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Abstract—The introduction of Halpern and Shoham’s modal
logic of intervals (later on called HS) dates back to 1986.
Despite its natural semantics, this logic is undecidable over
all interesting classes of temporal structures. This discouraged
research in this area until recently, when a number of non-
trivial decidable fragments have been found. This paper is a
contribution toward the complete classification of HS fragments.
Different combinations of Allen’s interval relations begins (B),
meets (A), and later (L), and their inverses Ā, B̄, and L̄, have been
considered in the literature. We know from previous work that
the combination ABB̄Ā is decidable over finite linear orders
and undecidable everywhere else. We extend these results by
showing that ABB̄L̄ is decidable over the class of all (resp., dense,
discrete) linear orders, and that it is maximal with respect to
decidability over these classes: adding any other interval modality
immediately leads to undecidability.

I. INTRODUCTION

Interval temporal logics are quite expressive modal logics
for temporal representation and reasoning based on time
intervals instead of time points. Their introduction dates
back to 1986, when Halpern and Shoham’s modal logic of
intervals (HS) was proposed [1]. HS allows one to express
all possible ordering relations between any pair of intervals
(the so-called Allen’s interval relations [2]), and it features
one modal operator for each of them (obviously, no modal
operator is needed for the equality relation), that is, 〈A〉 for
meets, 〈B〉 for begins, 〈E〉 for finishes, 〈O〉 for overlaps,
〈D〉 for during, and 〈L〉 for later, plus the operators 〈A〉,
〈B〉, 〈E〉, 〈O〉, 〈D〉, and 〈L〉 for the inverse relations (in
fact, some operators are definable in terms of the others).
Unfortunately, as already pointed out by Halpern and Shoham
in their original contribution [1], the satisfiability problem for
HS turns out to be undecidable over all interesting classes
of temporal structures. Fifteen years later [3], Lodaya proved
that a suitable sharpening of the reduction technique from [1]
can be exploited to prove the undecidability of BE, that is,
the fragment of HS only featuring the pair of operators 〈B〉
and 〈E〉, over dense linear orders (from now on, we will
always denote by X1 . . . Xn the fragment of HS featuring
the modalities 〈X1〉 . . . 〈Xn〉). Since density is expressible
in BE by a constant formula, it immediately follows that
BE is undecidable over the class of all linear orders as
well [4]. Since then, a number of undecidability results for
simple fragments of HS, many of them featuring only two, or

even one, operators has been obtained, e.g., [5], [6], [7]. All
together, these results disclose a landscape of interval temporal
logics where undecidability is the the rule and decidability the
exception. As an example, decidability of BB̄ and EĒ over
all classes of interval structures can be easily proved, as shown
in [4]; however, any other combination of these four operators
turns out to be undecidable [5], [3].

Such a situation discouraged research in the area until
recently, when some meaningful decidable fragments of HS
have been identified. Among them, we mention the fragments
DD̄ and AĀ. In [8], Montanari et al. introduce a spatial
modal logic based on cone-shaped cardinal directions over the
rational plane (cone logic for short) and they prove PSPACE-
completeness of its satisfiability problem. Moreover, they show
that the decidability of DD̄, interpreted over the rational line,
can be easily derived from that of cone logic. Decidability of
AĀ over a number of interesting classes has been proved by
its reduction to the satisfiability problem for the two-variable
fragment of first-order logic over ordered domains [9]. Its
single-modality fragment A [10] has been later extended to
the fragment ABB̄ (and, by symmetry, its single-modality
fragment Ā to ĀEĒ), which has been proved to be decidable
when interpreted over natural numbers [11]. The problem
of precisely defining the boundary between decidability and
undecidability, that is, to identify maximal decidable fragments
of HS, is definitely not trivial. Not surprisingly, a few such
results can be found in the literature. In [12], Montanari
et al. improve the result given in [8] by proving PSPACE-
completeness and maximality with respect to decidability of
the fragment BB̄DD̄LL̄ over the rational line. In [13], the
satisfiability problem for ABB̄Ā (resp., AEĒĀ), interpreted
over finite linear orders, has been shown to be decidable,
but not primitive recursive. Moreover, the authors prove that
the addition of any other modalities from the HS repository
immediately leads to undecidability, thus showing its maxi-
mality with respect to decidability. In addition, they show that
the satisfiability problem for ABB̄Ā (resp., AEĒĀ) becomes
undecidable as soon as it is interpreted over classes of linear
orders that contain at least one linear order with an infinitely
ascending (resp., descending) sequence, thus including the
natural time flows N (resp., Z \ N), Z, and R (in fact, ĀB
and ĀB̄, resp., AE and AĒ, are already undecidable over
these classes of linear orders).
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TABLE I
ALLEN’S RELATIONS AND CORRESPONDING HS MODALITIES.

In this paper, we focus our attention on the logic ABB̄L̄
(resp., ĀEĒL). An ordered pair of intervals (I, I ′) satisfies the
Allen’s relation later if the ending point of I strictly precedes
the starting point of I ′. As we will show in Section II, the
corresponding operator 〈L〉 can be easily defined in terms of
〈A〉 and 〈B〉 (or, equivalently, 〈A〉 and 〈E〉), 〈B〉 (resp., 〈E〉)
being used to capture (non-)point intervals. The same holds
for the transposed operators 〈L〉 and 〈A〉. Thus, decidability of
ABB̄L̄ (resp., ĀEĒL) over finite linear orders immediately
follows from results in [13]. On the contrary, those results
say nothing about the decidable/undecidable status of ABB̄L̄
when interpreted over infinite linear orders. In the following,
we consider the satisfiability problem for ABB̄L̄ interpreted
over the classes of (i) all linear orders, (ii) dense linear
orders, and (iii) discrete linear orders. As for the latter, we
distinguish between strong (there exists a finite number of
points in between any given pair of points) and weak (if
a point has a successor, resp., predecessor, then it has an
immediate successor, resp., predecessor) discreteness. In [14],
Bresolin et al. prove that ABB̄L̄ (resp., ĀĒEL), interpreted
over the integers (in fact, over the class of strongly discrete
linear orders), is decidable. Unfortunately, the proof heavily
relays on strong discreteness and it cannot be adapted to the
other classes of linear orders. We prove that the satisfiability
problem for ABB̄L̄ over all linear orders is EXPSPACE-
complete, using a completely different proof technique based
on a regular tree decomposition of (infinite) models. Decidabil-
ity of ABB̄L̄ over the class of dense linear orders immediately
follows, as density can be expressed in ABB̄L̄ by a constant
formula. This is not the case with weakly discrete linear orders.
However, we show that the proof can be adapted to cope
with them. As a by-product, we solve some open problems
about ABB̄ (resp., ĀEĒ). More interestingly, pairing the
results given in this paper with those in [13], it immediately
follows that, over the considered classes of linear orders, 〈A〉
cannot be defined in terms of 〈L〉 and 〈B〉 (the operator 〈B〉
does not help in this respect). The same holds for 〈A〉, 〈L〉,
and 〈E〉. Furthermore, thanks to the undecidability results
reported in [5], [6], [13], we can conclude that the addition
to ABB̄L̄ of any other interval modality immediately leads to
undecidability. Hence, ABB̄L̄ turns out to be maximal with
respect to decidability over all interesting classes of linear
orders, but that of finite ones.

The paper is organized as follows. In Section II, we give
syntax and semantics of ABB̄L̄ and we provide a spatial

interpretation of interval temporal structures that will prove
itself extremely useful in decidability proofs. In Section III, we
first prove the decidability of the fragment ABB̄, interpreted
over all linear orders, and then we show how to generalize
the proof to full ABB̄L̄. We also show how to adapt the
proof to the case of (weakly) discrete linear orders. Complexity
issues are dealt with in Section IV. Conclusions provide an
assessment of the work done.

