
c© Springer-Verlag, 2004. Proceedings of JELIA 2004: 9th European Conference on
Logics in Artificial Intelligence, LNAI, Lisbon, Portugal, September 2004.

Time Granularities and
Ultimately Periodic Automata

Davide Bresolin, Angelo Montanari, and Gabriele Puppis

Dipartimento di Matematica e Informatica, Università di Udine
via delle Scienze 206, 33100 Udine, Italy

{bresolin,montana,puppis}@dimi.uniud.it

Abstract. The relevance of the problem of managing periodic phenom-
ena is widely recognized in the area of knowledge representation and
reasoning. One of the most effective attempts at dealing with this prob-
lem has been the addition of a notion of time granularity to knowledge
representation systems. Different formalizations of such a notion have
been proposed in the literature, following algebraic, logical, string-based,
and automaton-based approaches. In this paper, we focus our attention
on the automaton-based one, which allows one to represent a large class
of granularities in a compact and suitable to algorithmic manipulation
form. We further develop such an approach to make it possible to deal
with (possibly infinite) sets of granularities instead of single ones. We
define a new class of automata, called Ultimately Periodic Automata,
we give a characterization of their expressiveness, and we show how they
can be used to encode and to solve a number of fundamental problems,
such as the membership problem, the equivalence problem, and the prob-
lem of granularity comparison. Moreover, we give an example of their
application to a concrete problem taken from clinical medicine.

1 Introduction

The importance of managing periodic phenomena is widely recognized in a vari-
ety of applications in the areas of artificial intelligence and databases, including
planning, natural language processing, temporal database inter-operability, data
mining, and time management in workflow systems. One of the most effective
attempts at dealing with this problem has been the addition of a notion of time
granularity to knowledge and database systems. Different time granularities can
be used to specify the occurrence times of different classes of events. For instance,
the temporal characterizations of a flight departure, a business appointment, and
a birthdate are usually given in terms of minutes, hours, and days, respectively.
Furthermore, the ability of properly relating different time granularities is needed
to process temporal information. As an example, when a computation involves
pieces of information expressed at different time granularities, the system must
integrate them in a principled way. Such an integration presupposes the formal-
ization of the notion of granularity and the analysis of the relationships between
different time granularities.



According to a commonly accepted perspective [1], any time granularity can
be viewed as the partitioning of a given temporal domain in groups of elements,
where each group is perceived as an indivisible unit (a granule). In particular,
most granularities of interest are modeled as infinite sequences of granules that
present a repeating pattern and, possibly, temporal gaps within and between
granules. Even though conceptually clean, this point of view does not address
the problem of finitely (and compactly) representing granularities to make it
possible to deal with them in an effective (and efficient) way. In the literature,
many different approaches to the management of time granularities have been
proposed (we briefly survey them in Section 2). In this paper, we outline a general
framework for time granularity that generalizes the automaton-based approach
originally proposed by Dal Lago and Montanari in [6] by making it possible to
deal with (possibly infinite) sets of granularities rather than single granularit-
ies. We give a characterization of ω-regular languages consisting of ultimately
periodic words only, and we exploit such a characterization to define a proper
subclass of Büchi automata, called Ultimately Periodic Automata (UPA), which
includes all and only the Büchi automata that recognize ω-regular languages of
ultimately periodic words. UPA allow one to encode single granularities, (pos-
sibly infinite) sets of granularities which have the same repeating pattern and
different prefixes, and sets of granularities characterized by a finite set of non-
equivalent patterns (the notion of equivalent patterns is given in Section 3), as
well as any possible combination of them.

The rest of the paper is organized as follows. First, we briefly survey the
most relevant formalisms for time granularity proposed in the literature. Next,
we define UPA and we show how to use them to represent sets of periodical
granularities. Noticeable properties of (the languages recognized by) UPA are
then exploited to solve a number of basic problems about sets of time granular-
ities. We focus our attention on the following problems: (i) emptiness (to decide
whether a given set of granularities is empty); (ii) membership (to decide whether
a granularity belongs to a given set of granularities); (iii) equivalence (to decide
whether two representations define the same set of granularities); (iv) minimiz-
ation (to compute compact representations of a given set of granularities); (v)
comparison of granularities (for any pair of sets of granularities G,H, to decide
whether there exist G ∈ G and H ∈ H such that G ∼ H, where ∼ is one of the
usual relations between granularities, e.g, partition, grouping, refinement, and
aligned refinement [1]). Successively, we briefly analyze variants and extensions
of UPA. Finally, we show how to apply the proposed framework to a real-world
application taken from clinical medicine. We conclude the paper with a short
discussion about achieved results and future research directions.

