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Abstract. Propositional interval temporal logics are quite expressive temporal
logics that allow one to naturally express statements that refer to time intervals.
Unfortunately, most such logics turned out to be (highly) undecidable. To get
decidability, severe syntactic and/or semantic restrictions have been imposed to
interval-based temporal logics that make it possible to reduce them to point-based
ones. The problem of identifying expressive enough, yet decidable, new interval
logics or fragments of existing ones which are genuinely interval-based is still largely
unexplored. In this paper, we focus our attention on interval logics of temporal neigh-
borhood. We address the decision problem for the future fragment of Neighborhood
Logic (Right Propositional Neighborhood Logic, RPNL for short) and we positively
solve it by showing that the satisfiability problem for RPNL over natural numbers
is NEXPTIME-complete. Then, we develop a sound and complete tableau-based
decision procedure and we prove its optimality.

1. Introduction

Propositional interval temporal logics are quite expressive temporal
logics that provide a natural framework for representing and reason-
ing about temporal properties in several areas of computer science,
including artificial intelligence (reasoning about action and change,
qualitative reasoning, planning, and natural language processing), the-
oretical computer science (specification and automatic verification of
programs) and databases (temporal and spatio-temporal databases).

Various propositional and first-order interval temporal logics have
been proposed in the literature (a recent comprehensive survey can
be found in [10]). The most significant propositional ones are Halpern
and Shoham’s Modal Logic of Time Intervals (HS) [12], Venema’s CDT
logic, interpreted over linear and partial orders [8, 11, 21|, Moszkowski’s
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Propositional Interval Temporal Logic (PITL) [18], and Goranko, Mon-
tanari, and Sciavicco’s Propositional Neighborhood Logic (PNL) [9].

HS features four basic operators: (B) (begins) and (F) (ends), and
their transposes (B) and (F). Given a formula ¢ and an interval [dp, d1],
(B)p holds at [dp, d1] if ¢ holds at [do, d2], for some da < di, and (E)¢
holds at [dy,d;] if ¢ holds at [dg,d;], for some dy > dy. HS has been
shown to be undecidable for several classes of linear and branching
orders, including natural numbers [12]. The fragment of HS with the
two modalities (B) and (E) only has been proved to be undecidable
when interpreted over dense linear orders by sharpening the original
Halpern and Shoham’s result [14].

CDT has three binary operators C' (chop), D, and T, which corre-
spond to the ternary interval relations occurring when an extra point
is added in one of the three possible distinct positions with respect to
the two endpoints of the current interval (before, between, and after),
plus a modal constant = which holds at a given interval if and only if
it is a point-interval. CDT is powerful enough to embed HS, and thus
it is undecidable (at least) over the same classes of orders.

PITL provides two modalities, namely, O (nezt) and C (the special-
ization of the chop operator for discrete structures). In PITL an interval
is defined as a finite or infinite sequence of states. Given two formulas

v, and an interval sq, ..., sy, (O¢ holds over sg,..., s, if and only if
© holds over si,...,s,, while ¢ C'% holds over sq, ..., s, if and only if
there exists ¢, with 0 < ¢ < n, such that ¢ holds over sg,...,s; and

¥ holds over s;,...,s,. In [18], Moszkowski proves the undecidability
of PITL over discrete linear orders, while its undecidability over dense
linear orders has been shown by Lodaya [14].

PNL has two modalities for right and left interval neighborhoods,
namely, the after operator (A), such that (A)¢ holds over [dy, d;] if ¢
holds over [dy,ds] for some dy > dj, and its transpose (A) [9]. While
the undecidability of first-order Neighborhood Logic (NL) can be easily
proved by embedding HS in it, the satisfiability problem for PNL has
been recently shown to be decidable in NEXPTIME with respect to
several class of linear orders [16]. The proof basically reduces the prob-
lem to the satisfiability problem for the decidable 2-variable fragment
of first-order logic extended with a linear order [19]. As a matter of fact,
such a reduction does not provide us with a viable decision procedure
for PNL.