II. THE INTERVAL TEMPORAL LOGIC ABB̄L̄

In this section, we briefly introduce syntax and semantics
of ABB̄L̄, together with some examples of its application
to the specification of temporal properties, and the basic
notions of atom, type, and dependency. In addition, we provide
an alternative interpretation of ABB̄L̄ over labeled grid-like
structures.

A. Syntax and semantics

The logic ABB̄L̄ features the four modal operators 〈A〉,
〈B〉, 〈B̄〉, and 〈L̄〉, and it is interpreted in interval temporal
structures over a linear order endowed with the four Allen’s
relations A (“meets”), B (“begins”), B̄ (“begun by”), and L̄
(“before”). A graphical account of Allen’s relations A, L̄, B,
and B̄ and of the corresponding HS modalities is given in
Table I.

Given a set Prop of propositional variables, formulas of
ABB̄L̄ are built up from Prop using the Boolean connectives
¬ and ∨ , and the unary modal operators 〈A〉, 〈B〉, 〈B̄〉, and
〈L̄〉. As usual, we take advantage of the shorthands > (true)
for p ∨ ¬p, with p ∈ Prop, ϕ1 ∧ ϕ2 for ¬(¬ϕ1 ∨ ¬ϕ2),
[A]ϕ for ¬〈A〉¬ϕ, [B]ϕ for ¬〈B〉¬ϕ, and so on. Moreover,
we will use π as a shorthand for ¬〈B〉>, that is, π holds over
all and only point intervals. Hereafter, we denote by |ϕ| the
size of ϕ. Given a linear order O = 〈O,<〉, we define IO as
the set of all closed intervals [x, y], with x, y ∈ O and x ≤ y.
For any pair of intervals [x, y], [x′, y′] ∈ IO, Allen’s relations
“meets” A, “begins” B, “begun by” B̄, and “before” L̄ are
defined as follows:
• “meets” relation: [x, y] A [x′, y′] iff y = x′;
• “begins” relation: [x, y] B [x′, y′] iff x = x′ and y′ < y;
• “begun by” relation: [x, y] B̄ [x′, y′] iff x = x′ and
y < y′;

• “before” relation: [x, y] L̄ [x′, y′] iff y′ < x.
We define an interval structure as a tuple S = (IO, A,B,
B̄, L̄, σ), where σ : IO → P(Prop) is a labeling function
that maps intervals in IO to sets of propositional variables.
Given an interval structure S and an interval I = [x, y], we
define the semantics of an ABB̄L̄ formula as follows:
• S, I � p iff p ∈ σ(I), for any p ∈ Prop;
• S, I � ¬ϕ iff S, I 6� ϕ;
• S, I � ϕ1 ∨ ϕ2 iff S, I � ϕ1 or S, I � ϕ2;
• ∀R ∈ {A,B, B̄, L̄}, S, I � 〈R〉ϕ iff there exists J ∈ IO

such that I R J and S, J � ϕ.
Given an interval structure S and a formula ϕ, we say that
S satisfies ϕ (and hence ϕ is satisfiable) if S, I � ϕ for
some interval I in S. We define the satisfiability problem



for ABB̄L̄ as the problem of establishing whether a given
ABB̄L̄-formula ϕ is satisfiable or not.

We conclude the section with a little discussion of the re-
lationships between the modalities for Allen’s relations before
and met-by . Let 〈Ā〉 be the modal operator corresponding to
the met-by relation. It can be easily checked that S, I � 〈L̄〉ϕ
if and only if S, I � 〈Ā〉(¬π ∧ 〈Ā〉ϕ), and thus 〈L̄〉 turns
out to be definable in the language of ABB̄Ā [1]. Given
the undecidability results in [13], the undefinability of 〈Ā〉
in ABB̄L̄, over the considered classes of linear orders, is
an immediate consequence of the decidability results we will
prove in Section III. As it is apparent that 〈L̄〉 cannot be
defined in ABB̄ (〈A〉, 〈B〉, and 〈B̄〉 only allow one to refer to
intervals whose left endpoint is greater than or equal to that of
the initial interval), this allows us to properly locate ABB̄L̄ in
between ABB̄ and ABB̄Ā: it is strictly more expressive than
the former and strictly less expressive than the latter. The very
same conclusion can be drawn about the relationships among
ĀĒEL, ĀEĒ, and AEĒĀ.

B. ABB̄L̄ at work

Finding an optimal balance between expressiveness and
(computational) complexity is a challenge for every temporal
logic. In the following, we provide some examples showing
that ABB̄L̄ is expressive enough to specify a number of
meaningful temporal requirements.

First, it allows one to model telic statements, that is, state-
ments (verbs) that denote goals. As an example, the formula
〈A〉
(
ϕ ∧ [B](¬ϕ ∧ [A]¬ϕ) ∧ [B̄]¬ϕ

)
can be used to express

accomplishments (think of formula ϕ as the assertion: “The
airplane flew from Venice to Toronto”). Moreover, formulas
of point-based temporal logics of the form ψUϕ, using the
standard until operator, can be encoded in ABB̄L̄ as follows:
〈A〉
(
π ∧ ϕ

)
∨ 〈A〉

(
〈A〉(π ∧ ϕ) ∧ [B](〈A〉(π ∧ ψ))

)
.

If we restrict ourselves to discrete linear orders, we can use
the operator [B] to constrain the length of intervals. As an
example, the safety constraint imposing that the gas burner
will not leak uninterruptedly for (at least) k time units after
the last leakage, borrowed from the well-known gas-burner
example [15], can be formalized as follows: [G](Leak →
¬〈A〉([B] . . . [B]︸ ︷︷ ︸

k+1

⊥ ∧ 〈A〉Leak)), where [G]ψ is a shorthand

for the formula ψ ∧ [L̄](ψ ∧ [A]ψ)∧ [B](ψ ∧ [A]ψ)∧ [B̄](ψ ∧
[A]ψ) ∧ [A]ψ (the derived operator [G] thus being the global
modality).

When interpreted over dense linear orderings, ABB̄L̄ can
be used to specify properties of continuous and hybrid systems
(systems mixing continuous and discrete behaviors). Consider
the case of an autonomous vehicle that moves following some
reference trajectory. A typical problem is to check whether
the tracking error, measured as the root-mean-square of the
real trajectory with respect to the reference one, is under a
certain threshold. First, to evaluate the root-mean-square error,
one must take into account the entire time interval of the
trajectory rather than its single points (an interval temporal
logic is needed). Now, suppose that the propositional variable

Near holds only over the intervals where the tracking error is
below the threshold. The monotonicity restriction constraining
the tracking error not to increase when we extend a trajec-
tory to the right can be expressed by the ABB̄L̄-formula
[G](Near → [B̄]Near). The fact that eventually the vehicle
reaches a target position, following a trajectory where the
tracking error is below the given threshold, can be expressed
by the ABB̄L̄-formula Source → 〈A〉(Near ∧ [A]Target),
where Source and Target hold only at the initial and the target
position of the vehicle, respectively.

During its movement, the vehicle can hit some obstacles.
Hitting an obstacle is an example of a discrete event in an
hybrid system: it is an instantaneous event that causes a
discontinuous change in the behavior of the vehicle. This can
be expressed by means of the ABB̄L̄-formula [G](Hit → π),
that forces the propositional variable Hit to hold over point
intervals only. After hitting an obstacle, the vehicle is al-
lowed to deviate from the reference trajectory to avoid it, but
not too much: the tracking error should eventually decrease
below the threshold again, as imposed by the the ABB̄L̄-
formula [G](Hit → 〈A〉Near). Finally, we may constrain
any deviation from the reference trajectory to be caused
by a past hitting event by means of the ABB̄L̄-formula
[G](¬Near → 〈L̄〉Hit).

