
A tableau-based decision procedure for a
branching-time interval temporal logic

Davide Bresolin and Angelo Montanari

Department of Mathematics and Computer Science,
University of Udine, Italy

E-mail: {bresolin|montana}@dimi.uniud.it

Abstract

Propositional interval temporal logics are very expressive temporal logics, with sim-
ple syntax and semantics, which allow one to naturally express statements that refer
to time intervals and continuous processes. Most of them feature temporal oper-
ators that only allow one to express properties of a single timeline. In this paper
we develop a branching-time interval neighborhood logic that interleaves operators
that quantify over possible timelines with operators that quantify over intervals be-
longing to a given timeline. We define its syntax and semantics, and we provide it
with a doubly-exponential tableau-based decision procedure.

1 Introduction

Propositional interval temporal logics are very expressive temporal logics, with
simple syntax and semantics, which allow one to naturally express statements
that refer to time intervals and continuous processes. Among them, we men-
tion Halpern and Shoham’s Modal Logic of Time Intervals (HS) [9], Venema’s
CDT logic [13], Moszkowski’s Propositional Interval Temporal Logic (PITL)
[11], and Goranko, Montanari, and Sciavicco’s Propositional Neighborhood
Logic (PNL), which is the propositional counterpart of Chaochen and Hansen’s
first-order Neighborhood Logic [2,6] (an up-to-date survey of the field can be
found in [7]). Most of them feature temporal operators that only allow one to
express properties of a single timeline, with the exception of Paech’s Branch-
ing Regular Logic (BRL) [12]. BRL is a local branching-time interval logic,
whose operators quantify over different timelines 1 . In [12] the author pro-
vides a Gentzen-style system for BRL and she states some expressiveness and
complexity results.

1 Locality forces a propositional variable to be true over an interval if and only if it is true
at its starting point [11].

In this paper we develop a branching-time interval neighborhood logic that
interleaves operators that quantify over possible timelines with operators that
quantify over intervals belonging to a given timeline. We define its syntax and
semantics, and we provide it with a doubly-exponential tableau-based decision
procedure. Unlike the case of BRL, we do not impose any semantic restriction,
such as locality, to get decidability.

When defining a temporal logic, there are basically two possible choices for
the underlying temporal structure. Either time is linear (at any time there is
only one possible future) or it has a branching, tree-like structure (any time
may have many different futures). In the case of point-based temporal logics,
both these alternatives have been successfully explored, and several mean-
ingful logics have been developed (we only mention the linear temporal logic
LTL and its many variants, and the branching-time temporal logics CTL and
CTL∗ [4]). On the contrary, interval-based temporal logics are usually in-
terpreted over linear temporal structures. Even those interval logics which
are interpreted over branching-time temporal structures, such as Halpern and
Shoham’s HS (in its original formulation) and Goranko, Montanari, and Sci-
avicco’s branching CDT (BCDT+) [5], only feature temporal operators that
express properties of single timelines.

The main difference between interval-based and point-based temporal log-
ics is that the former can express properties of pairs of time points (think of
intervals as constructed out of points), rather than single time points. In most
cases, this feature leads to undecidability since it prevents one from the possi-
bility of reducing interval-based temporal logics to point-based ones. However,
by imposing suitable syntactic and/or semantic restrictions, such a reduction
can be defined, thus allowing one to benefit from the good computational
properties of point-based logics [10]. A possible syntactic restriction is the
choice of a suitable subset of interval modalities. As for semantic restrictions,
one possibility is to constrain the truth value of propositional variables over
intervals. We already mention the locality assumption. Another simplifying
assumption often made is that of homogeneity, which states that a proposi-
tional variable is true over an interval if and only it it is true over all of its
subintervals. Another possibility is to achieve decidability by constraining the
classes of interval structures over which formulas are interpreted. The prob-
lem of identifying expressive enough, yet decidable, genuinely interval-based
logics, that is, logics which are not directly translated into point-based logics
and not invoking semantic restrictions, is still largely unexplored.

While various tableau methods have been developed for linear and branch-
ing time point-based temporal logics, not much work has been done on tableau
methods for interval-based temporal logics. One reason for this disparity is
that operators of interval temporal logics are in many respects more difficult
to deal with [8]. In [5,8], Goranko et al. outline a tableau method for Ven-
ema’s CDT logic interpreted over partial orders (BCDT+). The method can
be easily adapted to variations and subsystems of BCDT+, thus providing a

2

general tableau method for propositional interval logics. However, while most
existing tableau methods for temporal logics are terminating methods for de-
cidable logics, and thus they yield decision procedures, that for BCDT+ only
provides a semi-decision procedure for unsatisfiability. In [1], we propose a
tableau-based decision procedure for the future fragment of (strict) Propo-
sitional Neighborhood Logic, that we call Right Propositional Neighborhood
Logic (RPNL− for short), interpreted over natural numbers. By combining
syntactic restrictions (future temporal operators) and semantic ones (the do-
main of natural numbers), we succeeded in developing a tableau-based decision
procedure for RPNL−. To the best of our knowledge, RPNL− is the first non-
trivial case of a genuine propositional interval logic for which a tableau-based
decision procedure has been given.

In this paper, we generalize the method to a suitable branching-time propo-
sitional interval temporal logic, that we call Branching-Time Right (Propo-
sitional) Neighborhood Logic (BTNL[R]− for short). Such a logic combines
the interval neighborhood operators of RPNL− with the path quantifiers of
CTL [4]. Emerson and Halpern’s tableau-based decision procedure for CTL
[3] consists of an initial construction phase, followed by an elimination phase.
The elimination phase encompasses both a local pruning, that removes local
inconsistencies, and a global pruning, that removes nodes including eventu-
alities which are not fulfilled by the current graph. It turns out that a CTL
formula is satisfiable if and only if the final graph is not empty. By combin-
ing such a tableau method for CTL and the one we developed for RPNL−

[1], we have been able to devise a doubly-exponential tableau-based decision
procedure for BTNL[R]−.