In summary, propositional interval temporal logics are very expres-
sive (it can be shown that both HS and CDT are strictly more ex-
pressive than every point-based temporal logic on linear orders), but in
general (highly) undecidable. They make it possible to express prop-
erties of pairs of time points (think of intervals as constructed out of
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points), rather than single time points, and, in most cases, this feature
prevents one from the possibility of reducing interval-based temporal
logics to (decidable) point-based ones and of benefitting from the good
computational properties of point-based logics.

To make such a reduction possible, severe syntactic and/or semantic
restrictions must be imposed to interval temporal logics [15].

One can get decidability by making a suitable choice of the interval
modalities. This is the case with the (B)(B) (begins/bequn by) and
and (E)(FE) (ends/ended by) fragments of HS. Consider the case of

(B)(B) (the case of (E)(F) is similar). As shown by Goranko et al.
[10], the decidability of (B)(B) can be obtained by embedding it into
the propositional temporal logic of linear time LTL[F,P]| with temporal
modalities F' (sometime in the future) and P (sometime in the past).
The formulae of (B)(B) are simply translated into formulae of LTL[F,P]
by a mapping that replaces (B) by P and (B) by F. LTL[F,P] has the
finite model property and is decidable.

As an alternative, decidability can be achieved by constraining the
classes of temporal structures over which the interval logic is inter-
preted. This is the case with the so-called Split Logics (SLs) [17]. SLs
are propositional interval logics equipped with operators borrowed from
HS and CDT, but interpreted over specific structures, called split struc-
tures. The distinctive feature of split structures is that every interval
can be ‘chopped’ in at most one way. The decidability of various SLs has
been proved by embedding them into first-order fragments of monadic
second-order decidable theories of time granularity (which are proper
extensions of the well-known monadic second-order theory of one suc-
cessor S18S).

Finally, another possibility is to constrain the relation between the
truth value of a formula over an interval and its truth value over
subintervals of that interval. As an example, one can constrain a propo-
sitional letter to be true over an interval if and only if it is true at its
starting point (locality) or can constrain it to be true over an interval if
and only it it is true over all its subintervals (homogeneity). A decidable
fragment of PITL extended with quantification over propositional let-
ters (QPITL) has been obtained by imposing the locality constraint [18].
By exploiting such a constraint, decidability of QPITL can be proved
by embedding it into quantified LTL. (In fact, as already noticed by
Venema, the locality assumption yields decidability even in the case of
the interval logics HS and CDT [21].)

A major challenge in the area of propositional interval temporal
logics is thus to identify genuinely interval-based decidable logics, that
is, logics which are not explicitly translated into point-based logics and
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not invoking locality or other semantic restrictions, and to provide them
with actual decision procedures.

In this paper, we propose an implicit and incremental tableau-based
decision procedure for the future fragment of PNL, that we call Right
PNL (RPNL for short), interpreted over natural numbers. While var-
ious tableau methods have been developed for linear and branching
time point-based temporal logics [6, 7, 13, 20, 22], not much work has
been done on tableau methods for interval-based temporal logics. One
reason for this disparity is that operators of interval temporal logics
are in many respects more difficult to deal with [11]. As an example,
there exist straightforward inductive definitions of the basic operators
of point-based temporal logics, while inductive definitions of interval
modalities turn out to be much more involved (consider, for instance,
the one for the chop operator given in [2]).

In [8, 11], Goranko et al. propose a general tableau method for CDT,
interpreted over partial orders. It combines features of the classical
tableau method for first-order logic with those of explicit tableau meth-
ods for modal logics with constraint label management, and it can be
easily tailored to most propositional interval temporal logics proposed
in the literature. However, it only provides a semi-decision procedure
for unsatisfiability. In [4], Bresolin and Montanari propose an implicit
and declarative tableau-based decision procedure for RPNL that com-
bines syntactic restrictions (future temporal operators) and semantic
ones (the domain of natural numbers). However, such a procedure is
in EXPSPACE and, thus, since the decision problem for PNL is in
NEXPTIME [16], it is far to be optimal.