2 Formal Systems for Time Granularity

Different formal systems for time granularity have been proposed in the literat-
ure, following algebraic, logical, string-based, and automaton-based approaches
[10]. The set-theoretic/algebraic approach, that subsumes well-known formalisms

2



developed in the areas of artificial intelligence and temporal databases, such as
the temporal interval collection formalism [12] and the slice formalism [15], is
described in detail in [1]. It assumes the temporal domain to be isomorphic to
N, and it defines every time granularity as a partition G ⊆ 2T of a set T ⊆ N
such that for every pair of distinct sets g, g′ ∈ G (hereafter called granules), we
have that either ∀t ∈ g, t′ ∈ g′(t < t′) or ∀t ∈ g, t′ ∈ g′(t′ < t). This definition
captures both time granularities that cover the whole temporal domain, such
as Day, Week, and Month, and time granularities with gaps within and between
granules, like, for instance, BusinessDay, BusinessWeek, and BusinessMonth.
Figure 1 depicts some of these granularities. For the sake of simplicity, we as-
sume that both the first week and the first month start from the first day (such
an assumption can be easily relaxed).

Day ... ...

1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526
BusinessDay ... ...

1 2 3 4 5 6 7 8 9 10 1112131415 1617181920

Week ... ...

1 2 3 4

BusinessWeek ... ...

1 2 3 4

BusinessMonth ... ...

1

Fig. 1. Some examples of time granularities.

Various relations can be defined between pairs of granularities. Let us con-
sider, for instance, the relations of grouping, refinement, partition, and aligned
refinement (a large set of granularity relations is given in [1]). We have that a
granularity G groups into (resp. is refined by) a granularity H if every granule
of H is the union of some granules (resp. is contained in some granule) of G;
moreover, a granularity G partitions a granularity H if G groups into H and
G refines H; finally, a granularity G is an aligned refinement of H if, for every
positive integer n, the n-th granule of G is included in the n-th granule of H. In
the case of Figure 1, we have that Day groups into BusinessMonth, BusinessDay
refines Week, Day partitions Week, and BusinessWeek is an aligned refinement of
Week.

A symbolic representation of a significant class of time granularities has been
obtained by means of the formalism of Calendar Algebra (CA) [16]. Such a
formalism represents time granularities as expressions built up from a finite set
of basic granularities through the application of suitable algebraic operators.
For instance, the granularity Week can be generated by applying the operator
Group7 to the granularity Day. The operations of CA reflect the ways in which
people define new granularities from existing ones, and thus CA turns out to be
a fairly natural formalism. In despite of that, it suffers from some non-trivial
drawbacks: it does not address in a satisfactory way some basic problems of
obvious theoretical and practical importance, such as the equivalence problem,
and it only partially works out, in a rather complex way, other relevant problems,
such as the problem of granularity conversion [11].

3



A string-based model for time granularities has been proposed by Wijsen
[18]. Infinite granularities are modeled as infinite words over an alphabet con-
sisting of three symbols, namely, � (filler), � (gap), and o (separator), which
are respectively used to denote time points covered by some granule, to de-
note time points not covered by any granule, and to delimit granules. Wijsen
focuses his attention on the class of periodical granularities, that is, to granu-
larities that, ultimately, periodically groups time points of the underlying tem-
poral domain. Periodical granularities can be identified with ultimately periodic
words, and they can be finitely represented by specifying a (possibly empty)
prefix and a repeating pattern. As an example, the granularity BusinessWeek
������� o������� o . . . can be encoded by the empty prefix ε and the re-
peating pattern �������o. In order to solve the equivalence problem, Wijsen
defines a suitable aligned form, which forces separators to occur immediately
after an occurrence of � (in such a case, one can encode each occurrence of the
substring �o by means of a single symbol J). The aligned form guarantees a
one-to-one correspondence between strings and granularities, thus providing a
straightforward solution to the equivalence problem.