The rest of the paper is organized as follows. In Section 2, we introduce
the syntax and semantics of BTNL[R]−. In Section 3, we present our decision
procedure, we prove its soundness and completeness, and we address complex-
ity issues. In Section 4, we show our procedure at work on a simple example.
Conclusions provide an assessment of the work and outline future research
directions.

2 The Logic BTNL[R]−

2.1 Tree-like structures

According to a commonly accepted perspective [4], the underlying temporal
structure of branching-time temporal logics has a branching-like nature where
each time point may have many successors points. The structure of time thus
corresponds to an infinite tree. We shall further assume that the timeline
defined by every (infinite) path in the tree is isomorphic to 〈N, <〉. We al-
low a node in the tree to have infinitely many (possibly, uncountably many)
successors, while we require each node to have at least one successor. It will
turn out that, as far as our logic is concerned, such trees are undistinguishable

3

from trees with finite branching.

Given a directed graph D = 〈D,R〉, a finite R-sequence over D is a sequence of
nodes d1d2 . . . dn, with n ≥ 2 and di ∈ D for i = 1, . . . , n, such that R(di, di+1)
for i = 1, . . . , n − 1. Infinite R-sequences can be defined analogously. We
define a path π in D as a finite or infinite R-sequence. In the following, we
shall take advantage of a relation R+ ⊆ D × D such that R+(di, dj) if and
only if di and dj are respectively the first and the last element of a finite
R-sequence.

Temporal structures for branching time logics are infinite tree defined as fol-
lows.

Definition 2.1 An infinite tree is an infinite directed graph D = 〈D,R〉, with
a distinguished element d0 ∈ D, called the root of the tree, where D is the set
of nodes, called time points, and the set of edges R ⊆ D×D is a relation such
that:

• for every d(6= d0) ∈ D, R+(d0, d), that is, every d(6= d0) ∈ D is R-
reachable from d0;

• for every d(6= d0) ∈ D, there exists at most one d′ ∈ D such that R(d′, d)
(together with the previous one, this condition guarantees that every
d(6= d0) ∈ D has exactly one R-predecessor);

• there exists no d′ such that R(d′, d0), that is, d0 has no R-predecessors;
• for every d(6= d0) ∈ D, there exists at least one d′ ∈ D such that R(d, d′),

that is, every d ∈ D has at least one R-successor.

It is not difficult to show that infinite trees are acyclic graphs, that is, there
exist no finite paths which start from and end at the same node.

Given an infinite tree D = 〈D,R〉, we can define a partial order < over D such
that, for every d, d′ ∈ D, d < d′ if and only if R+(d, d′). It is immediate to see
that, for every infinite path π in D, 〈π,<〉 is isomorphic to 〈N, <〉.
Intervals over infinite trees are defined as follows. A (strict) interval over
D = 〈D,R〉 is a pair [di, dj] such that di, dj ∈ D and di < dj. We denote
the set of all strict intervals over a tree D as I(D)−. For any pair of intervals
[di, dj] and [dj, dk], we say that [dj, dk] is a right neighbor of [di, dj]. A point
d ∈ D belongs to the interval [di, dj] if di ≤ d ≤ dj. In the following, we shall
interpret our logic over interval structures 〈D, I(D)−〉, where D is an infinite
tree and I(D)− is the set of all strict intervals over it.

2.2 Syntax and semantics of BTNL[R]−

In this section, we give syntax and semantics of BTNL[R]− interpreted over
infinite trees. BTNL[R]− is a propositional interval temporal logic based on
the neighborhood relation between intervals. Its formulas are built from a
set AP of propositional letters p, q, . . ., by using the Boolean connectives ¬
and ∨ and the future temporal operators E〈A〉 and E[A]. The other classical
propositional connectives, as well as the logical constants > (true) and ⊥

4

(false), are defined in the usual way. Furthermore, we introduce the temporal
operator A[A] as a shorthand for ¬E〈A〉¬ and the temporal operator A〈A〉 as
a shorthand for ¬E[A]¬, and, from now on, we identify ¬E〈A〉ψ with A[A]¬ψ
and ¬E[A]ψ with A〈A〉¬ψ.

Formulas of BTNL[R]−, denoted by ϕ, ψ, . . ., are recursively defined by the
following grammar:

ϕ = p | ¬ϕ | ϕ ∨ ϕ | E〈A〉ϕ | E[A]ϕ.

We denote by |ϕ| the size of ϕ, that is, the number of symbols in ϕ, where
the quantifier E〈A〉 (resp., E[A]) is counted as one symbol. Whenever there
are no ambiguities, we call a BTNL[R]− formula just a formula. A formula
of the form E〈A〉ψ, E[A]ψ, A〈A〉ψ or A[A]ψ, is called a temporal formula.
A temporal formula whose main temporal operator is either E〈A〉 or E[A] is
called an existential formula, while a temporal formula whose main temporal
operator is either A〈A〉 or A[A] is called a universal formula.

A model for a formula is a tuple M− = 〈〈D, I−(D)〉,V〉, where the pair
〈D, I(D)−〉 is an interval structure, and V : I(D)− −→ 2AP is a valuation
function that assigns to every interval the set of propositional letters true on
it. We place ourselves in the most general setting, and we do not impose
any locality or monotonicity constraint on the valuation function. As an
example, it may happen that V maps an interval [di, dj] to some set of atomic
propositions and that it maps an interval contained in/that contains [di, dj]
to a different set.

