, a contradiction. Proving that the completion condition Cpl(No-max<)
implies that m?(<) is unbounded above is similar.

Dense orderings

An ordering < is dense if for every pair of different comparable points there exists
another point in between, namely, if Vo, y(x < y — Jz(z < 2A 2z < y)) holds. Density
of the time domain can be expressed by the following rule.

For z,y € PV:
(Dense<)

with z new point variable.
r<ylrLzzLy P

Soundness is straightforward: the rule corresponds to the first-order formula

A, y(x < yAVz(z £ 2V 2z £y)), that is exactly the negation of the density con-
dition. As for the completeness, we add the following completion condition.

Cpl(Dense<) For all z,y € PV, z < y € b or there exists z € PV such that
x££ zeband z £y €b.

Consider now the branch structure, and suppose that m®(<) does not respect the
density condition, that is, there exist x,y € PV such that (z,y) € mb(<) and, for all
z € PV, (x,2) € m®(<) or (z,y) € mb(<). This implies that = < y & b and, for all
z,x < z€E€bor z<y € b By the completion condition Cpl(Dense<), we have that
there exists z such that x £ z € b and z £ y € b, a contradiction.

Discrete orderings

An ordering in discrete if every point with a successor/predecessor has an immediate
successor /predecessor, that is:

(1) Veylzx<y— Iz <zAVt(x £tVi L 2))),
and

(2) Ve,yly<z— Iz(z<zAV(z £tV Lx))).
Discreteness of the time domain is expressed by the following additional rules.
For x,y, z,t € PV:
(Disc<1)

r<yledzz<t|xLzt<z
(Disc<2)

y<z|lzdr,z<t|zdat<zx

with z,y,t any point variable, z new point variable.

The lower part of rule (Disc<y) corresponds to the first-order formula 3z, y(z <
yAVz(z £ 2V 3t(x < t At < 2))), that is exactly the negation of condition (1).
Similarly, the lower part of rule (Disc<s) corresponds to the negation of condition
(2). Hence, soundness of the rules is straightforward.
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To prove completeness, it is necessary to add the following completion conditions
to the system:

Cpl(Disc<y) For all z,y € PV, = < y € b, or there exists z € PV such that
L zeband, forallt e PV, x <t €b,ort<zée€b.

Cpl(Disc<) For all z,y € PV, y < x € b, or there exists z € PV such that
z£xeband, forallt e PV, z<tebort<xzechb.

Consider now the branch structure M?®, and suppose that mb(<) does not respect
condition (1). This implies that there exist x,y € PV such that (z,y) € m®(<) but,
for all z € PV, (x,2) ¢ mb(<), or there exists t € PV such that (z,t) € m®(<) and
(t,z) € m®(<). By the definition of branch structure, this implies that < y ¢ b and
r<zeborx<tgbandit < z¢b. By the completion condition Cpl(Disc<;), one
of the following may arise:

e r <y € b, acontradiction;
e r £ z€eband x <t €b, acontradiction;

e r £zebandt<zé€b, acontradiction.
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Conclusions

In this dissertation we have studied and developed tableau and dual-tableau based
proof systems for propositional interval temporal logics. We first focused our attention
on propositional neighborhood logics, by providing tableau-based decision procedure
for them and by discussing their decidability and expressivity. Then we developed a
relational dual-tableau that can be used as a proof system for most interval temporal
logics with unary modalities.

Chapters 3, 4, 5, and 6 are devoted studying to the decidability and expressivity
of various propositional neighborhood logics. We started, in Chapter 3, by focusing
our attention on the future fragment of Propositional Neighborhood Logic (RPNL)
interpreted over natural numbers. We addressed the satisfiability problem for RPNL,
showing that it is NEXPTIME-complete. In particular, we proved NEXPTIME-
hardness by a reduction from the exponential tiling problem. Then, we developed a
sound and complete tableau-based decision procedure for RPNL™t and we proved its
optimality. We concluded the chapter by briefly showing that such a procedure can be
easily adapted to RPNL' and RPNL™. The proposed decision procedure improves
the EXPSPACE tableau-based decision method for checking RPNL™ satisfiability
developed by Bresolin and Montanari in [BM05b] and it is a generalization to RPNL"™ T
of the tableau-based decision procedure originally developed for RPNL™ in [BMS07b].