The idea of viewing time granularities as ultimately periodic strings estab-
lishes a natural connection with the field of formal languages and automata.
The basic idea underlying the automaton-based approach to time granularity is
simple: we take an automaton A recognizing a single ultimately periodic word
u ∈ {�,�,J}ω and we say that A represents the granularity G if and only if u
represents G. Such an automaton-based approach to time granularity has been
proposed by Dal Lago and Montanari in [6], and later revisited by Dal Lago,
Montanari, and Puppis in [7,8]. The resulting framework views granularities
as strings generated by a specific class of automata, called Single-String Auto-
mata (SSA). In order to compactly encode the redundancies of the temporal
structures, SSA are endowed with counters ranging over discrete finite domains
(Extended SSA, ESSA for short). Properties of ESSA have been exploited to effi-
ciently solve the equivalence and the granule conversion problems for single time
granularities. Moreover, the relationships between ESSA and Calendar Algebra
have been investigated in [7], where a number of algorithms that map Calendar
Algebra expressions into automaton-based representations of time granularities
are given. Such an encoding allows one to reduce problems about Calendar Al-
gebra expressions to equivalent problems for ESSA. This suggests an alternative
point of view on the automaton-based framework: besides a formalism for the
direct specification of granularities, automata can be viewed as a low-level oper-
ational formalism into which high-level granularity specifications, such as those
of Calendar Algebra, can be mapped.

The choice of Propositional Linear Temporal Logic (LTL for short) as a
logical tool for granularity management has been advocated by Combi et al. [5].
Granularities are defined as models of LTL formulas, where suitable propositional
symbols are used to mark the endpoints of granules. In this way, a large set
of ω-regular granularities, such as, for instance, repeating patterns that can
start at an arbitrary time point (unanchored granularities), can be captured.

4



Moreover, problems like checking the consistency of a granularity specification or
the equivalence of two granularity expressions can be solved in a uniform way by
reducing them to the validity problem for LTL, which is known to be in PSPACE.
An extension of LTL that replaces propositional variables by first-order formulas
defining integer constraints, e.g., x ≡k y, has been proposed by Demri [9].
The resulting logic, denoted by PLTLmod(Past LTL with integer periodicity
constraints), generalizes both the logical framework proposed by Combi et al. and
Dal Lago and Montanari’s automaton-based one, and it allows one to compactly
define granularities as periodicity constraints. In particular, the author shows
how to reduce the equivalence problem for ESSA to the model checking problem
for PLTLmod(-automata), which turns out to be in PSPACE, as for LTL.

3 A new class of automata

In this paper, we extend the automaton-based approach to deal with (possibly
infinite) sets of periodical granularities. In [6], Dal Lago and Montanari show
how single granularities can be modeled by SSA, that is, Büchi automata re-
cognizing single ultimately periodic words. In the following, we identify a larger
(proper) subclass of Büchi automata that recognizes languages only consisting
of ultimately periodic words, and we show how to exploit them to efficiently deal
with time granularities (proof details are given in [2]).

3.1 Ultimately Periodic Automata

We first show that ω-regular languages only consisting of ultimately periodic
words (periodical granularities) can be represented via suitable Büchi automata,
that we call Ultimately Periodic Automata. By definition, ω-regular languages
are sets of infinite words recognized by Büchi automata. They can be expressed
as finite unions of sets of the form U ·V ω, where U and V are regular languages
of finite words. From this, it easily follows that any ω-regular language is non-
empty iff it contains an ultimately periodic word. (An ultimately periodic word
w is an infinite word of the form u · vω, where u and v (6= ε) are finite words
called the prefix and the repeating pattern of w, respectively.) From the closure
properties of ω-regular languages, it follows that any ω-regular language L is
uniquely identified by the set UP(L) of its ultimately periodic words, that is,
for every pair of ω-regular languages L,L′, L = L′ iff UP(L) = UP(L′).

The following theorem provides a characterization of ω-regular languages of
ultimately periodic words.