The semantics of BTNL[R]− is defined recursively by the satisfiability re-
lation
 as follows. Let M− = 〈〈D, I−(D)〉,V〉 be some given model, and let
[di, dj] ∈ I(D)−:

• for every propositional letter p ∈ AP , M−, [di, dj]
 p iff p ∈ V([di, dj]);
• M−, [di, dj]
 ¬ψ iff M−, [di, dj] 6
 ψ;
• M−, [di, dj]
 ψ1 ∨ ψ2 iff M−, [di, dj]
 ψ1, or M−, [di, dj]
 ψ2;
• M−, [di, dj]
 E〈A〉ψ iff there exists dk ∈ D, dj < dk, such that

M−, [dj, dk]
 ψ;
• M−, [di, dj]
 E[A]ψ iff there exists an infinite path π = djdj+1 . . . rooted

at dj such that, for every dk in π, with dj < dk, M−, [dj, dk]
 ψ.

Since our logic has only future time operators, without loss of generality, we
can restrict our attention to standard trees, namely, trees such that the root
d0 has only one R-successor d1. In such a case, the corresponding interval
structure has an initial interval [d0, d1], and we say that a formula ϕ is satisfied
by the interval structure if and only if ϕ holds at the initial interval.

3 A tableau-based decision procedure for BTNL[R]−

To check the satisfiability of a formula ϕ, we build a graph, that we call a
tableau for ϕ, whose nodes represent points of the temporal domain D and

5

whose edges represent the relation R connecting a point to its successors in
the tree. We shall take advantage of such a construction to reduce the problem
of finding a model for ϕ to the problem of testing whether the tableau satisfies
some suitable properties or not.

Let M− = 〈〈D, I−(D)〉,V〉 be a model for ϕ and let dj be a point in D.
We have that, given an interval [di, dj] ending in dj, every right neighbor of
it is also a right neighbor of every other interval [dk, dj] ending in dj. Hence,
every temporal formula ϕ holds over [di, dj] if and only if it holds over every
other interval [dk, dj] ending in dj. We denote by REQ(dj) the set of temporal
formulas which hold over all intervals ending in dj.

The building blocks for the tableau construction are ϕ-atoms. For every
interval [di, dj] ∈ I−(D), we introduce a pair of sets of formulas (A[di,dj], C[di,dj]),
that we call an atom for ϕ (ϕ-atom for short). The set A[di,dj] is a subset of
REQ(di), which collects the set of requests in REQ(di) relevant to the interval
[di, dj]. In general, A[di,dj] may differ from A[di,dk] for j 6= k. The set C[di,dj]

contains all and only the formulas that (should) hold over [di, dj]. We can as-
sociate with every point dj ∈ D the set of ϕ-atoms {(A[di,dj], C[di,dj]) : di < dj},
which includes all ϕ-atoms paired with intervals ending in dj. These sets of
atoms are the (macro)nodes of the tableau for ϕ.

3.1 Basic notions

Let ϕ be a BTNL[R]−-formula to be checked for satisfiability and let AP be
the set of its propositional variables.

Definition 3.1 The closure CL(ϕ) of ϕ is the set of all subformulas of ϕ and
their negations (we identify ¬¬ψ with ψ).

Definition 3.2 The set of temporal requests of ϕ is the set TF(ϕ) of all
temporal formulas in CL(ϕ).

By induction on the structure of ϕ, it can be easily proved that |CL(ϕ)| ≤ 2·|ϕ|
and |TF(ϕ)| ≤ 2 · |ϕ|.

We are now ready to introduce the key notion of ϕ-atom.

Definition 3.3 Let ϕ be a BTNL[R]−-formula. A ϕ-atom is a pair (A, C),
with A ⊆ TF(ϕ) and C ⊆ CL(ϕ), such that:

• for every ψ ∈ CL(ϕ), ψ ∈ C iff ¬ψ 6∈ C;
• for every ψ1 ∨ ψ2 ∈ CL(ϕ), ψ1 ∨ ψ2 ∈ C iff ψ1 ∈ C or ψ2 ∈ C;
• for every ψ ∈ TF(ϕ), if ψ ∈ A then ¬ψ 6∈ A;
• for every A[A]ψ ∈ A, ψ ∈ C;
• for every E[A]ψ ∈ A, ψ ∈ C.

Formulas in C are called current formulas, while (temporal) formulas in A are
called active requests.

As for the set A, it is worth pointing out that there may exist a ϕ-atom (A, C)
6

and a temporal formula ψ such that neither ψ nor ¬ψ belongs to A.

We denote the set of all ϕ-atoms by Aϕ. It is not difficult to show that
|Aϕ| ≤ 22|ϕ|.

Atoms come into play in the proposed tableau method as follows. The method
associates an atom (A, C) with any interval [di, dj]. The set A includes all for-
mulas of the form A[A]ψ that belong to REQ(di) as well as some formulas of
the forms E[A]ψ, A〈A〉ψ, and E〈A〉ψ in REQ(di); the set C includes all for-
mulas ψ ∈ CL(ϕ) which (should) hold over [di, dj]. Moreover, for all formulas
of the forms A[A]ψ and E[A]ψ in A, we put ψ into C, while for any formula
of the forms A〈A〉ψ and E〈A〉ψ in A, it may happen that ψ ∈ C, but this is
not necessarily the case.

Atoms are connected by the following binary relation.