C. Atoms, types, and dependencies

In this section we introduce some basic notions that will be
used in the rest of the paper. Let ϕ be an ABB̄L̄-formula.
The basic notion of ϕ-atom is defined as follows. Let the
closure Cl(ϕ) of ϕ be the set of all sub-formulas of ϕ and of
their negations (we identify ¬¬α with α, ¬〈A〉α with [A]¬α,
¬[A]α with 〈A〉¬α, and the same for the other modal oper-
ators). For technical reasons, we define the extended closure
Cl+(ϕ) as the set of all formulas in Cl(ϕ) plus all formulas
of the forms 〈R〉α and [R]¬α, with R ∈ {A,B, B̄, L̄} and
α ∈ Cl(ϕ), and the two formulas π and ¬π. A ϕ-atom is a non-
empty set F ⊆ Cl+(ϕ) such that (i) for every α ∈ Cl+(ϕ),
α ∈ F iff ¬α 6∈ F and (ii) for every γ = α ∨ β ∈ Cl+(ϕ),
γ ∈ F iff α ∈ F or β ∈ F (intuitively, a ϕ-atom is a maximal,
locally consistent set of formulas chosen from Cl+(ϕ)). Let
Aϕ be the set of all possible atoms that can be built over
Cl+(ϕ). Cardinality of both Cl(ϕ) and Cl+(ϕ) is linear in
|ϕ|, while cardinality of Aϕ may be exponential in |ϕ| (more
precisely, we have |Cl(ϕ)| ≤ 2|ϕ|, |Cl+(ϕ)| ≤ 18|ϕ|+ 2, and
|Aϕ| ≤ 29|ϕ|+1).

Now, let S = (IO, A,B, B̄, L̄, σ) be an interval structure
that satisfies ϕ. In order to relate intervals in S to the set of
sub-formulas of ϕ they satisfy, we introduce the notion ϕ-
type. For every I ∈ IO, we define the ϕ-type of I , denoted by
T ypeS(I), as the set of all formulas α ∈ Cl+(ϕ) such that
S, I � α. It can be easily shown that every ϕ-type is a ϕ-atom,
but not vice versa. Hereafter, we shall omit the argument ϕ,
thus calling a ϕ-atom (resp., a ϕ-type) simply an atom (resp.,
a type).

Given an atom F , we denote by Obs(F ) the set of all
observables of F , namely, the set of formulas α ∈ Cl(ϕ)



such that α ∈ F . Similarly, given an atom F and a relation
R ∈ {A,B, B̄, L̄}, we denote by ReqR(F ) the set of all R-
requests of F , namely, the formulas α ∈ Cl(ϕ) such that
〈R〉α ∈ F . Taking advantage of the above sets, we define
the relation A−→ (resp., B−→ , L̄−→ ) ⊆ Aϕ ×Aϕ as follows:

F A−→G iff ReqA(F ) = Obs(G) ∪ ReqB(G) ∪
∪ReqB̄(G)

F B−→G iff



Obs(F ) ∪ ReqB̄(F ) ⊆ ReqB̄(G) ⊆
⊆ Obs(F ) ∪ ReqB̄(F ) ∪ ReqB(F )

Obs(G) ∪ ReqB(G) ⊆ ReqB(F ) ⊆
⊆ Obs(G) ∪ ReqB(G) ∪ ReqB̄(G)

Req L̄(F ) = Req L̄(G)

F L̄−→G iff Obs(G) ∪Req L̄(G) ⊆ Req L̄(F )

Notice that the relation B̄−→ can be defined in the very
same way. However, we did not introduce it as its addition
is useless: the relation B̄ is the inverse of the relation B and
thus it holds that F B̄−→G if and only if G B−→F .

Relations B−→ and L̄−→ are transitive, while A−→ is not.
Moreover, the three relations satisfy a view-to-type depen-
dency, namely, for every pair of intervals I, J ∈ IO, and for
every relation R ∈ {A,B, L̄}, we have that I R J implies
T ypeS(I) R−→ T ypeS(J).

The following proposition states two simple, but quite
useful, properties of the relations A−→ , B−→ , and L̄−→ that
will be exploited in the proofs of Lemma 3 and Theorem 4
below.

Proposition 1. Let F,G, and H be three atoms in Aϕ. We
have that:

1) if F A−→H and G B−→H , then F A−→G;
2) if F B−→G and G L̄−→H , then F L̄−→H .

The proof is straightforward and thus omitted.

D. Compass structures

The logic ABB̄L̄ can be equivalently interpreted over grid-
like structures, called compass structures (such structures have
been originally proposed by Venema in [16]), by exploiting the
existence of a natural bijection between the intervals I = [x, y]
in IO and the points p = (x, y) of an O × O grid such that
x ≤ y. As an example, in Figure 1 we show five intervals
I0, . . . , I4, such that I0 B I1, I0 B̄ I2, I0 A I3, and I0 L̄ I4,
together with the corresponding points p0, . . . , p4 of the grid
(the four Allen’s relations A,B, B̄, and L̄ between pairs
of intervals are mapped into corresponding spatial relations
between points; for the sake of readability, we name the latter
ones as the former ones).

Definition 1. Given an ABB̄L̄ formula ϕ, a (consistent and
fulfilling) compass (ϕ)-structure is a pair G = (PO,L), where
PO is the set of points of the form p = (x, y), with x, y ∈ O
and x ≤ y, and L is a function that maps every point p ∈ PO
into a (ϕ-)atom L(p) in such a way that:

I0

I1

I2

I3I4

p0

p1

p2 p3

p4

Fig. 1. Correspondence between intervals and the points of a grid.

• for every pair of points p, q ∈ PO and every relation R ∈
{A,B, L̄}, if p R q, then L(p) R−→L(q) (consistency);

• for every point p ∈ PO, every relation R ∈ {A,B, B̄, L̄},
and every formula α ∈ ReqR

(
L(p)

)
, there is a point q ∈

PO such that p R q and α ∈ Obs
(
L(q)

)
(fulfillment).

We say that a compass (ϕ-)structure G = (PO,L) features
a formula α if there is a point p ∈ PO such that α ∈ L(p). It
is easy to see that an ABB̄L̄-formula ϕ is satisfied by some
interval structure if and only if it is featured by some compass
structure, and thus that the satisfiability problem for ABB̄L̄
is reducible to the problem of deciding, for any given formula
ϕ, whether there exists a compass structure featuring ϕ or not.

III. DECIDABILITY OF ABB̄L̄

We are now ready to prove the main result of the pa-
per, namely, the decidability of the satisfiability problem
for ABB̄L̄ when interpreted over the class of all linear
orders. The decidability of ABB̄L̄ over the class of dense
linear orders immediately follows, as density can be defined
in ABB̄L̄ by a constant formula. Formally, given a ABB̄L̄-
formula ϕ, we have that ϕ is satisfiable over the class of
dense linear orders if and only if the (constant) formula
ϕ∧ [G](¬π → 〈B〉¬π) is satisfiable over the class of all linear
orders. Unfortunately, we cannot apply a similar argument
to weakly discrete linear orders (if a point has a successor,
resp., predecessor, then it has an immediate successor, resp.,
predecessor), as we do not have a constant formula defining
weak discreteness in ABB̄L̄. At the end of the section, we
will show how to tailor the decidability proof for the general
case to weakly discrete linear orders.