Theorem 1. An ω-regular language L only consists of ultimately periodic words
iff it is a finite union of sets U · {v}ω, where U ⊆ Σ∗ is regular and v is a finite
non-empty word.

From Theorem 1, it follows that ω-regular languages of ultimately periodic
words capture sets of granularities with possibly infinitely many prefixes, but
with only a finite number of non-equivalent repeating patterns (we say that two

5



patterns v and v′ are equivalent iff they can be obtained by rotating and/or
repeating a finite word v′′).

Theorem 1 yields a straightforward definition of the class of automata that
captures all and only the ω-regular languages of ultimately periodic words.

Definition 1. An Ultimately Periodic Automaton (UPA) is a Büchi automaton
A = (Q, q0, ∆, F ) such that, for every f ∈ F , the strongly connected component
of f is either a single transient state or a single loop with no exiting transitions.

Theorem 2. UPA recognize all and only the ω-regular languages of ultimately
periodic words.

Theorem 2 can be reformulated by stating that UPA-recognizable languages are
all and only the ω-regular languages L such that L = UP (L).

Figure 2 depicts two UPA recognizing the languages {�}∗ · {�J}ω and
{��J}ω ∪ {�J}ω, respectively. The former represents the unanchored granu-
larity that groups days two by two, while the latter represents two granularities
that respectively group days two by two and three by three.

s0 s1 s2

�

� J

�

s0

s1 s2 s3

s4 s5

�

�

� J

�

J

�

Fig. 2. Two examples of UPA.

By exploiting the same construction methods used in the case of Büchi auto-
mata, one proves that UPA are closed under union, intersection, and concaten-
ation with regular languages. Furthermore, it is trivial to see that UPA satisfy a
weak form of closure under ω-exponentiation, namely, for every finite non-empty
word v, there is an UPA recognizing the language {v}ω. On the contrary, from
Theorem 1 it easily follows that UPA are not closed under complementation.
Consider, for instance, the empty language ∅. Its complement is the set of all
ultimately periodic words, which is not an UPA-recognizable language (UPA-
recognizable languages must encompass finitely many non-equivalent repeating
patterns).

Theorem 3. UPA are closed under intersection, union, and concatenation with
regular languages, but they are not closed under complementation.

UPA can be successfully exploited to efficiently solve a number of problems
involving sets of granularities.

– Emptiness. The emptiness problem is solved in polynomial time by testing
the existence of a loop involving some final state (henceforth final loop)
reachable from the initial state.

6



– Membership. The membership problem consists in deciding whether an
UPA A recognizes a given ultimately periodic word w. Given an UPA B
recognizing the singleton {w}, one can decide in polynomial time whether
w ∈ L(A) by testing the emptiness of the language recognized by the product
automaton A× B over the alphabet {

(

�
�

)

,
(

�
�

)

,
(

J
J

)

}.
– Equivalence. One can decide whether two given UPA A and B are equival-

ent by viewing them as generic Büchi automata, by computing their com-
plements A and B (which are not necessarily UPA), and by testing the
emptiness of both L(A)∩L(B) and L(B)∩L(A). Here we provide an altern-
ative, direct and more efficient method for deciding the equivalence problem.
The solution exploits a suitable canonical form of UPA, which turns out to
be unique up to isomorphisms. Such a form is obtained by a canonization
algorithm that works as follows [2]:
1. minimize the patterns of the recognized words and the final loops (using

Paige-Tarjan-Bonic algorithm [17]);
2. minimize the prefixes of the recognized words;
3. compute the minimum deterministic automaton for the prefixes of the

recognized words (using Brzozowski algorithm [3]);
4. build the canonical form by adding the final loops to the minimum auto-

maton for the prefixes.
Brzozowski’s algorithm (used at step 3) requires exponential time and space
in the worst case, but it turned out to be faster than the other available
algorithms in many experiments [4]. As a result, the proposed algorithm for
testing the equivalence of UPA outperforms the alternative algorithm using
Büchi automata.