Definition 3.4 Let Xϕ be a binary relation over Aϕ such that, for every pair
of atoms (A, C), (A′, C′) ∈ Aϕ, (A, C)Xϕ(A′, C′) if (and only if):

• A′ ⊆ A;
• for every A[A]ψ ∈ A, A[A]ψ ∈ A′;
• for every A〈A〉ψ ∈ A, A〈A〉ψ ∈ A′ iff ¬ψ ∈ C.

In the next section we shall show that for any pair of points di < dj,
the relation Xϕ connects the atom associated with the interval [di, dj] to the
atom associated with the interval [di, dj+1], where dj+1 is an R-successor of
dj. In particular, it will turn out that, if (A, C) is associated with the interval
[di, dj], then for every formula A[A]ψ ∈ REQ(di) and every atom (A′, C′) such
that (A, C)Xϕ(A′, C′), we have that A[A]ψ ∈ A′ (and thus ψ ∈ C′), while
for every formula A〈A〉ψ ∈ A, if [di, dj] satisfies ψ then A〈A〉ψ 6∈ A′. This
guarantees that temporal requests of the form A[A]ψ are propagated through
Xϕ-successors, while temporal requests of the form A〈A〉ψ are discarded once
that ψ has been satisfied by the set of current formulas of some atom.

3.2 Tableau construction

Definition 3.5 A node is a set N of ϕ-atoms such that, for any pair (A, C),
(A′, C′) ∈ N and any ψ ∈ TF(ϕ), ψ ∈ C ⇔ ψ ∈ C′. We denote by Nϕ the
set of all nodes that can be built from Aϕ and by Init(Nϕ) the subset of all
initial nodes, that is, the set {{(∅, C)} ∈ Nϕ : ϕ ∈ C}. Furthermore, for any
node N , we denote by REQ(N) the set {ψ ∈ TF(ϕ) : ∃(A, C) ∈ N(ψ ∈ C)}
(or, equivalently, the set {ψ ∈ TF(ϕ) : ∀(A, C) ∈ N(ψ ∈ C)}).

From Definition 3.5, it follows that |Nϕ| ≤ 222·|ϕ|
.

Nodes can be viewed as (maximal) collections of intervals ending at the same
point of the temporal domain, that is, we can associate every node N with a
point dj ∈ D and every atom (A, C) ∈ N with some interval [di, dj] ending
in dj. Accordingly, we have that REQ(N) = REQ(dj). The relation between
a node N , associated with point dj, and a node M , associated with an R-

7

N

M

di
· · · dj−3 dj−2 dj−1 dj dj+1

· · ·· · ·
· · ·

(AN , CN)

· · ·

· · ·
· · · · · · · · · · · ·

}M ′
N

Figure 1. Connecting two nodes.

successor dj+1 of dj, as well as the relations between intervals ending in dj and
intervals ending in dj+1 (and, thus, between atoms in N and atoms in M), are
graphically depicted in Figure 1. We have that (i) the interval [dj, dj+1] is a
right neighbor of all intervals [di, dj] ending in dj, and (ii) for every interval
[di, dj] there exists an interval [di, dj+1]. Thus, M should contain:

• an atom (AN , CN) associated to the interval [dj, dj+1];
• for every atom (A, C) ∈ N , an atom (A′, C′) such that (A, C)Xϕ(A′, C′).

Definition 3.6 The tableau for a BTNL[R]−-formula ϕ is a (finite) directed
graph Tϕ = 〈Nϕ,Rϕ〉, where for any pair N,M ∈ Nϕ, (N,M) ∈ Rϕ if and
only if M = {(AN , CN)} ∪M ′

N , where

1. (AN , CN) is an atom such thatAN ⊆ REQ(N) and for all universal formulas
ψ ∈ REQ(N), ψ ∈ AN ;

2. for every (A, C) ∈ N , there exists (A′, C′) ∈M ′
N such that (A, C)Xϕ(A′, C′);

3. for every (A′, C′) ∈M ′
N , there exists (A, C) ∈ N such that (A, C)Xϕ(A′, C′).

Let N,M ∈ Nϕ. If (N,M) ∈ Rϕ, we say that M is an Rϕ-successor of N .
We say that M is an Rϕ-descendant of N if there exists a (finite) path from
N to M in Tϕ.

Definition 3.7 Given a (finite or infinite) path π = N1N2 . . . in Tϕ, an atom
path in π is a sequence of atoms (A1, C1)(A2, C2) . . . such that:

• for every i ≥ 1, (Ai, Ci) ∈ Ni;
• for every 1 ≤ i(< n), (Ai, Ci)Xϕ(Ai+1, Ci+1).

Given a node N and an atom (A, C) ∈ N , we say that the atom (A′, C′) is
an Xϕ-descendant of (A, C) if and only if there exists a node M such that
(A′, C′) ∈ M , and there exists a path π from N to M such that there is an
atom path from (A, C) to (A′, C′) in π.

Definition 3.8 An infinite path π = N1N2 . . . in Tϕ is a fulfilling path if and
only if, for every i ≥ 1, every atom (A, C) ∈ Ni, and every formula A〈A〉ψ ∈ A,
either ψ ∈ C or there exist Nj, with j > i, and (A′, C′) ∈ Nj such that (A′, C′)

8

is an Xϕ-descendant of (A, C) in π and ψ ∈ C′.

Definition 3.9 A substructure is a subgraph 〈N ,R〉 ⊆ Tϕ such that:

• there exists a node N0 ∈ N ∩ Init(Nϕ) (initial node) such that all other
nodes in N are R-reachable from it;

• for every node N ∈ N , there exists a fulfilling path (in 〈N ,R〉) starting
from N .