Let ϕ be an ABB̄L̄-formula. We say that a compass ϕ-
structure G = (PO,L) is bounded if O is a bounded linear
order, that is, it has both a minimum element min(O) and
a maximum element max(O). It is possible to show that
satisfiability over arbitrary interval structures can be reduced
to satisfiability over bounded compass structures. Without loss
of generality, we assume min(O) = 0 and max(O) = 1, and
we restrict our attention to formulas ϕ featured by point (0, 0),
that is, to formulas ϕ ∈ L(0, 0). For any given ABB̄L̄-formula



ϕ, let ϕ̄ be the formula ϕ∨〈B̄〉ϕ∨〈B̄〉〈A〉ϕ. Moreover, let #
be a fresh propositional letter. We define the immersion f#(ψ)
of ψ in (the space of) # as f#(ψ) = # ∧ f ′#(ψ), where:

- if ψ = p, then f ′#(ψ) = p;
- if ψ = ¬γ, then f ′#(ψ) = ¬f ′#(γ);
- if ψ = γ ∨ δ, then f ′#(ψ) = f ′#(γ) ∨ f ′#(δ);
- if ψ = 〈R〉γ, then f ′#(ψ) = 〈R〉f#(γ), for every R ∈
{A,B, B̄, L̄}.

Finally, to deal with bounded (resp., past unbounded, future
unbounded, unbounded) satisfiability, we define the formula
ψbounded (resp., ψpast, ψfuture, ψunbounded) as follows:

- ψbounded = ψ̄;
- ψpast = ¬# ∧ [B̄]¬# ∧ [B̄][A]# ∧ f#(ψ) ∧ [B̄]〈B〉¬π;
- ψfuture = [G](〈A〉¬π ↔ #) ∧ f#(ψ) ∧ [B̄](# →
〈B̄〉>);

- ψunbounded = ¬# ∧ [B̄]¬# ∧ [B̄][A](〈A〉¬π ↔ #) ∧
f#(ψ) ∧ [B̄](# → 〈B̄〉>) ∧ [B̄]〈B〉¬π.

Consider, for instance, the formula ψfuture. It is possible
to prove that ψ is satisfied by a future unbounded compass
structure if and only if ψfuture is satisfied by a bounded
compass structure.

Theorem 2. Let ϕ be an ABB̄L̄ formula. It holds that ϕ is
satisfied by some interval structure if and only if there exists
a bounded compass structure G = (PO,L) such that ϕbounded
∨ϕpast ∨ ϕfuture ∨ ϕunbounded ∈ L(0, 0).

Hereafter, we will call the bounded compass structure of
Theorem 2 a bounded compass structure for ϕ. For the sake
of readability, we prove our decidability result in two steps.
First, we prove that the satisfiability problem for the fragment
ABB̄ over all linear orders is decidable; then, we show how
to generalize the proof to ABB̄L̄.

A. A preliminary step: decidability of ABB̄

In the following, we first define a suitable notion of pseudo-
model for a satisfiable formula of ABB̄, and then we prove
that the problem of establishing whether or not such a pseudo-
model exists is decidable.

As a preliminary step, we introduce the key notion of shad-
ing. Let G = (PO,L) be a compass structure. The shading of
the row y of G is the set ShadingG(y) =

{
L(x, y) : x ≤ y

}
,

that is, the set of the atoms of all points in the row y of G. The
following lemma easily follows from the definition of shading
and from the semantics of ABB̄.

Lemma 1. Let G = (PO,L) be a compass structure and let
y ∈ O. We have that ShadingG(y) satisfies the following
properties:
(S1) for every pair of atoms F and F ′ in ShadingG(y),

ReqA(F ) = ReqA(F ′);
(S2) there exists one and only one atom F ∈ ShadingG(y)

such that π ∈ F ;
(S3) ReqA(π(ShadingG(y))) = ReqB̄(π(ShadingG(y))),

where π(ShadingG(y)) is the atom whose existence and
uniqueness is guaranteed by (S2).

With a little abuse of notation, we will call shading any set
S of atoms that satisfies properties (S1)-(S3) of Lemma 1.
Moreover, we will denote with S− the set S \ {π(S)}.

Let ϕ be a satisfiable ABB̄ formula. By Theorem 2, there
exists a bounded compass structure G = (PO,L) such that
ϕ ∈ L(0, 0).

Definition 2. Given two shadings S1 and S2, we say that
MB(S1, S2) ⊆ S1 × S−2 is a matching set if it satisfies the
following properties:
(M1) for every (F,G) ∈MB(S1, S2), G B−→F ;
(M2) for every F ∈ S1, there exists G ∈ S−2 such that

(F,G) ∈MB(S1, S2);
(M3) there exists one and only one element (F,G) ∈

MB(S1, S2) such that F = π(S1).

Consider now the following, more restrictive, variant of the
relation B−→ :

F B7−→G iff

{
ReqB(F ) = Obs(G) ∪ ReqB(G)

ReqB̄(G) = Obs(F ) ∪ ReqB̄(F ).

Note that F B7−→G implies F B−→G, but the converse impli-
cation is not true in general.

Definition 3. A matching set MB(S1, S2) is said to be strong
if the following two additional properties hold:
(M4) for every (F,G) ∈MB(S1, S2), G B7−→F ;
(M5) for every G ∈ S−2 , there exists F ∈ S1 such that

(F,G) ∈MB(S1, S2).

Intuitively, a matching set connects two shadings S1 and
S2 such that the row corresponding to S1 is below the
row corresponding to S2. It is indeed easy to prove that,
given two rows y, y′ of a compass structure G such that
y < y′, S1 = ShadingG(y), and S2 = ShadingG(y′), the
set {(F,G) : there exists x ≤ y such that F = L(x, y)
and G = L(x, y′)} is a matching set. Moreover, if y′ is the
immediate successor of y in G, that is, there are no points
between y and y′ in O, then it is a strong matching set
(obviously, the vice versa does not hold).

To compose sequences of matching sets, we introduce the
notion of matching graph.

Definition 4. Given k shadings S1, . . . , Sk and k−1 matching
sets MB(S1, S2), . . . , MB(Sk−1, Sk), we define the matching
graph MB(S1, S2) ◦ . . . ◦MB(Sk−1, Sk) as the k-level graph
such that:
(G1) the nodes are all pairs (F, j) such that F ∈ Sj , for

j = 1, . . . , k;
(G2) the edges are all pairs ((F, j), (G, j + 1)) such that

(F,G) ∈MB(Sj , Sj+1), for j = 1, . . . , k − 1.

Given a matching set MB(S, T ) and a matching graph
M = MB(S1, S2) ◦ . . . ◦ MB(Sk−1, Sk), we say that
M covers MB(S, T ) if (i) S1 = S, (ii) Sk = T , and
(iii) for every (F,G) ∈ MB(S, T ) there exists a path p =
(F1, 1) . . . (Fk, k) ∈M such that F1 = F and Fk = G. Given
a path p = (F1, 1) . . . (Fk, k) in a matching graphM, we say
that p is fulfilling if (i) for every ψ ∈ ReqB̄(F1) \ReqB̄(Fk),
there exists 2 ≤ j ≤ k such that ψ ∈ Obs(Fj), and



(ii) for every ψ ∈ ReqB(Fk) \ ReqB(F1), there exists
1 ≤ j ≤ k − 1 such that ψ ∈ Obs(Fj). We say that
a matching graph M = MB(S1, S2) ◦ . . . ◦ MB(Sk−1, Sk)
covering MB(S, T ) is fulfilling for MB(S, T ) if and only if
for every (F,G) ∈ MB(S, T ), there exists a fulfilling path
p = (F, 1) . . . (G, k) ∈M.