In this paper, we devise an optimal tableaux-based decision proce-
dure for RPNL. Unlike the case of the (B)(B) and (E)(E) fragments,
we cannot abstract way from the left endpoint of intervals: there can be
contradictory formulae that hold over intervals that have the same right
endpoint, but a different left one. The proposed tableau method partly
resembles the tableau-based decision procedure for LTL [22]. However,
while the latter takes advantage of the so-called fix-point definition of
temporal operators, which makes it possible to proceed by splitting
every temporal formula into a (possibly empty) part related to the cur-
rent state and a part related to the next state, and to completely forget
the past, our method must also keep track of universal and (pending)
existential requests coming from the past.

The paper is organized as follows. In Section 2 we introduce syn-
tax and semantics of RPNL. We distinguish two possible semantics,
namely, a strict one, which excludes intervals with coincident endpoints
(point-intervals), and a non-strict one, which includes them. In Section
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3 we give an intuitive account of the proposed decision method, in the
case of strict semantics, and then, in Section 4, we formalize it. In
Section 5 we prove the NEXPTIME-completeness of the satisfiability
problem for RPNL, while in Section 6 we devise an optimal tableau-
based decision procedure and we prove its soundness and completeness.
Finally, in Section 7 we briefly show how to adapt the method to the
case of non-strict semantics. Conclusions provide an assessment of the
work and outline future research directions.

2. Right Propositional Neighborhood Logics

In this section, we give syntax and semantics of RPNL interpreted
over the set N of natural numbers or over a prefix of it. To this end, we
introduce some preliminary notions. Let D = (D, <) be a strict linear
order isomorphic to N or to a prefix of it. An interval on I is an ordered
pair [d;, d;] such that d;,d; € D and d; < d;. We say that [d;, d;] is a
strict interval if d; < dj, and that it is a point interval if d; = d;. The
set of all strict intervals will be denoted by I(ID)~, while the set of all
intervals on D will be denoted by I(D)*. With I(D) we denote either of
these. The pair (D, I[(ID)7) is called a strict interval structure, while the
pair (D, I(D)") is called a non-strict interval structure. For every pair
of intervals [d;, d;], [d}, d;] € (D), we say that [d}, d}] is a right neighbor
of [d;, d;] if and only if d; = d,.

The language of Strict Right Propositional Neighborhood Logic
(RPNL~™ for short) consists of a set AP of propositional letters, the
classical connectives — and V, and the modal operator (A), the dual
of which is denoted [A]. The remaining classical connectives, as well as
the logical constants T (true) and L (false), can be defined as usual.
The formulae of RPNL™, denoted by ¢, 1, ..., are recursively defined
by the following grammar:

pu=p|op|eVel| (Ae.

The language of Non-strict Right Propositional Neighborhood Logic
(RPNLT for short) differs from the language of RPNL™ only in the
notation for the modalities: (A) and [A] are replaced by <, and O,,
respectively. We use different notations for the modalities in RPNL™
and RPNL™ only to reflect their historical links and to make it easier to
distinguish between the two semantics from the syntax. The formulae
of RPNL™, are recursively defined by the following grammar:

pu=plop|eVe| O
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We denote by |p| the length of ¢, that is, the number of symbols in
¢ (in the following, we shall use | | to denote the cardinality of a set
as well). Whenever there are no ambiguities, we call an RPNL formula
just a formula. A formula of the forms (A)y or =(A)vy (resp., Optp or
—<)) is called a temporal formula (from now on, we identify —(A)
with [A]= and =) with O,9).

A model for an RPNL™ (resp., RPNL™) formula is a pair M =
((D,I(D)), V), where (D,I(DD)) is a strict (resp., non-strict) interval
structure and V : I(D) — 24 is a waluation function assigning to
every interval the set of propositional letters true on it. Given a model
M = ((D,I(D)),V) and an interval [d;,d;] € I(D), the semantics of
RPNL™ (resp., of RPNL™) is defined recursively by the satisfiability
relation |- as follows:

— for every propositional letter p € AP, M, [d;,d;] IF p iff p €
V(lds, d;]);

— M, [d;, d;] I = iff ML, [d;, d;] - o;

M, [di, d;] IF 1 V ) iff M, [d;, dj] IF b1, or M, [d;, dj] IF 1a;

— M, [d;,d;] Ik (A)y (resp., Opp) iff 3dy, € D, dj, > dj (resp., di >
d; ) such that M, [d;, dy] IF 4.