– Minimization. The minimization problem consists in computing the most
compact representations for a given set of granularities. Such a problem is
somehow connected to the equivalence problem, since in many cases minimal
automata turn out to be unique up to isomorphisms. In the case of UPA,
the minimization problem is PSPACE-complete and it may yield different
solutions. A minimal UPA can be obtained by simply replacing step 3 in the
canonization algorithm with the computation of a minimal non-deterministic
automaton for the prefixes of the recognized words (using the construction
developed in [14]).

– Comparison of granularities. Usual relations between granularities can
be checked by looking at their automaton-based representations. In particu-
lar, granularity comparison problems can be easily reduced to the emptiness
problem for suitable product automata. As an example, let us consider the
partition relation. Let A1 and A2 be two UPA representing two sets of gran-
ularities H and G, respectively. In order to check whether there exist two
granularities G ∈ G and H ∈ H such that G partitions H, we first compute
a product automaton A3 accepting all pairs of granularities that satisfy the
‘partition’ property, and then we test the emptiness of the recognized lan-
guage. The automaton A3 is defined as follows:
1. the set of states of A3 is S1 × S2 × {0, 1, 2}, where S1 (resp. S2) is the

set of states of A1 (resp. A2);

7



2. the initial state of A3 is the tuple (s1, s2, 0), where s1 (resp. s2) is the
initial state of A1 (resp. A2);

3. the transition relation of A3 copies the transition relations of A1 and
A2 in the first two components of states; it changes the third component
from 0 to 1 when a final state of A1 occurs, from 1 to 2 when a final state
of A2 occurs, and back to 0 immediately afterwards; finally, it constrains
the recognized symbols to belong to the set {

(

�
�

)

,
(

�
�

)

,
(

J
J

)

,
(

�
J

)

};
4. the final states of A3 are all and only the tuples of the form (s1, s2, 2).

3.2 Relaxed UPA

In the following, we introduce a new class of automata which are as expressive as
UPA, but produce more compact representations of granularities. UPA structure
is well-suited for algorithmic manipulation. In particular, it allows one to solve
the equivalence problem by taking advantage of a suitable canonical form. How-
ever, UPA may present redundancies in their structure, due to the presence of
duplicated loops encoding the same pattern. As an example, consider the auto-
mata of Figure 3. They both recognize the language expressed by the ω-regular
expression �J ω ∪�J (JJ)∗�ω, but the automaton to the right has less states
than the one to the left. Unfortunately, it is not an UPA, because UPA do not
allow transitions to exit from final loops.

q0

q4

q1 q2 q3

�

J

�

J

J

�

�
p0 p1 p2 p3

�

J

J

�

�

Fig. 3. UPA may present redundancies.

We define a new class of automata, that includes both automata of Figure 3,
which only requires that, whenever an automaton leaves a final loop, it cannot
reach it again.

Definition 2. A Relaxed UPA (RUPA) is a Büchi automaton A = (Q,∆, q0, F )
such that, for every f ∈ F , the strongly connected component of f is either a
single transient state or a single loop.

The relation between UPA and RUPA is stated by the following theorem.

Theorem 4. RUPA recognize all and only the UPA-recognizable languages.

RUPA can be exploited to obtain more compact representations of granu-
larities. To this end, one must take into consideration every strongly connected
component S of an UPA and check whether it satisfies the following conditions:

1. S is a single loop that does not involve final states;

8



2. S encodes a single pattern v (up to rotations);
3. there exists a final loop Cf that encodes a pattern that is equivalent to v;
4. S and Cf have the same entering transitions.

If conditions 1-4 are satisfied, then S and Cf can be merged, preserving the
recognized language. As an example, consider the UPA automaton to the left of
Figure 3. The strongly connected component {q1, q2}meets the above conditions:
it is a single loop that does not involve final states, it encodes the single pattern
JJ, which is equivalent to the pattern encoded by the final loop {q4}, and
{q1, q2} and {q4} have the same entering transitions. Hence, q4 can be removed
from the automaton, provided that q1 and q2 become final states. The resulting
RUPA automaton is exactly the one to the right of Figure 3.

Such a construction can be turned into an algorithm that transforms UPA
into more compact RUPA by eliminating redundant final loops (if any). It first
determines all the strongly connected components of UPA that meet conditions
1-4, and then it merges them. The algorithm turns out to be of polynomial
time complexity. It must be noted that the algorithm transforms UPA into more
compact, but not necessarily minimal, RUPA. The resulting RUPA are indeed
not guaranteed to be of minimal size, even when the input UPA are minimal
(and the minimization algorithm for UPA cannot be applied to RUPA).