The concepts of matching set and matching graph allow
us to define the key notion of decomposition tree (part of a
decomposition tree is graphically depicted in Figure 2).
Definition 5. Let ϕ be an ABB̄-formula. A decomposition
tree for ϕ is a labeled tree Tϕ = 〈T , ν〉 that satisfies the
following properties:
(T1) T = {N , ↓1, ..., ↓m} is a ranked tree of rank m, for

some m ∈ N (for every node n, there exists i ≤ m such
that n has i labeled successors ↓1 (n), . . . , ↓i (n));

(T2) ν is a labeling function mapping every node n ∈ N into
a tuple (Sn, Tn,Mn), where Sn and Tn are shadings,
and Mn is a matching set between Sn and Tn;

(T3) the label of the root n0 is a triple (S0, T0,M0), such
that S0 = {F0}, ϕ ∈ F0, ReqB(F0) = Req L̄(F0) = ∅
and ReqB̄(G) = ∅ for every G ∈ T0;

(T4) for every node n ∈ N , with ν(n) = (Sn, Tn,Mn), if
Mn is a strong matching set, then n has no successors
in T ;

(T5) for every node n ∈ N , with ν(n) = (Sn, Tn,Mn), if
Mn is not a strong matching set, then n has k ≤ m
successors n1, . . . , nk such that a) ν(n1) = (S1, T1,M1),
with S1 = Sn, b) ν(nk) = (Sk, Tk,Mk), with Tk = Tn,
c) for every 1 ≤ j ≤ k − 1, Tj = Sj+1, and d) the
matching graph M = M1 ◦ . . . ◦Mk is fulfilling for Mn.

A decomposition tree for a formula ϕ can be viewed as the
unfolding of a finite graph, which provides a finite represen-
tation of a (possibly infinite) bounded compass structure.
Lemma 2 (Completeness). Let ϕ be an ABB̄-formula and
G = 〈PO,L〉 be a bounded compass structure for ϕ. Then,
there exists a decomposition tree Tϕ = 〈T , ν〉 for ϕ with rank
≤ 4 · |ϕ| · 218|ϕ|+2 + 29|ϕ|+1 + 1.

Proof: Let G = 〈PO,L〉 be a bounded compass structure
for ϕ. We show how to build step-by-step a decomposition tree
Tϕ = 〈T , ν〉 for ϕ by using information in G. Given y, y′ ∈ O,
with y < y′, we define the matching set MB(y, y′) between
the shadings of y and y′ as the set: {(F,G) : there exists x ≤
y such that F = L(x, y) and G = L(x, y′)}.

By hypothesis, O is a linear order with minimum element
min(O) = 0 and maximum element max(O) = 1. We start
the building procedure with the one-node labeled tree T0 =
({n0}, ν0), with ν0(n0) = (ShadingG(0),ShadingG(1),
MB(0, 1)). It can be easily checked that n0 satisfies property
(T3) of Definition 5. Now, let Ti = (Ti, νi) be the labeled
tree obtained at the i-th step. The labeled tree Ti+1 =
(Ti+1, νi+1) can be built as follows. For every leaf n of Ti,
with νi(n) = (ShadingG(y),ShadingG(y′), MB(y, y′)), such
that MB(y, y′) is not a strong matching set, we define the set
WitSet(y, y′) of “witness rows” as follows:
• for every (F,G) ∈ MB(y, y′), WitSet(y, y′) contains a

set of rows {yF,G1 , . . . , yF,Gh } such that there exists a
point x ≤ y and a fulfilling path (L(x, y),L(x, yF,G1 ),
. . . ,L(x, yF,Gh ), L(x, y′)), with F = L(x, y) and G =
L(x, y′);

• for every G ∈ ShadingG(y′)− such that there ex-
ists no pair (F,G) ∈ MB(y, y′), for some atom F ,
WitSet(y, y′) contains a row yG such that L(yG, y′) =
G.

Let WitSet(y, y′) = {y1 < y2 < . . . < yk}. We
add k+1 successors n1, . . . , nk+1 to n such that νk+1(n1)
= (ShadingG(y),ShadingG(y1),MB(y, y1)), νk+1(nk+1) =
(ShadingG(yk), ShadingG(y′),MB(yk, y

′)), and νk+1(nj) =
(ShadingG(yj−1),ShadingG(yj),MB(yj−1, yk)), for every
2 ≤ j ≤ k. The number of successors is bounded by
4 · |ϕ| · 218|ϕ|+2 + 29|ϕ|+1 + 1, as (i) for every atom F , the
number of requests in ReqB(F ) (resp., ReqB̄(F )) is bounded
by 2 · |ϕ| + 1, (ii) the number of distinct pairs (F,G) in
a matching set is bounded by 29|ϕ|+1 · 29|ϕ|+1 = 218|ϕ|+2,
(iii) every pair (F,G) in a matching set needs at most 4 · |ϕ|
distinct points to fulfill all B̄-requests in F and all B-requests
in G (the formula π does not force the addition of a new
point), and (iv) the number of distinct atoms in the shading
ShadingG(y′)− is bounded by 29|ϕ|+1 (as a matter of fact, this
is a bound to the rank of the decomposition tree, as it does
not depend on the considered node, and thus property (T1)
of Definition 5 immediately follows). Moreover, by definition
of WitSet(y, y′), the successors of n satisfy property (T5) of
Definition 5. Finally, it can be easily checked that properties
(T2) and (T4) of Definition 5 are satisfied as well.

The decomposition tree for ϕ is Tω =
⋃∞
i=0 Ti.

Lemma 3 (Soundness). Let ϕ be an ABB̄-formula and Tϕ =
〈T , ν〉 be a decomposition tree for ϕ. Then, there exists a
bounded compass structure G = 〈PO,L〉 for ϕ.

Proof: Let Tϕ = 〈T , ν〉 be a decomposition tree for ϕ.
We exploit information provided by Tϕ to build a (possibly
infinite) sequence of finite compass structures G0 ⊆ G1 ⊆ . . .,
whose (possibly infinite) union Gω =

⋃∞
i=0 Gi is a bounded

compass structure for ϕ.
Let us introduce the notation we are going to use. Let Gi =

〈POi ,Li〉 be the compass structure generated at the i-th step
and let Oi = {y0 < . . . < yk}. We define a function fi :
{y0 < . . . < yk−1} 7→ T that maps every row y, but the
maximum one, to a node of the decomposition tree. At every
step, we guarantee that the following invariant holds:
(INV) for every row yj < yk, if ν(fi(yj)) = (Sj , Sj+1,Mj),

then ShadingGi(yj) ⊆ Sj , ShadingGi(yj+1) ⊆ Sj+1,
and, for every x ≤ yj , (Li(x, yj),Li(x, yj+1)) ∈Mj .

We start with the root n0 of Tϕ, with ν(n0) = ({F0},
T0,M0), and we build the initial two-rows compass structure
G0 = 〈PO0

,L0〉, where O0 = {0 < 1}, L0(0, 0) = F0,
L0(0, 1) = G0, (F0, G0) ∈ M0, and L0(1, 1) = π(T0). The
function f0 such that f0(0) = n0 respects the invariant. Now,
let Gi and fi respectively be the compass structure and the
mapping function generated at the i-th step. We extend Gi
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Fig. 2. A node of a decomposition tree, its successors, and the matching graph.

to Gi+1 and we define the new mapping function fi+1 as
follows. Let Oi = {y0 < . . . < yk}. For every 0 ≤ j < k, let
fi(yj) = nj and ν(nj) = (Sj , Sj+1,Mj). For every node nj ,
we execute the following two steps.