In Chapter 4 we generalized this method to the branching-time propositional in-
terval temporal logic BTNL. We recall from Chapter 1 that such a logic is interpreted
over infinite trees and it combines the interval neighborhood operators of RPNL with
the path quantifiers of CTL. By combining Emerson and Halpern’s tableau-based de-
cision procedure for CTL [EH85] with the one we developed in this chapter for RPNL,
we have been able to devise a doubly-exponential tableau-based decision procedure
for BTNL.

The extension of the tableau method for RPNL to full PNL turned out to be
difficult. In particular, there is not a straightforward way of generalizing the basic
removal technique exploited in Chapter 3 to bound the search space. In the presence
of past operators, indeed, the removal of a point may affect both future existential
formulae and past existential ones, and there is not an easy way to fix the future and
past defects it may introduce. Chapter 5 is devoted to show how these problems can
be solved, in order to obtain a tableau-based decision procedure for full PNL inter-
preted over the integers and over subsets of them, such as the naturals or finite linear
orderings. In particular, we have developed a NEXPTIME tableau-based decision
procedure for PNL™T that can be adapted to PNL™ and PNLT as well. Thanks to
the NEXPTIME-hardness of PNL, such a decision procedure is of optimal complexity.

Finally, in Chapter 6 we explored expressiveness and decidability issues for Propo-
sitional Neighborhood Logics. First, we compared PNL™" with PNL™ and PNL™,
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and we showed that the former is strictly more expressive than the other two. Then,
we proved that PNL™ is decidable by embedding it into FO?[<]. Next, we proved
that PNL™ is as expressive as FO?[<]. Finally, we compared PNL™" with HS and
other interval logics.

The results of Chapters 3, 4, 5, and 6 can be further developed in several directions.

e In the case of BTNL, we do not know yet if the satisfiability problem for this
logic is doubly EXPTIME-complete or not. In our tableau method nodes of the
tableau are defined as sets of atoms, thus giving a doubly-exponential blow-up in
the tableau construction. We conjecture that the complexity of the satisfiability
problem for BTNL can be lowered by devising a tableau method where nodes
are single atoms (like in the tableau for RPNL and CTL), thus avoiding the
doubly-exponential state explosion of our current method.

e Another possible extension of the tableau method for BTNL is its generalization
to the decision problem for logics that combine path quantifiers operators with
other sets of interval logic operators, e.g., those of PNL or of other propositional
interval logics.

e The tableau methods we give for PNL and RPNL can be optimized by exploit-
ing an on-the-fly approach for the tableau construction. Given a formula ¢,
our methods first construct the closure of ¢ and the set of p-atoms, and then
apply rules that check for satisfiability. This immediately causes an exponen-
tial blowup, which is necessary in the worst case, but may not be necessary in
the average case. By contrast, with an on-the-fly approach the procedure sim-
ply breaks down the formula ¢ into smaller and smaller sets of formulae, from
which a model can be built, or a contradiction found, as soon as is possible.
The worst-case complexity of the method remains the same, but it is likely that
the exponential blowup can be avoided in most cases.

e A second possibility is to explore the extension of the tableau for RPNL and PNL
to temporal domains different from the naturals and the integers. In Chapter 6
we give a non-constructive proof of the decidability of PNL over the class of all
linear orderings and other orderings such as the class of all Dedekind-complete
linear orderings. The development of an effective decision procedure for these
cases is an extension that it is worth exploring.