3.3 Beyond (R)UPA

We conclude the section by briefly investigating possible extensions of (R)UPA.
We have shown that the class of (R)UPA is the subclass of Büchi automata that
recognize ω-regular languages of ultimately periodic words. As we shall illustrate
in the next section, (R)UPA allow one to deal with meaningful real-world ap-
plications. Nevertheless, there are many sets of of periodical granularities which
are not captured by (R)UPA.

In [2], we define a new class of automata, called Three-Phase Automata
(3PA), which includes (R)UPA, that captures all and only the languages L for
which there exists an ω-regular language L′ such that L = UP(L′). This set
of languages includes both ω-regular languages (the (R)UPA-recognizable lan-
guages) and non-ω-regular languages (the languages L such that L = UP(L′)
⊂ L′). In particular, unlike (R)UPA, 3PA are able to capture sets of granularities
featuring an infinite number of non-equivalent repeating patterns. Computations
of 3PA consist in three steps: (i) the automaton guesses the prefix of an ulti-
mately periodic word, then (ii) it guesses its repeating pattern and stores it in a
queue, and finally (iii) it recognizes the stored pattern infinitely many times. 3PA
are closed under union, intersection, concatenation with a regular language, and
complementation. Moreover, it is not difficult to show that the solutions to the
basic problems about sets of granularities given for (R)UPA can be generalized
to 3PA.

There exist, however, noticeable sets of granularities featuring an infinite
number of non-equivalent repeating patterns which are not 3PA-recognizable.
This is the case, for instance, of the language {(�nJ)ω|n ≥ 0} of all and only

9



the granularities that group days n by n, with n > 0. All 3PA that recognize
these repeating patterns must indeed also recognize all, but finitely many, com-
binations of them. Such a distinctive property of all 3PA-recognizable languages
is captured by the following theorem [2].

Theorem 5. Let L = UP(L′) where L′ is defined by the ω-regular expression
⋃

i Ui ·V ωi . For any i, if Vi includes (at least) two non-equivalent patterns v and
v′, then L includes all ultimately periodic words u(vov1 . . . vn)ω, for all n ≥ 0,
u ∈ Ui, and vi ∈ {v, v′}.

4 A Real-World Application

The need of dealing with sets of time granularities arises in several application
domains. We focus our attention on the medical domain of heart transplant
patients. Posttransplantation guidelines require outpatients to take drugs and
to submit to periodical visits for life. These requirements are usually collected
in formal protocols with schedules specifying the therapies and the frequency of
the check-ups. We report an excerpt of the guidelines for an heart transplant
patient reported in [13]. Depending on the physical conditions of the patient,
the guidelines can require, together with other treatments, an estimation of the
glomerular filtration rate (GFR) with one of the following schedules:

– 3 months and 12 months posttransplantation and every year thereafter;
– 3 months and 12 months posttransplantation and every 2 years thereafter.

These protocols involve the so-called unanchored granularities, to manage the
various admissible starting points for the scheduled therapies (and/or check-ups),
as well as sets of granularities with different repeating patterns, to capture the set
of distinct periodicities of the scheduled therapies. The ability of dealing with sets
of granularities, and not only with single granularities, is thus needed to reason
about protocols and patient schedules. As an example, since different protocols
can be specified for the same class of patients by different people/institutions,
it is a critical problem to decide whether two protocols define the same set of
therapies/granularities (equivalence problem). The decidability of this problem
gives the possibility of choosing the most compact, or most suitable, representa-
tion for a given protocol. Another meaningful reasoning task is that of checking
whether a given therapy/granularity assigned to a patient satisfies the prescribed
protocol, that is, whether it belongs to the set of therapies/granularities of the
protocol (granularity comparison problem).