Substructures represent candidate models for ϕ. The truth of formulas
devoid of temporal operators and of formulas of the form A[A]ψ, indeed, fol-
lows from Definition 3.3. Moreover, the truth of formulas of the form A〈A〉ψ
follows from Definition 3.8. However, to obtain a model for ϕ we must also
guarantee the truth of formulas of the forms E[A]ψ and E〈A〉ψ. To this end,
we introduce the notion of fulfilling substructure.

Definition 3.10 A substructure 〈N ,R〉 ⊆ Tϕ is fulfilling if and only if, for
every node N ∈ N and every atom (A, C) ∈ N , the following conditions hold:

(F1) for every existential formula ψ ∈ C, there exist an R-successor M of N
and an atom (A′, C′) ∈M such that ψ ∈ A′ and A′ ⊆ REQ(N), and for
all universal formulas ξ ∈ REQ(N), ξ ∈ A′;

(F2) for every formula E〈A〉ψ ∈ A, either ψ ∈ C or there exist an R-
descendant M of N and an Xϕ-descendant (A′, C′) of (A, C) in M such
that ψ ∈ C′;

(F3) for every formula E[A]ψ ∈ A, there exist a fulfilling path π = N0N1

N2 . . . and an atom path (A0, C0)(A1, C1)(A2, C2) . . . in π such that:
(i) (A0, C0) = (A, C); (ii) N0 = N ; (iii) for every i ≥ 0, E[A]ψ ∈ Ai;
(iv) for every formula A〈A〉θ ∈ A0, there exists j ≥ 0 such that θ ∈ Cj.

Theorem 3.11 If the formula ϕ is satisfiable (in a standard tree), then there
exists a fulfilling substructure 〈N ,R〉 ⊆ Tϕ.

Proof Let M− = 〈〈D, I(D)−〉,V〉 be a model for ϕ such that D = 〈D,R〉, with
distinguished element d0, is a standard tree. For every interval [di, dj] ∈ I(D)−,
we define an atom (A[di,dj], C[di,dj]) as follows.

• A[di,dj] contains exactly:

· all formulas A[A]ψ ∈ REQ(di);

· all formulas A〈A〉ψ ∈ REQ(di) such that, for every di < dl < dj,
M−, [di, dl]
 ¬ψ;

· all formulas E[A]ψ ∈ REQ(di) such that there exists an infinite path
π = didi+1 . . . djdj+1 . . ., starting from di and containing dj, such that
M−, [di, dk]
 ψ for every dk ∈ π;

· all formulas E〈A〉ψ ∈ REQ(di) such that there exists dk ≥ dj such
that M−, [di, dk]
 ψ and, for every di < dl < dk, M−, [di, dl]
 ¬ψ;

• C[di,dj] contains exactly all formulas ψ ∈ CL(ϕ) such that M−, [di, dj]
 ψ.

It is easy to check that, for every [di, dj] ∈ I(D)− and for every R-successor

9

dj+1 of dj, (A[di,dj], C[di,dj]) is an atom such that (A[di,dj], C[di,dj])Xϕ(A[di,dj+1],
C[di,dj+1]).

For every dj ∈ D, with dj 6= d0, let Nj = {(A[di,dj], C[di,dj]) : di < dj},
N = {Nj : dj ∈ D, dj 6= d0}, and R = Rϕ ∩ (N ×N). It is easy to check that
for all dj 6= d0, Nj is a node and that 〈N ,R〉 is a fulfilling substructure. 2

The next theorem shows that a model for ϕ can be obtained by unfolding
a fulfilling substructure 〈N ,R〉, starting from its initial node N0.

Theorem 3.12 If there exists a fulfilling substructure 〈N ,R〉 ⊆ Tϕ, then the
formula ϕ is satisfiable.

Proof Let 〈N ,R〉 be a fulfilling substructure. To define a model for ϕ, we
first build an infinite tree D = 〈D,R〉 by unfolding the fulfilling substructure
〈N ,R〉 from its initial node N1 as follows:

• D is the (infinite) set of all finite R-sequences N1N2 . . . Nk starting from
the initial node N1, including the empty sequence ε (the root of the tree);

• R is such that, for any pair of points d, d′ ∈ D, (d, d′) ∈ R if and only if
d = N1 . . . Nk and d′ = N1 . . . NkNk+1 and Nk+1 is an R-successor of Nk.

Notice that D is a standard tree with distinguished element d0 = ε, since the
only successor of d0 is d1 = N1.

Given an arbitrary order of the nodes of N , we define a total order C over
finite R-sequences, that is, on points of D, as follows:

• given two R-sequences d and d′ such that the length of d is less than the
length of d′, we have that d C d′;

• given two R-sequences d and d′ of the same length, d C d′ if and only if
d precedes d′ on the lexicographical order based on the given (arbitrary)
order of nodes of N .

In order to build a model for ϕ, we define a suitable (partial) labelling
function L : I(D)− → Aϕ. For any dj = N1 . . . Nk, L associates an atom
(A, C) ∈ Nk with any interval [di, dj]. We define L by (infinite) induction on
the total order C.

Base case. We start by defining the labelling of the initial interval [d0, d1]
(where d0 = ε and d1 = N1). Since N1 is the initial node of 〈N ,R〉, we have
that N1 = {(∅, C)}, with ϕ ∈ C. We put L([d0, d1]) = (∅, C). Two cases may
arise.