P1. If nj is a leaf of T , then we do not add any new point,
we put Li+1(x, yj) = Li(x, yj), for all x ≤ yj , and we
let fi+1(yj) = fi(yj) = nj .

P2. If nj has h successors m1, . . . ,mh, then add h− 1 new
points z1 < . . . < zh−1 between yj and yj+1 to Oi+1.
For 1 ≤ l ≤ h, let ν(ml) = (Sl, Tl, Rl), and let M =
R1 ◦ . . . ◦ Rh be the corresponding fulfilling matching
graph. We define the labeling Li+1 as follows:
• for every x, y ∈ Oi, with x ≤ y, Li+1(x, y) =
Li(x, y);

• for every x ∈ Oi such that x ≤ yj , let p =
(F1, 1) . . . (Fh+1, h+1) be a fulfilling path inM such
that F1 = Li(x, yj) and Fh+1 = Li(x, yj+1) (the
existence of such a p is guaranteed by (INV) and (T5)).
For all 1 ≤ l ≤ h− 1, we put Li+1(x, zl) = Fl+1;

• for every 1 < l ≤ h, let p = (Fl, l) . . . (Fh+1, h+ 1)
be a path such that Fl = π(Sl) and Fh+1 ∈ S−j+1 (the
existence of such a p is guaranteed by (T5)). We put
Li+1(zl−1, yj+1) = Fh+1, and, for every l ≤ q ≤ h,
we put Li+1(zl−1, zq−1) = Fl;

• for every 1 ≤ l ≤ h−1, let Fj+2, . . . , Fk be a sequence
of atoms such that (Li+1(zl, yj+1), Fj+2) ∈ Mj+1

and, for every j + 2 ≤ q ≤ k − 1, (Fq, Fq+1) ∈ Mq

(the existence of such a sequence is guaranteed by
(T2) and (T5)). For every j + 1 < q ≤ k, we put
Li+1(zl, yq) = Fq .

Finally, we put fi+1(yj) = m1, and fi+1(zl) = ml+1,
for every 1 ≤ l ≤ h− 1.

It is easy to see that, by the above construction, Gi+1 and fi+1

preserve the invariant.
Let Gω =

⋃∞
i=0 Gi. We prove that Gω is a consistent and

fulfilling compass structure that features ϕ. First, we show that
Gω satisfies the consistency conditions for the relations B and
A; then that it satisfies the fulfillment conditions for the B̄-,
B-, and A-requests; finally, that it features ϕ.

CONSISTENCY WITH RELATION B . Consider two points p =
(x, y) and p′ = (x′, y′) in Gω such that p B p′, that is,
0 ≤ x = x′ ≤ y′ < y ≤ 1. Let i be the earliest stage of
the above construction at which both points are present in
the compass structure. Since Gi is a finite compass structure,
let y′ = y1 < y2 < . . . < yh = y be the sequence of all
points between y′ and y in Oi. By the above construction, we
have that Lω(x, y) = Li(x, yh) B−→Li(x, yh−1) B−→ . . . B−→
L(x, y1) = Lω(x′, y′), and thus, by the transitivity of B−→ ,
Lω(x, y) B−→Lω(x′, y′).

CONSISTENCY WITH RELATION A. Consider two points p =
(x, y) and p′ = (x′, y′) in Gω such that p A p′, that is, 0 ≤
x ≤ y = x′ ≤ y′ ≤ 1. Let i be the earliest stage of the above
construction at which both points are present in the compass
structure, and consider the point (y, x′) = (y, y) = (x′, x′).
Let fi(y) = ny , and let ν(ny) = (Sy, Ty,My). By (INV),
we have that Shading(y) ⊆ Sy and, by (S1), (S2) and (S3),
ReqA(Li(x, y)) = ReqA(Li(y, y)) = ReqB̄(L(y, y)). This
implies that Li(x, y) A−→Li(y, y). Since (x′, y′) B (x′, x′) =
(y, y), by the consistency with relation B, we have that
Li(x′, y′) B−→Li(y, y). By Proposition 1, we can conclude
that Lω(x, y) = Li(x, y) A−→Li(x′, y′) = Lω(x′, y′).

FULFILLMENT OF B-REQUESTS. Let p = (x, y) be a point in
Gω such that there exists ψ ∈ ReqB(Lω(x, y)) for some for-
mula ψ, and suppose, by contradiction, that ψ is not fulfilled in
Gω . Now, let i be the earliest stage of the above construction at
which the point (x, y) is present in the compass structure. Let
y′ be the smallest row in Gi such that ψ ∈ ReqB(Li(x, y′))
and let y′′ be the immediate predecessor of y′ in Oi (whose
existence is guaranteed by T3). Let fi(y′′) = n′′, and suppose
that ν(n′′) = (S′′, T ′′,M ′′). By hypothesis, we have that ψ 6∈
Obs(Li(x, y′′)) and ψ 6∈ ReqB(Li(x, y′′)). This implies that
M ′′ cannot be a strong match, and thus that n′′ cannot be a
leaf of T . Let h be the rank of n′′. According to the above
construction, at step i+1, h−1 points z1, . . . , zh−1, with y′′ <
z1 < . . . < zh−1 < y′, have been added to Oi. Moreover,
by construction, Li+1(x, y′′),Li+1(x, z1), . . . ,Li+1(x, zh−1),
Li+1(x, y′) is a fulfilling path. This implies that there exists
an index 1 ≤ l ≤ h− 1 such that ψ ∈ Li+1(x, zl), against the



hypothesis that the B-request ψ is not fulfilled for (x, y) in
Gω (contradiction).

FULFILLMENT OF B̄-REQUESTS. The proof that Gω fulfills all
B̄-requests of its atoms is symmetric to the one for B-requests,
and thus it is omitted.

FULFILLMENT OF A-REQUESTS. Let p = (x, y) be a point
in Gω such that there exists ψ ∈ ReqA(Lω(x, y)) for
some formula ψ. By the definition of shading, we have
that ReqA(Lω(x, y)) = ReqA(Lω(y, y)) = ReqB̄(Lω(y, y)).
This implies that fulfillment of A-requests directly follows
from the fulfillment of B̄-requests.

FEATURED FORMULAS. By the definition of decomposi-
tion tree, we have that the root n0 of T is labeled with
(S0, T0,M0), with S0 = {F0} and ϕ ∈ F0. By the above
construction, we have that Lω(0, 0) = F0, and thus Gω is a
bounded compass structure for ϕ.
Theorem 3. Let ϕ an ABB̄-formula. Then, ϕ is satisfiable
in the class of all linear orders if and only if there exists a
decomposition tree Tϕ = 〈T , ν〉 for ϕ with rank ≤ 4 · |ϕ| ·
218|ϕ|+2 + 29|ϕ|+1 + 1.

It easily follows from Theorem 2, Lemma 2, and Lemma 3.

B. The main result: decidability of ABB̄L̄

To deal with ABB̄L̄, the notion of decomposition tree must
be suitably generalized. As a preliminary step, we show that,
when the 〈L̄〉/[L̄] modalities are considered, the shading of a
row y satisfies the following additional property.
Lemma 4. Let G = (PO,L) be a compass structure for an
ABB̄L̄ formula ϕ and let y ∈ O. Then, ShadingG(y) satisfies
the following property:
(S4) ψ ∈ Req L̄(π(ShadingG(y)) if and only if there exists

F ∈ ShadingG(y), with F 6= π(ShadingG(y)), such that
ψ ∈ ReqB(F ).
Proof: It is an easy consequence of the semantics of

the 〈L̄〉 and 〈B〉 modalities: ψ ∈ Req L̄(π(ShadingG(y))) iff
ψ ∈ Req L̄(L(y, y)) iff ∃(x′, y′) : y′ < y ∧ ψ ∈ L(x′, y′) iff
ψ ∈ ReqB(L(x′, y)). As L(x′, y) ∈ ShadingG(y), the thesis
immediately follows.