We place ourselves in the most general setting and we do not impose
any constraint on the valuation function. In particular, given interval
[d;,d;], it may happen that p € V([d;,d;]) and p ¢ V([d},d]) for all

i 4y
intervals [d;, d;] (strictly) contained in [d;, d;].

Let dy be the initial point of D and let d; be its successor. Since our
logic has only future time operators, we can restrict our attention to the
initial interval [dy, dq] of I(D). From now on, we shall say that a formula
¢ is satisfiable if and only if there exists a model M = ((D,I(D)), V)
such that M, [dy, d1] IF ¢, where [dy, d1] is the initial interval of I(D).

3. An intuitive account of the proposed solution

In this section we give an intuitive account of the proposed solution to
the satisfiability problem for RPNL™. More precisely, we introduce the
main features of a model building process that, given a formula ¢ to be
checked for satisfiability, generates a model for it (if any) step by step.
Such a process takes into consideration one element of the temporal
domain at a time and, at each step, it progresses from one time point
to the next one. For the moment, we completely ignore the problem of
termination. In the following, we shall show how to turn this process
into an effective procedure.
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Let D = {do,dy,d2, ...} be the temporal domain, which we assumed
to be isomorphic to N or to a prefix of it. The model building process
begins from the time point d; by considering the initial interval [dg, d1].
It associates with [dp, d1] the set A4, 4,1 of all and only the formulae
which hold over it.

Next, it moves from d; to its immediate successor do and it takes into
consideration the two intervals ending in do, namely, [dy, d2]| and [dy, d2].
As before, it associates with [dy, da] (vesp. [do, da]) the set A4, 4,1 (resp.
Aldy,dz)) of all and only the formulae which hold over [dy,ds] (resp.
[do, d2]). Since [d1,ds] is a right neighbor of [dy, d1], if [A]y holds over
[do, d1], then b must hold over [dy,dz]. Hence, for every formula [A]y
in Ajgya,), it puts ¢ in Apg, 4,). Moreover, since every interval which
is a right neighbor of [dy,ds] is also a right neighbor of [d,ds], and
vice versa, for every formula 1 of the form (A)¢ or [A]¢, ¢ holds over
[do, d2] if and only if it holds over [d1, d2]. Accordingly, it requires that
Y € Algy,do) if and only if o € Ajg, g,). Let us denote by REQ(dz) the
set of formulae of the form (A)y or [A]y which hold over an interval
ending in dy (by analogy, let REQ(d;) be the set of formulae of the
form (A)y or [A]yp which hold over an interval ending in d, that is,
the formulae (A)1) or [A]y) which hold over [dy, di]).

Next, the process moves from ds to its immediate successor d3 and
it takes into consideration the three intervals ending in ds, namely,
[do, ds], [d1,ds], and [da, d3]. As at the previous steps, for i = 0, 1,2, it
associates the set Afg, 4,) With [d;, d3]. Since [dy, d3] is a right neighbor
of [do, d1], for every formula [A]y) € REQ(d1), ¥ € Ajg, a,]- Moreover,
[da,ds] is a right neighbor of both [doy,ds] and [di,ds], and thus for
every formula [A]y) € REQ(d2), ¥ € A[g, 4,]- Finally, for every formula
¥ of the form (A)¢ or [A]§, we have that i) € Ay, 4, if and only if
Y € Ajg, 45) if and only if ¢ € A, 4,-

Next, the process moves from d3 to its successor d4 and it repeats
the same operations, and so on.

The layered structure generated by the process is graphically de-
picted in Figure 1. The first layer correspond to time point dy, and for
all ¢ > 1, the i-th layer corresponds to time point d;. If we associate with
each node A[d%dﬂ the corresponding interval [d;, d;], we can interpret
the set of edges as the neighborhood relation between pairs of intervals.
As a general rule, given a time point d; € D, for every d; < d;, the set
Alq;,4;) of all and only the formulae which hold over [d;, d;] satisfies the
following conditions:

— since [d;, d;] is a right neighbor of every interval ending in d;, for
every formula [A]Y) € REQ(d;), ¥ € A, a3
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d;

da

Aldo d;] Aty )] e e - Algyra]]  dy

Figure 1. The layered structure

— since every right neighbor of [d;, d;] is also a right neighbor of all
intervals [dj,d;] belonging to layer d;, for every formula ¢ of the
form (A)§ or [A]§, ¢ € Al 4,1 if and only if it belongs to all sets
A(4, 4, belonging to the layer.