C contains no existential formulas. In such a case, we define the labelling
of an infinite branch starting from d1 (remind that we admit only infinite
models). Since 〈N ,R〉 is a substructure, there exists a fulfilling path N1N2 . . .
starting from N1. Let π = d1d2 . . . be the corresponding infinite branch in D
(where, for every i ≥ 1, di = N1 . . . Ni). We define the labelling L([di, dj]) of
every interval [di, dj], with di, dj ∈ π, in such a way that:

• for all j > 1, L([dj−1, dj]) = (A′, C′) is such that A′ ⊆ REQ(Nj−1) and,

10

for all universal formulas θ ∈ REQ(Nj−1), θ ∈ A′ (see condition 1 of
Definition 3.6);

• for all j > 1 and all intervals [di, dj], with dj > di+1, L([di, dj−1])Xϕ

L([di, dj]) (see conditions 2 and 3 of Definition 3.6);
• for every interval [di, dj], with L([di, dj]) = (A′, C′), if there exists a for-

mula A〈A〉θ ∈ A′, then there exists a point dk ≥ dj such that L([di, dk]) =
(A′′, C′′) and θ ∈ C′′ (see Definition 3.8).

Definitions 3.6 and 3.8 guarantee that there exists a labelling with such prop-
erties.

C contains at least one existential formula. In such a case, for every exis-
tential formula ψ ∈ C, we guarantee that ψ gets satisfied by properly labelling
an infinite branch starting from d1. Let ψ ∈ C be an existential formula. Two
cases may arise (depending on the structure of ψ).

• ψ = E〈A〉θ. By condition F1, there exists an R-successor N2 of N1

and an atom (A′, C′) ∈ N2 such that ψ ∈ A′. Let d2 = N1N2. We
put L([d1, d2]) = (A′, C′). By condition F2, either θ ∈ C′ (and thus θ
is satisfied over the interval [d1, d2]) or there exists a path N2N3 . . . Nk

and a corresponding atom path (A′, C′) = (A2, C2)(A3, C3) . . . (Ak, Ck),
such that θ ∈ Ck. In the latter case, let d2d3 . . . dk be the branch in D
corresponding to N2N3 . . . Nk. We put, for every 3 ≤ i ≤ k, L([d1, di]) =
(Ai, Ci), in order to satisfy θ over [d1, dk]. In both cases, we extend the
finite branch to an infinite one (starting fromN2 or from Nk, respectively)
and we define the labelling of all other intervals on the branch as in the
case in which C contains no existential formulas.

• ψ = E[A]θ. By condition F1, there exists an R-successor N2 of N1

and an atom (A′, C′) ∈ N2 such that ψ ∈ A′. Let d2 = N1N2. We
put L([d1, d2]) = (A′, C′). By condition F3, there exist a fulfilling in-
finite path N2N3 . . . and a corresponding infinite atom path (A′, C′) =
(A2, C2)(A3, C3) . . ., such that E[A]θ ∈ Ai for every i ≥ 2. Let d2d3 . . . be
the infinite branch in D corresponding to N2N3 We put, for every
i ≥ 3, L([d1, di]) = (Ai, Ci), in order to satisfy θ over [d1, di]. As before,
we define the labelling of all other intervals on the branch as in the case
in which C contains no existential formulas.

We repeat such a procedure for every existential formula in C.

Inductive step. Let d ∈ D such that (i) L is defined over all intervals [d′, d];
(ii) for all d′ C d, either d′ has been already taken into consideration or L is not
defined over any interval [d′′, d′]; (iii) d has not been taken into consideration
yet. Consider the set REQ(N), with N such that d = N1 . . . N , and suppose
there exists an existential formula ψ ∈ REQ(N). Two cases may arise. Either
ψ is satisfied by the current labelling L, and we are done, or there are no
branches starting from d that satisfy ψ. In the latter case, we satisfy ψ by
defining a suitable labelling of an unlabeled infinite branch starting from d, as

11

we have done in the base case of the induction. By repeating such a procedure
for every existential formula ψ ∈ REQ(N), we guarantee that all existential
formulas in REQ(N) are satisfied.

The model satisfying ϕ contains all and only the labelled (infinite) branches
of D. Let D′ be the infinite tree obtained from D by removing all unlabeled
branches and let V be a valuation function V such that, for every p ∈ AP and
[di, dj] ∈ I(D′)−, p ∈ V([di, dj]) if and only if L([di, dj]) = (A[di,dj], C[di,dj]) and
p ∈ C[di,dj]. We prove by induction on the structure of ψ ∈ CL(ϕ) that, for
every [di, dj] ∈ I(D′)−, we have that M−, [di, dj]
 ψ if and only if L([di, dj]) =
(A[di,dj], C[di,dj]) and ψ ∈ C[di,dj].

• The base case, as well as the case of the propositional connectives ¬ and
∨, are straightforward.

• Let ψ be the formula E〈A〉χ. Suppose that E〈A〉χ ∈ C[di,dj]. By the
definition of L, there exists an infinite path djdj+1 . . . and an interval
[dj, dk] such that χ ∈ C[dj ,dk]. By inductive hypothesis, we have that
M−, [dj, dk]
 χ, and thus M−, [di, dj]
 E〈A〉χ.

As for the opposite implication, assume by contradiction that
M−, [di, dj]
 E〈A〉χ and E〈A〉χ 6∈ C[di,dj]. By atom definition, this
implies that ¬E〈A〉χ = A[A]¬χ ∈ C[di,dj]. By the definition of L, we have
that A[A]¬χ ∈ A[dj ,dk] for every dk > dj, and thus ¬χ ∈ C[dj ,dk]. By in-
ductive hypothesis, this implies that M−, [dj, dk]
 ¬χ for every dk > dj,
and thus M−, [di, dj]
 A[A]¬χ, which contradicts the hypothesis that
M−, [di, dj]
 E〈A〉χ.