Lemma 4 shows that fulfillment of L̄-requests can be
reduced to fulfillment of B-requests of an appropriate set
of points. However, condition (S4) alone is not sufficient to
guarantee that from a decomposition tree for a formula ϕ we
can build a fulfilling bounded compass structure for it: it may
happen that, in the final bounded compass structure, there exist
a point (y, y) and a formula ψ ∈ Req L̄(L(y, y)), but no points
in the row y have ψ in their set of B-requests, and thus the
L̄-request ψ is not fulfilled for (y, y).

Now, given a consistent and fulfilling bounded compass
structure G = (PO,L) and a formula ψ ∈ Cl(ϕ) that occurs
in G, we distinguish among the following three cases:
(Type1) there exists a point (xψ, yψ) such that ψ ∈ L(xψ, yψ)

and ψ 6∈ Req L̄(yψ, yψ);
(Type2) there exists an horizontal coordinate xψ and an

infinite descending sequence of rows y1 > y2 > . . .

such that, for every i ∈ N, (i) ψ ∈ L(xψ, yi), (ii) ψ ∈
ReqB(xψ, yi), and (iii) if y′ < yj for every j ≥ 1, then
ψ 6∈ Req L̄(y′, y′);

(Type3) there exists an infinite descending sequence of rows
y1 > y2 > . . . such that, for every i ∈ N, (i) there exists
xi such that ψ ∈ L(xi, yi), (ii) ψ 6∈ ReqB(xi, yi), and
(iii) if y′ < yj for every j ≥ 1, then ψ 6∈ Req L̄(y′, y′).

These different types of formula describe the different ways
of fulfilling a L̄-request in a bounded compass structure. Given
a point (x, y) and a formula ψ ∈ Req L̄(L(x, y)), one of the
following situations may arise:
• if ψ is a Type1-formula, then x must be strictly greater

than yψ (otherwise, ψ must belong to Req L̄(L(yψ, yψ)),
in contradiction with the definition) and thus the point
(xψ, yψ) fulfills the request for (x, y);

• if ψ is a Type2-formula, then there must be a row yi in
the infinite descending sequence such that yi < x, and
thus the point (xψ, yi) fulfills the request for (x, y);

• if ψ is a Type3-formula, then there must be a row yi in
the infinite descending sequence such that yi < x, and
thus the point (xi, yi) fulfills the request for (x, y).

It is worth noticing that while for Type1-formulas one single
point (xψ, yψ) suffices for fulfilling all the occurrences of
〈L̄〉ψ in the compass structure, for Type2-formulas and Type3-
formulas an infinite number of points is needed.

To cope with all the three possible types of formula, we ex-
tend the definitions and the construction given in Section III-A
as follows. First of all, we call extended shading any shading S
that also satisfies condition (S4). The definitions of matching
set (Definition 2), strong matching set (Definition 3), matching
graph (Definition 4), and fulfilling matching graph remain
unchanged. An extended decomposition tree for a formula ϕ
of ABB̄L̄ is then defined as follows.

Definition 6. Let ϕ be an ABB̄L̄-formula. An extended de-
composition tree for ϕ is a labeled tree Tϕ = 〈T , ν, τ1, τ2, τ3〉
such that the following conditions hold:
(ET1) 〈T , ν〉 is a decomposition tree for ϕ;
(ET2) for every node n of T , with ν(n) = (Sn, Tn,Mn), Sn

and Tn are extended shadings;
(ET3) let n0 be the root of T , with ν(n0) = (S0, T0,M0).

Then, τ1, τ2, and τ3 form a partition of Req L̄(π(T0));
(ET4) for every formula ψ ∈ τ1, there exists an immediate

successor nψ of the root, with ν(nψ) = (Sψ, Tψ,Mψ),
such that a) ψ 6∈ Req L̄(π(Sψ)), and b) there exists an
atom F ∈ Sψ such that ψ ∈ F ;

(ET5) let M = M1 ◦ . . . ◦ Mk be the matching graph
defined by the successors of the root and let Θ be
a partition of τ2. For every θ ∈ Θ, there exists an
immediate successor of the root nloop =↓l (n0), with
ν(nloop) = (Snloop

, Tnloop
,Mnloop

), such that θ = τ2 ∩
(Req L̄(π(Tnloop

)) \ Req L̄(π(Snloop
))) and there exist

(F1, G1), . . . , (Fo, Go) in Mnloop
, with o ≤ |θ|, such

that for every ψ ∈ θ there exists 1 ≤ i ≤ o with ψ ∈
ReqB(Gi). Moreover, there exist o distinct successors of
the root ↓i1 (n0), . . . , ↓io (n0), with i1 < l, . . . , io < l,



such that for every j = 1, . . . , o, there exists a path
p = (Hij , ij) . . . (Hl, l) in M with π ∈ Hij and Hl =
Fj . Finally, let n′ be any node with ν(n′) = ν(nloop),
n1, . . . , nh be its h immediate successors, and M′ be
the corresponding matching graph. Then, there exists
1 ≤ j ≤ h such that ν(nj) = ν(n′) and for every
(Fi, Gi), with 1 ≤ i ≤ o, there exists a fulfilling path
p = (H1, 1) . . . (Hh, h) in M′ with H1 = Hj = Fi and
Hh = Hj+1 = Gi

(ET6) let M = M1 ◦ . . . ◦ Mk be the matching graph
defined by the successors of the root. For every ψ ∈ τ3,
there exist two successors of the root mψ =↓i (n0)
and nψ =↓j (n0), with i < j, such that a) ν(nψ) =
(Sψ, Tψ,Mψ), b) ν(mψ) = (Uψ, Uψ, Nψ), c) ψ ∈
Req L̄(π(Sψ)), d) there exists Gψ ∈ Sψ such that
ψ ∈ Gψ , ψ 6∈ ReqB(Gψ), and there exists a path
p = (Hi, i) . . . (Hj , j) inM with π ∈ Hi and Hj = Gψ ,
e) every node n, with ν(n) = (Sn, Tn,Mn), such that
ψ ∈ Req L̄(π(Tn)\π(Sn)), has a successor with the same
labeling as nψ , and f) every node n′, with ν(n′) = ν(mψ)
has a successor with the same labeling as mψ .

The three sets τ1, τ2, and τ3 partition all L̄-requests that occur
in the extended decomposition tree in Type1, Type2, and Type3
formulas, respectively (condition (ET3)). Condition (ET4)
guarantees fulfilling of Type1-formulas. Conditions (ET5) and
(ET6) guarantee sufficient conditions for the existence of the
infinite descending chains of rows needed for Type2 and Type3
formulas, respectively. By using techniques similar to the ones
of Lemma 2 and Lemma 3, we can prove an analogous of
Theorem 3 for ABB̄L̄.

Theorem 4. Let ϕ be an ABB̄L̄-formula. Then, ϕ is satisfi-
able in the class of all linear orders if and only if there exists
an extended decomposition tree Tϕ = 〈T , ν, τ1, τ2, τ3〉 for ϕ
with rank m ≤ 4 · |ϕ| · 218|ϕ|+2 + 29|ϕ|+1 + |ϕ|+ 1.

Proof: (sketch) We have to show that (i) the existence
of a consistent and fulfilling bounded compass structure for a
formula ϕ implies the existence of an extended decomposition
tree for it (completeness), (ii) the existence of an extended
decomposition tree implies the existence of a consistent and
fulfilling bounded compass structure (soundness), and (iii) the
number of successors of a node of an extended decomposition
tree is bounded by 4 · |ϕ| · 218|ϕ|+2 + 29|ϕ|+1 + |ϕ|+ 1.