Let us consider this latter problem. Consider the above given (sub)set of
therapies/check-ups of a protocol for hearth transplant patients. Given an UPA
A encoding (the granularities of) such a set of therapies/check-ups and an UPA B
representing the single granularity of the specific therapy (up to a certain date),
the granularity comparison problem can be decided by checking the existence
of a word in L(A) that properly relates to the one contained in L(B). For the
sake of simplicity, we consider months of 30 days and years of 365 days (relaxing

10



such a simplification is tedious, but trivial). The UPA A is depicted in Figure

4, where we use the shorthand ◦ a
n

−→◦ to denote a sequence of n+ 1 states and n
a-labeled transitions.

�
�60 �29 J �245 �29

J

J

�335 �29

J

�700 �29

J

Fig. 4. The UPA-based specification of the protocol.

We model the granularity of the therapy assigned to the patient with a single
ultimately periodic word v (equivalently, an SSA B), where the occurrences ofJ
denote the days of the visits. We can check the consistency of the therapy with
respect to the prescribed protocol by testing whether the granularity v is an
aligned refinement of some granularity u ∈ L(A). Thus, the given consistency-
checking problem can be seen as a particular case of granularity comparison
problem. Given two words u and v that represent, respectively, granularities G
and H, we have that H is an aligned refinement of G iff, for every n ∈ N+,
v[n] ∈ {�,J} implies that u[n] ∈ {�,J} and that the words v[1, n − 1] and
u[1, n − 1] encompass the same number of occurrences of J. Such a condition
can be easily verified in polynomial time as follows. Given two UPA A and B
representing two sets of granularities G and H, (i) one constructs a product
automaton C that accepts all pairs of granularities G ∈ G and H ∈ H such that
H is an aligned-refinement of G, and then (ii) he/she tests the emptiness of the
language recognized by C.

As an example, consider the following instance of the temporal relation
VISITS(PatientId, Date, Treatment).

PatientId Date (MM/DD/YYYY) Treatment

1001 02/10/2003 transplant
1001 04/26/2003 GFR
1002 06/07/2003 GFR
1001 06/08/2003 biopsy
1001 02/10/2004 GFR
1001 01/11/2005 GFR
1001 01/29/2006 GFR

By properly selecting records, we can build the granularity of GFR measure-
ments for the patient identified by 1001. We represent this granularity as a single
ultimately periodic word v (starting from 01/01/2003), in which the occurrences
ofJ denote the days of the visits. The UPA B recognizing v is depicted in Figure
5.

In order to check whether the granularity of GFR measurements for patient
1001 is an aligned refinement of some granularity in L(A), we must construct the

11



�115 J �288 J �335 J �382 J

�

Fig. 5. The UPA representing GFR measurements for patient 1001.

product automaton for the relation of aligned refinement. Such an automaton
recognizes the language
{

(

�
�

)100(�
�

)15(�
J

)(

�
�

)13(J
�

)(

�
�

)245(�
�

)29(J
J

)(

�
�

)335(�
J

)(

�
�

)28(J
�

)(

�
�

)335·

·
(

�
�

)18(�
J

)(

�
�

)10(J
�

)

(

(

�
�

)335(�
�

)29(J
�

)

)ω
}

over the alphabet {
(

�
�

)

,
(

�
�

)

,
(

J
�

)

,
(

�
�

)

,
(

�
J

)

,
(

J
�

)

,
(

J
J

)

}. Since the resulting lan-
guage is not empty, we can conclude that the therapy satisfies the prescribed
protocol.

5 Discussion

In this paper, we developed an original automaton-based approach to the man-
agement of sets of granularities. We defined a new class of automata, called UPA,
that allow one to represent sets of granularities having possibly infinitely many
different prefixes and a finite number of non-equivalent repeating patterns. We
showed how well-known results coming from automata theory can be exploited to
solve a number of meaningful problems about sets of granularities. In particular,
we provided effective solutions to the problems of emptiness, membership, equi-
valence, minimization, and comparison of granularities for UPA. Furthermore,
we discussed variants and extensions of UPA (RUPA and 3PA) that increase
compactness and expressiveness of granularity representations. Finally, we ap-
plied the proposed framework to a case study taken from the domain of clinical
medicine. More specifically, we showed that UPA can be used to specify medical
guidelines and to check whether concrete therapy plans conform to them.