In [4], Bresolin and Montanari turn such a model building process
into an effective tableau-based decision procedure for RPNL™. Given
an RPNL™ formula ¢, the procedure builds a tableau for ¢ whose
(macro)nodes correspond to the layers of the structure in Figure 1
and whose edges connect pairs of nodes that correspond to consecutive
layers. Unlike other tableau methods for interval temporal logics, where
each node corresponds to a single interval [8, 11], such a method asso-
ciates any set of intervals [d;, d;] ending at the same point d; with a
single node, whose label consists of a set of sets of formulae A4, 4 (one
for every interval ending in d;). Moreover, two nodes are connected by
an edge (only) if their labels satisfy suitable constraints encoding the
neighborhood relation among the associated intervals. Formulae devoid
of temporal operators as well as formulae of the form [A]y are satisfied
by construction. Establishing the satisfiability of ¢ thus reduces to
finding a (possibly infinite) path of nodes on which formulae of the
form (A)1 are satisfied as well (fulfilling path). To find such a path, the
decision procedure first generates the whole (finite) tableau for ¢; then
it progressively removes parts of the tableau that cannot participate in
a fulfilling path. It can be proved that ¢ is satisfiable if and only if the
final tableau obtained by this pruning process is not empty.
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As for the computational complexity, we have that the number of
nodes of the tableau is 22°"*" and that, to determine the existence
of a fulfilling path, the algorithm may take time polynomial in the
number of nodes. Hence, the algorithm has a time complexity that is
doubly exponential in the size of . Its performance can be improved by
exploiting nondeterminism to guess a fulfilling path for the formula .
In such a case, the fulfilling path can be built one node at a time: at each
step, the procedure guesses the next node in the path and it moves from
the current node to such a node. Since every (macro)node maintains
the set of existential temporal formulae which have not been satisfied
yet, at any time the algorithm basically needs to store only a pair of
consecutive nodes in the path, namely, the current and the next ones,
rather than the entire path. Hence, such a nondeterministic variant of
the algorithm needs an amount of space which is exponential in the
size of the formula, thus providing an EXPSPACE decision procedure
for RPNL™.

In the following, we shall develop an alternative NEXPTIME deci-
sion procedure for RPNL™, interpreted over natural numbers, and we
shall prove its optimality. Such a procedure follows the above-described
approach, but its nodes are the single sets A[dhdj], instead of layers, of
the structure depicted in Figure 1. In such a way, the procedure avoids
the double exponential blow-up of the method given in [4].

4. Labelled Interval Structures and satisfiability

In this section we introduce some preliminary notions and we establish
some basic results on which our tableau method for RPNL™ relies.

Let ¢ be an RPNL™ formula to be checked for satisfiability and let
AP be the set of its propositional letters. For the sake of brevity, we
use (A)y as a shorthand for both (A)1) and [A]y.

Definition 4.1. The closure CL(g) of ¢ is the set of all subformulae
of ¢ and of their negations (we identify ——) with 1)).

Definition 4.2. The set of temporal requests of ¢ is the set TF(p) of
all temporal formulae in CL(y), that is, TF(¢) = {(A) € CL(p)}.

By induction on the structure of ¢, we can easily prove the following
proposition.

Proposition 4.3. For every formula ¢, | CL(y)| is less than or equal
to 2 - ||, while | TF(p)| is less than or equal to 2 - (J¢| — 1).

The notion of ¢-atom is defined in the standard way.
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Definition 4.4. A ¢-atom is a set A C CL(y) such that:

— for every ¢ € CL(p), v € Aiff = & A;
— for every 11 Vg € CL(p), 1 V1hy € Aiff 1 € A or 99 € A.