• Let ψ be the formula E[A]χ. Suppose that E[A]χ ∈ C[di,dj]. By the
definition of L, there exists an infinite path π = djdj+1 . . . such that, for
every dk ∈ π, dk > dj, E[A]χ ∈ A[dj ,dk]. By atom definition, this implies
that χ ∈ C[dj ,dk] and, by inductive hypothesis, we have that M−, [dj, dk]

χ, for every dk ∈ π, dk > dj, and thus M−, [di, dj]
 E[A]χ.

As for the opposite implication, assume by contradiction that
M−, [di, dj]
 E[A]χ and E[A]χ 6∈ C[di,dj]. By atom definition, this implies
that ¬E[A]χ = A〈A〉¬χ ∈ C[di,dj]. By the definition of L, we have that,
for every infinite path djdj+1 . . . starting from dj, there exists dk ∈ π,
dk > dj such that ¬χ ∈ C[dj ,dk]. By inductive hypothesis, this implies
that for every infinite path π = djdj+1 . . . there exists a point dk ∈ π,
dk > dj, such that M−, [dj, dk]
 ¬χ, and thus M−, [di, dj]
 A〈A〉¬χ,
which contradicts the hypothesis that M−, [di, dj]
 E[A]χ.

Since 〈N ,R〉 is a substructure, ϕ ∈ C[d0,d1], and thus M−, [d0, d1]
 ϕ. 2

3.3 The decision procedure

In this section, we present a decision procedure for BTNL[R]−, that progres-
sively removes from Tϕ nodes that cannot contribute to fulfilling substructures.

Algorithm 1 Let ϕ be the formula we want to test for satisfiability. The

12

decision procedure works as follows.

(i) Build the (unique) initial tableau Tϕ = 〈Nϕ,Rϕ〉.
(ii) Look for a fulfilling substructure by repeatedly applying the following dele-

tion rules, until no more nodes in the tableau can be deleted:
• delete any node which is not Rϕ-reachable from an initial node;
• delete any node such that there are no fulfilling paths starting from

it;
• delete any node which does not satisfy the conditions of Definition

3.10.

(iii) Let T ∗ = 〈N ∗,R∗〉 be the final tableau. If T ∗ is not empty, return true,
otherwise return false.

The check for the existence of fulfilling paths can be performed as follows.
Given a formula A〈A〉ψ ∈ CL(ϕ), we execute the following marking procedure.
First, for all nodes N , mark all atoms (A, C) ∈ N such that A〈A〉ψ ∈ A and
ψ ∈ C. Then, for all nodes N , mark all unmarked atoms (A, C) ∈ N such that
there exists an Rϕ-successor M of N that contains a marked atom (A′, C′)
such that (A, C)Xϕ(A′, C′). Repeat this last step until no more atoms can be
marked. Then, delete all nodes that either contain an unmarked atom (A, C)
with A〈A〉ψ ∈ A or have no Rϕ-successors.

The other non trivial step of the algorithm is the removal of nodes that do
not satisfy the conditions of Definition 3.10. Given a node N , condition F1
can be easily checked by visiting the Rϕ-successors of N , while condition F2
can be checked by visiting the Rϕ-descendants of N . Finally, given a node N0,
an atom (A0, C0) ∈ N0, and a formula E[A]ψ ∈ A0, condition F3 is satisfied if
we can find a finite path of nodes N0N1 . . . NjNj+1 . . . Nk and a corresponding
path of atoms (A0, C0)(A1, C1) . . . (Aj, Cj)(Aj+1, Cj+1) . . . (Ak, Ck) such that
(i) Nj = Nk, (ii) (Aj, Cj) = (Ak, Ck), (iii) for all 0 ≤ i ≤ k, E[A]ψ ∈ Ai,
(iv) for every formula A〈A〉θ ∈ A0, there exists i ≥ 0 such that θ ∈ Ci.
Furthermore, to guarantee that the infinite path

N0N1 . . . NjNj+1 . . . Nk−1NjNj+1 . . . Nk−1 . . .

is a fulfilling one, it suffices to check that, for every atom (A′, C′) ∈ Nj and
every formula A〈A〉ξ ∈ C′, either ξ ∈ C′ or there exists a node Nl, with
j < l < k, and an atom (A′′, C′′) ∈ Nl such that ξ ∈ C′′ and (A′′, C′′) is a
Xϕ-descendant of (A′, C′).

As for complexity issues, we have that:

• |Tϕ| = 22O(|ϕ|)
;

• all checkings of step (ii) of the algorithm can be done in time polynomial
in the size of |Tϕ|;

• after deleting at most |Nϕ| nodes, the algorithm terminates.

Hence, checking the satisfiability for a BTNL[R]− formula has an overall time

bound of 22O(|ϕ|)
, that is, doubly exponential in the size of ϕ.

13

4 The decision procedure at work

In this section we apply the proposed decision procedure to the (satisfiable)
formula ϕ = E[A]p. We show only a portion of the whole tableau, which is
sufficiently large to include a fulfilling substructure for ϕ, and thus to prove
that ϕ is satisfiable.

When searching for a fulfilling substructure for ϕ, we must take into con-
sideration atoms which have been obtained by suitably combining one set of
active requests with one set of current formulas. The sets of active requests
and current formulas are the following ones (the left column reports the sets
of active requests, while the middle and the right columns report the sets of
current formulas):

∅; C0 = {E[A]p, p}; C3 = {A〈A〉¬p,¬p}.
A0 = {E[A]p}; C1 = {E[A]p,¬p};
A1 = {A〈A〉¬p}; C2 = {A〈A〉¬p, p};

As an example, consider the initial node N0 = {(∅, C0)}. Figure 2 depicts
a portion of Tϕ that is Rϕ-reachable from N0.