The proof of completeness follows that of Lemma 2: we
start from a bounded compass structure G = 〈PO,L〉 and we
iteratively define the labeling of the corresponding extended
decomposition tree by appropriately selecting, at each step, a
set of “witness rows” satisfying all conditions of Definition 6.

The proof of soundness is a bit more involved. First, given
an extended decomposition tree Tϕ = 〈T , ν, τ1, τ2, τ3〉, we
consider its root n0 and its immediate successors n1, . . . , nk
and we build an initial bounded compass structure G0 =
〈PO0

,L0〉 that satisfies the following conditions (the possibil-
ity to build such a structure is guaranteed by properties (ET4),
(ET5), and (ET6) of Definition 6):

(IS1) for every ψ ∈ τ1, there exists a point (xψ, yψ) such that
ψ ∈ L(xψ, yψ) and ψ 6∈ Req L̄(yψ, yψ);

(IS2) for every ψ ∈ τ2, there exists a point (xψ, yψ) such that
ψ ∈ L(xψ, yψ) and ψ ∈ ReqB(xψ, yψ);

(IS3) for every ψ ∈ τ3, there exists a point (xψ, yψ) such that
ψ ∈ L(xψ, yψ), ψ 6∈ ReqB(xψ, yψ), ψ ∈ Req L̄(yψ, yψ),
and f0(xψ) = mψ .

Then, we proceed with the very same construction as in
Lemma 3. Let Gi and fi respectively be the compass structure
and the mapping function generated at the i-th iteration.
Moreover, let ui : τ3 7→ T be an auxiliary function that
maps every formula ψ ∈ τ3 to a node ui(ψ) in T such that
ν(ui(ψ)) = ν(mψ). At step 0, we put u0(ψ) = mψ , for every
ψ ∈ τ3.

At the (i+1)-iteration, we extend Gi to Gi+1 and we define
functions fi+1 and ui+1 as follows. Let Oi = {y0 < . . . <
yk}. For every 0 ≤ j < k, let fi(yj) = nj and ν(nj) =
(Sj , Sj+1,Mj). For every node nj , we execute steps P1-P4.
Steps P1 and P2 have been already described in the proof of
Lemma 3. Steps P3 and P4 behave as follows:
P3. for every formula ψ ∈ τ2 such that ψ ∈
Req L̄(L(yj+1, yj+1)) \ Req L̄(L(yj , yj)) and ψ is not
fulfilled, proceed as follows:
• let (xψ, yψ) be the point whose existence is guaranteed

by condition (IS2), and let ml be the successor of
nj , with ν(ml) = ν(nloop), whose existence is guar-
anteed by property (ET5). We put Li+1(xψ, zl−1) =
L(xψ, yψ);

P4. for every formula ψ ∈ τ3 such that ψ ∈
Req L̄(L(yj+1, yj+1)) \ Req L̄(L(yj , yj)) and ψ is not
fulfilled, proceed as follows:
• let (xψ, yψ) be the point whose existence is guar-

anteed by condition (IS3), and let ml and m′ψ be
the successors of nj and ui(ψ), respectively, with
ν(ml) = ν(nψ) and ν(m′ψ) = ν(mψ), whose exis-
tence is guaranteed by property (ET6). We execute the
following sequence of operations:
– we apply steps P1 and P2 to node ui(ψ);
– we put Li+1(x′ψ, zl−1) = L(xψ, yψ), where x′ψ =
fi+1(m′ψ);

– we put ui+1(ψ) = m′ψ;
– we complete the labeling of all emerging points by

using information from the labeling of ml and m′ψ .
In this way, we obtain a sequence of finite compass structures
G0 ⊆ G1 ⊆ . . . such that Gω =

⋃∞
i=0 Gi is a fulfilling bounded

compass structure for ϕ.

Finally, to prove that the rank of an extended decomposition
tree is bounded by 4 · |ϕ| · 218|ϕ|+2 + 29|ϕ|+1 + |ϕ| + 1 it is
sufficient to observe that (ET5) and (ET6) force the existence
of at most |ϕ| additional successors of a node.

C. A decomposition tree for (weakly) discrete linear orders

As already pointed out, (weak) discreteness is not definable
in ABB̄L̄ by a constant formula. However, to tailor Theorem 4



to the class of weakly discrete linear orders, it suffices to
add the following condition to the definition of extended
decomposition tree.

Definition 7. Let ϕ be an ABB̄L̄-formula. A discrete extended
decomposition-tree for ϕ is an extended decomposition tree
Tϕ = 〈T , ν, τ1, τ2, τ3〉 such that the following additional
property holds:
(ETD) if n1, . . . , nk are the k successors of a node n,

with k > 0, then ν(n1) = (E1, H1,M1), ν(nk) =
(Ek, Hk,Mk), and M1,Mk are strong matching sets.

To prove completeness and soundness, it is sufficient to
recall that a strong matching set between two rows y and y′

corresponds to the case in which y′ is the immediate successor
of y. The following theorem follows directly from (ETD) and
Theorem 4.

Theorem 5. Let ϕ be an ABB̄L̄-formula. Then, ϕ is sat-
isfiable over weakly discrete linear orders if and only if
there exists a discrete extended decomposition tree Tϕ =
〈T , ν, τ1, τ2, τ3〉 for ϕ with rank m ≤ 4 · |ϕ| · 218|ϕ|+2 +
29|ϕ|+1 + |ϕ|+ 1.

IV. COMPLEXITY BOUNDS TO THE SATISFIABILITY
PROBLEM FOR ABB̄L̄

In [8], Montanari et al. give an automaton-based algorithm
to check satisfiability of formulas of a spatial modal logic
based on an encoding of the problem into a suitable fragment
of CTL. The very same technique can be used to check
the satisfiability of an ABB̄L̄-formula ϕ. The effectiveness
of such an approach stems from the fact that the properties
that characterize an extended decomposition tree for ϕ can
be expressed by a CTL formula ~ϕ, with |~ϕ| exponential
in |ϕ|, that is, extended decomposition trees for ϕ are all
and only those ones that satisfy |~ϕ|. Next, satisfiability of
~ϕ over extended decomposition trees can be reduced to the
universality problem for a suitable Büchi tree automaton A~ϕ,
which can be obtained from ~ϕ in polynomial time with respect
to |~ϕ|. Since the universality problem for regular ω-languages
is in PSPACE [17] and |A~ϕ| is exponential in |ϕ|, the
resulting decision procedure for ABB̄L̄ is in EXPSPACE. An
EXPSPACE lower bound to the complexity of the satisfiability
problem for ABB̄L̄ immediately follows from the reduction
of the exponential-corridor tiling problem to the satisfiability
problem for ABB̄ given in [11].

Theorem 6. The satisfiability problem for ABB̄L̄ over the
class of all (resp., dense, weakly discrete) linear orders is
EXPSPACE-complete.

V. CONCLUSIONS

This paper aimed at contributing to the identification of the
decidability/undecidability border in interval temporal logics
by completing the picture given in [13]. In that paper, the
authors prove the maximality of ABB̄Ā with respect to
decidability over finite linear orders. Here, we show that, to
recover decidability in the case of infinite linear orders, the
operator 〈A〉 must be replaced by the weaker operator 〈L〉

(the undefinability of 〈A〉, resp., 〈A〉, in terms of 〈L〉, 〈B〉,
resp., 〈L〉, 〈E〉, is a by-product of this pair of results).
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