e There are some interesting classes of orderings, like dense linear orderings, the
reals, and partial orderings with the linear interval property, where the decid-
ability of PNL is still unknown. It would be of great interest to explore the
possibility of extending the results of Chapter 6 to these classes of orderings.

e One could imagine extending PNL with other interval modalities, such as the
subinterval modalities (D) and (D) or, in the case of the integers, to modalities
corresponding to the successor/predecessor relations, and to devise a tableau-

based decision procedure for such new logics, if they turn out to be decidable,
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or to prove their undecidability. This would extend the known results about
decidability and undecidability in interval temporal logics, possibly by adding
new, expressive, but still decidable, interval logics to the ones that have been
studied so far.

e As for expressiveness, in this dissertation we partially explored the relation-
ships between PNL and other fragment of HS. A comparison with point-based
temporal logics can be of interest as well. For example, there is an obvious em-
bedding of the standard point-based temporal logic TL[F,P] into PNL™". The
(non-)existence of the opposite embedding is more interesting, but also more
difficult to state in a precise way.

In Chapter 7 we presented a sound and complete relational proof system for
Halpern and Shoham’s HS logic interpreted over non-strict linear interval structures.
Furthermore, we showed how to extend the system to the class of all interval tem-
poral logics based on Allen’s relations, interpreted over strict and non-strict interval
structures and over linear orderings with various specific properties (e.g., unbounded,
dense, discrete).

The relational approach presented in Chapter 7 can be extended in several ways.

e A first possibility is the development of a relational logic and of a relational
proof system that are adequate for interval logics based on binary modalities,
like CDT. Such an extension must include relational constants corresponding
to the C, D, and T modalities of CDT, while the rules of the proof system
must reflect their semantics. An example of a relational approach to a modal
logic with binary modalities can be found in [Ort95], where the Since and Until
operators of point-based temporal logics has been considered.

e A semantic extension of the method is its generalization to interval structures
based on partial orderings with the linear interval property (see Chapter 1).
In this case, the strict ordering < is not a linear ordering any more. It is
transitive and irreflexive, but the linearity constraint is substituted with the
linear interval property. Thus, the axiomatic set (a3) presented in Section 7.3.3
is not correct anymore and should be substituted with new rules and/or new
axiomatic sets that are correct with respect to partial orderings with the linear
interval property.

e A more interesting, yet more difficult development of our relational approach
is the use of dual tableau as decision procedures for (decidable) interval logics.
Since HS is an undecidable logic, the relational proof system for RL ;g proposed
in this chapter is a semi-decision procedure. Even when restricted to interval
logics that are known to be decidable, it remains a non-terminating procedure.
It is not clear how relational proof systems can be turned into decision proce-
dures, when the considered logic is decidable. Since tableaux and dual tableaux
are known to be dual in a precisely defined sense [GPOO06b], it would be inter-
esting to explore this relationship in order to derive a terminating dual tableau
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for interval logics for which a terminating tableau-based decision procedure is
available, like Bowman and Thompson’s local PITL [BT03], or the propositional
neighborhood logics RPNL, PNL and BTNL.

Finally, we conclude the dissertation by outlining some open problems in the area of
interval logics that are not directly connected with the results presented here.

e The subinterval logic D is the fragment of HS featuring only the subinterval
modality (D). As pointed out in Chapter 1, there are few results in the literature
about decidability and axiomatizability of this logic when over some specific
structures (such as dense linear ordering). Decidability and axiomatizability of
the D logic in the general case is still an open problem.

e Another fragment of HS that is worth studying is the logic (D)/(D), featuring
the subinterval and superinterval modalities. In [Lod00], Lodaya conjectures
that this logic is undecidable. However, we are not aware of any published
results about its decidability or undecidability.

e In this dissertation we mostly focused on the satisfiability problem for interval
logics. Another interesting problem, that has been extensively studied for point-
based temporal logics, is the model checking problem. There are very few
published works about model checking for interval temporal logics [CCGOO,
PPHO8], despite the great interest for such topics in computer science.
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