We denote the set of all g-atoms by A,. We have that |A,| < 2l¢l,
Atoms are connected by the following binary relation.

Definition 4.5. Let R, be a binary relation over A, such that, for
every pair of atoms A, A" € A,, A R, A" if and only if, for every
[A]yp € CL(yp), if [A]Y € A, then ¢p € A'.

We now introduce a suitable labelling of interval structures based
on -atoms.

Definition 4.6. A ¢-labelled interval structure (LIS for short) is a
pair L = ((D,I(D)~), £), where (D,I(ID)™) is an interval structure and
L :1I(D)~ — A, is a labelling function such that, for every pair of
neighboring intervals [d;, d;|, [d;, d] € I(D)~, L([d;, d;]) Ry L([dj, di))-

If we interpret the labelling function as a valuation function, LISs
represent candidate models for ¢. The truth of formulae devoid of
temporal operators and that of [A]-formulae indeed follow from the
definition of ¢-atom and the definition of R, respectively. However, to
obtain a model for ¢ we must also guarantee the truth of (A)-formulae.
To this end, we introduce the notion of fulfilling LIS.

Definition 4.7. A ¢-labelled interval structure L = ((ID,I(D)7), £) is
fulfilling if and only if, for every temporal formula (A)y € TF(yp) and
every interval [d;,d;] € (D)™, if (A)y) € L([d;, d;]), then there exists
dj, > dj such that ¢ € L([d;, dj]).

The following theorem proves that for any given formula ¢, the
satisfiability of ¢ is equivalent to the existence of a fulfilling LIS with
the initial interval labelled by . The implication from left to right is
straightforward; the opposite implication is proved by induction on the
structure of the formula.

Theorem 4.8. A formula ¢ is satisfiable if and only if there exists a
fulfilling LIS L = ((D,I(D) ™), £) with ¢ € L([do, d1]).

Proof. Let ¢ be a satisfiable formula and let M = ((D,I(D)7), V) be a
model for it. We define a LIS Lyg = ((ID, (D) ™), Lng) such that for every
interval [di,d]’] e (D), ﬁM([dz,dJ]) = {¢ € CL(p) : M, [di,dj] Ik}
It is immediate to prove that Ly is a fulfilling LIS and ¢ € Ln([do, d1]).

As for the opposite implication, let L = ((D, (D) ™), £) be a fulfilling
LIS with ¢ € £([do,d1]). We define a model My, = ((D,I(D)~), V1)
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such that for every interval [d;, d;] € I(D)” and every propositional
letter p € AP, p € Vi([d;,d;]) if and only if p € L([d;, d;]). We prove
by induction on the structure of ¢ that for every ¢ € CL(y) and every
interval [d;, d;] € I(D)~, My, [d;, d;] IF ¢ if and only if ¢ € L([d;, d;]).
Since ¢ € L([do, d1]), we can conclude that My, [do, d1] IF ¢.

— If ¢ is the propositional letter p, then p € L([d;,d;]) Vi def pE

— If ¢ is the formula —¢, then —¢ € £([d;, d;]) 29 ¢ ¢ £([d;, d;))
mg.‘:hgp. ML7 [dlv d]] W 6 < ML7 [dlv d]} = _'f'
— If 4 is the formula & V &, then & V & € L([d;,dy]) "2

& € L(didy) or & € L([d;dj)) " My, [did)] & or
ML, [d;, d;] IF & <= My, [di, d;] IF & V &

— Let ¢ be the formula (A)¢. Suppose that (A)¢ € L([d;, d;]). Since
L is fulfilling, there exists an interval [d;, di] € I(ID)~ such that £ €
L([d;, dy]). By inductive hypothesis, we have that My, [d;, di] IF €,
and hence My, [d;,d;] IF (A)€. As for the opposite implication,
assume by contradiction that My, [d;,d;] IF (A)E, but (A)¢ &
L([d;,d;]). By atom definition, this implies that —(A)¢ = [A]-§ €
L([d;, d;]). By definition of LIS, we have that, for every dj > d;,
L([d;,d;]) Ry L£([dj,dy]), and thus ~§ € L([d},dy]). By inductive
hypothesis, this implies that My, [d;, d] |- —§ for every di > dj,
and hence My, [d;, d;] IF [A]=¢, which contradicts the hypothesis
that My, [d;, d;] IF (A)E. O

Theorem 4.8 reduces the satisfiability problem for ¢ to the problem
of finding a fulfilling LIS with the initial interval labelled by ¢. From
now on, we say that a fulfilling LIS L = ((D,I(D)™), £) satisfies ¢ if
and only if ¢ € L([do, d1]).