As for open problems, on the one hand we are looking for larger classes of
languages of ultimately periodic words that extends the class of 3PA, possibly
preserving closure and (some) decidability properties. On the other hand, we are
currently looking for the (proper) fragment of PLTLmod defining the temporal
logic counterpart of UPA as well as for the logical counterpart of 3PA. Pairing
the logical formalism with the automaton-based one would allow us to use the
former as a high-level interface for the specification of granularities and the latter
as an internal formalism for efficiently reasoning about them.

References

1. C. Bettini, S. Jajodia, and X.S. Wang. Time Granularities in Databases, Data
Mining, and Temporal Reasoning. Springer, July 2000.

12



2. D. Bresolin, A. Montanari, and G. Puppis. Time granularities and ultimately peri-
odic automata. Technical Report 24, Dipartimento di Matematica e Informatica,
Università di Udine, Italy, October 2003.

3. J.A. Brzozowski. Canonical regular expressions and minimal state graphs for def-
inite events. Mathematical Theory of Automata, 12:529–561, 1962.

4. C. Campeanu, K. Culik II, K. Salomaa, and S. Yu. State complexity of basic
operations on finite languages. In 4th International Workshop on Implementing
Automata (WIA’99), volume 2214 of LNCS, pages 60–70. Springer, 2001.

5. C. Combi, M. Franceschet, and A. Peron. Representing and reasoning about tem-
poral granularities. Journal of Logic and Computation, 14(1):51–77, 2004.

6. U. Dal Lago and A. Montanari. Calendars, time granularities, and automata. In
7th International Symposium on Spatial and Temporal Databases (SSTD), volume
2121 of LNCS, pages 279–298. Springer, 2001.

7. U. Dal Lago, A. Montanari, and G. Puppis. Time granularities, calendar algebra,
and automata. Technical Report 4, Dipartimento di Matematica e Informatica,
Università di Udine, Italy, February 2003.

8. U. Dal Lago, A. Montanari, and G. Puppis. Towards compact and tractable
automaton-based representations of time granularity. In 8th Italian Conference
on Theoretical Computer Science (ICTCS), volume 2841 of LNCS, pages 72–85.
Springer, 2003.

9. S. Demri. LTL over integer periodicity constraints (extended abstract). In Proceed-
ings of the 7th Int. Conf. on Foundations of Software Science and Computation
Structures (FOSSACS), volume 2987 of Lecture Notes in Computer Science, pages
121–135. Springer, April 2004.

10. J. Euzenat and A. Montanari. Time granularity. In M. Fisher, D. Gabbay, and
L. Vila, editors, Handbook of Temporal Reasoning in Artificial Intelligence. El-
sevier, 2004.

11. M. Franceschet and A. Montanari. Time granularities in databases, data mining,
and temporal reasoning, by Claudio Bettini, Sushil Jajodia, and Sean X. Wang
(book review). The Computer Journal, 45(6):683–685, 2002.

12. B. Leban, D. McDonald, and D. Foster. A representation for collections of temporal
intervals. In AAAI National Conference on Artificial Intelligence, volume 1, pages
367–371. AAAI Press, 1986.

13. Loma Linda University Medical Center. Pediatric heart transplantation protocol,
2002.

14. O. Matz and A. Potthoff. Computing small nondeterministic automata. In Proceed-
ings of the Workshop on Tools and Algorithms for the Construction and Analysis
of Systems, BRICS Notes Series, pages 74–88, 1995.

15. M. Niezette and J. Stevenne. An efficient symbolic representation of periodic time.
In International Conference on Information and Knowledge Management (CIKM),
pages 161–168, Baltimore, MD, 1992. ACM Press.

16. P. Ning, S. Jajodia, and X.S. Wang. An algebraic representation of calendars.
Annals of Mathematics and Artificial Intelligence, 36:5–38, 2002.

17. R. Paige, R.E. Tarjan, and R. Bonic. A linear time solution to the single function
coarsest partition problem. Theoretical Computer Science, 40:67–84, 1985.

18. J. Wijsen. A string-based model for infinite granularities. In C. Bettini and
A. Montanari, editors, AAAI Workshop on Spatial and Temporal Granularities,
pages 9–16. AAAI Press, 2000.

13