PSfrag replacements

(∅, C0)

(∅, C2)
(A0, C2)

(∅, C3)
(A0, C2)

(∅, C2)
(A0, C2)
(A1, C2)

(∅, C3)
(A0, C2)
(A1, C2)

(∅, C2)
(A0, C2)
(A1, C3)

(∅, C3)
(A0, C2)
(A1, C3)

Figure 2. A portion of the tableau for E[A]p.

The only atoms with A〈A〉-formulas in their set of active requests are
(A1, C2) and (A1, C3), since A〈A〉¬p ∈ A1. The atom (A1, C3) immediately
fulfills A〈A〉¬p, since ¬p ∈ C3. The atom (A1, C2) does not fulfill A〈A〉¬p, but
we have that (A1, C2)Xϕ(A1, C3). Thus, since every node that contains (A1, C2)
can reach a node containing (A1, C3), for every node of the substructure of
Figure 2 there exists a fulfilling path.

As for condition F1, the only sets of current formulas which contains an
existential formula are C1 and C0. C1 does not belong to any node in Figure 2,
and thus we can ignore it. C0 only belongs to the initial node, whose two
successors include the atom (A0, C2) with E[A]p ∈ A0. Hence, condition F1
is satisfied. Since there are no atoms containing formulas of the form E〈A〉ψ,

14

condition F2 is trivially satisfied. As for condition F3, consider the atom
(A0, C2). It is easy to see that, for every node N containing (A0, C2), there
exists a fulfilling infinite path starting from N such that every node contains
(A0, C2). Thus, condition F3 is satisfied. This allows us to conclude that the
substructure depicted in Figure 2 is fulfilling, and thus our decision procedure
correctly concludes that the formula E[A]p is satisfiable.

5 Conclusions and further work

In this paper, we proposed a new propositional interval temporal logic, inter-
preted over infinite trees, which combines the interval neighborhood opera-
tors 〈A〉 and [A] of RPNL− with the path quantifiers A and E of branching
time temporal logics, and we provided it with a doubly-exponential tableau-
based decision procedure. We do not know yet if the satisfiability problem
for BTNL[R]− is doubly EXPTIME-complete or not (we conjecture it is not).
As for possible extensions of the work, we are studying the decision problem
for combinations of path quantifiers operators with other sets of interval logic
operators, e.g., those of PNL [6].

Acknowledgements

We would like to thank the anonymous referees for their helpful comments and
suggestions. This work has been partially funded by the Italy/South Africa
joint project “Temporal logics in computer and information sciences” and
by the INTAS project on “Algebraic and deduction methods in non-classical
logics and their applications to computer science”.

References

[1] D. Bresolin and A. Montanari, A tableau-based decision procedure for right
propositional neighborhood logic, in: Proc. of the International Conference
TABLEAUX 2005, vol. 3702 of LNAI (2005), 63–77.

[2] Z. Chaochen and M. R. Hansen, An adequate first order interval logic, in:
W. de Roever, H. Langmark and A. Pnueli, editors, Compositionality: the
Significant Difference, vol. 1536 of LNCS (1998), 584–608.

[3] E. Emerson and J. Halpern, Decision procedures and expressiveness in the
temporal logic of branching time, Journal of Computer and System Sciences
30 (1985), 1–24.

[4] E. A. Emerson, Temporal and modal logic, in: J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, vol. B, MIT Press, 1990 995–1072.

[5] V. Goranko, A. Montanari, and G. Sciavicco, A general tableau method
for propositional interval temporal logic, in: Proceedings of the International
Conference TABLEAUX 2003, vol. 2796 of LNAI (2003), 102–116.

15

[6] V. Goranko, A. Montanari, and G. Sciavicco, Propositional interval
neighborhood temporal logics, Journal of Universal Computer Science 9 (2003),
1137–1167.

[7] V. Goranko, A. Montanari, and G. Sciavicco, A road map of interval temporal
logics and duration calculi, Journal of Applied Non-Classical Logics 14 (2004),
9–54.

[8] V. Goranko, A. Montanari, G. Sciavicco, and P. Sala, A general tableau method
for propositional interval temporal logics: theory and implementation, Journal
of Applied Logic (2005), to appear.

[9] J. Halpern and Y. Shoham, A propositional modal logic of time intervals,
Journal of the ACM 38 (1991), 935–962.

[10] A. Montanari, Propositional interval temporal logics: some promising paths, in:
Proc. of the 12th International Symposium on Temporal Representation and
Reasoning (TIME) (2005), 201–203.

[11] B. Moszkowski, “Reasoning about digital circuits,” Tech. rep. stan-cs-83-970,
Dept. of Computer Science, Stanford University, Stanford, CA (1983).

[12] B. Paech, Gentzen-systems for propositional temporal logics, in: Proceedings of
CSL ’88, 2nd Workshop on Computer Science Logic, vol. 385 of LNCS (1989),
240–253.

[13] Y. Venema, A modal logic for chopping intervals, Journal of Logic and
Computation 1 (1991), 453–476.

16

	Introduction
	The Logic BTNL[R]-
	Tree-like structures
	Syntax and semantics of BTNL[R]-

	A tableau-based decision procedure for BTNL[R]-
	Basic notions
	Tableau construction
	The decision procedure

	The decision procedure at work
	Conclusions and further work
	References