Since fulfilling LISs satisfying ¢ may be arbitrarily large or even
infinite, we must find a way to finitely establish their existence. In the
following, we first give a bound on the size of finite fulfilling LISs that
must be checked for satisfiability, when searching for finite ¢-models;
then, we show that we can restrict ourselves to infinite fulfilling LISs
with a finite bounded representation, when searching for infinite -
models. To prove these results, we take advantage of the following two
fundamental properties of LISs:

1. The labellings of a pair of intervals [d;,d;], [di,d;] with the same
right endpoint must agree on temporal formulae.
Since every right neighbor of [d;,d;] is also a right neighbor of
[dj, d;j], we have that for every existential formula (A4)y € TF(y),
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(Ayp € L([d;,dj]) iff (A)yp € L([dg,d;]) (it easily follows from
Definitions 4.4, 4.5, and 4.6). The same holds for universal formulae

[Al.

2. % right neighboring intervals suffice to fulfill the existential

formulae belonging to the labelling of an interval [d;, d;].

The number of right neighboring intervals which are needed to ful-
fill all existential formulae of £([d;, d;]) is bounded by the number
of (A)-formulae in TF(p), which is equal to % (in the worst
case, different existential formulae are satisfied by different right
neighboring intervals).

Definition 4.9. Given a LISL = ((D,I(D)™), £) and d € D, we denote
by REQ(d) the set of all and only the temporal formulae belonging to
the labellings of the intervals ending in d.

We denote by REQ(p) the set of all possible sets of requests. It is
TF(p)

not difficult to show that [REQ,, | is equal to 272 .

Definition 4.10. Given a LIS L = ((D,I(D)7), £), a set of points
D’ C D, and a set of temporal formulae R C TF(y), we say that R
occurs n times in D' if and only if there exist exactly n distinct points

diy, - ..,d;, € D' such that REQ(d;;) = R, for all 1 < j < n.

Theorem 4.11. Let L = ((D,I(D)™), L) be a finite fulfilling LIS that
satisfies  and let m = |TF2(“0)|. Then there exists a finite fulfilling
LIS L = ((D,I(D)7), L) that satisfies ¢ such that, for every d; € D,
REQ(d;) occurs at most m times in D \ {d1}.

Proof. Let L = ((D,I(D)7), £) be a finite fulfilling LIS that satisfies
@. If for every d; € D, REQ(d;) occurs at most m times in D \ {d},
we are done. If this is not the case, we show how to build a fulfilling
LIS with the requested property by progressively removing exceeding
points from D.

Let Lo = L and let Ry = {REQ;,REQ,...,REQ.} be the (ar-
bitrarily ordered) finite set of all and only the sets of requests that
occur more than m times in D \ {d;}. We show how to turn Ly into
a fulfilling LIS Ly = ((Dy,I(IDy)7), £1) satisfying ¢, which, unlike Lo,
contains exactly m points d € D \ {d1} such that REQ(d) = REQ);.
By iterating such a transformation & — 1 times, we can turn L; into a
fulfilling LIS devoid of exceeding points that satisfies .

The fulfilling LIS Ly = ((D1,1(D;)7), L1) can be obtained as fol-
lows. Let dj17dj27"'?djn7 with d; < djl < dj2 < ... < djn7 be the
n points in D, with n > m, such that REQ(d;,) = REQ;. We define
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Dy = (D\{dj,},<) and £i = Llyp,)- (the restriction of £ to the
intervals on D}). The pair L} = ((D},I(D})~), £]) is obviously a finite
LIS, but it is not necessarily a fulfilling one. The removal of d;, causes
the removal of all intervals either beginning or ending at d;,. While the
removal of intervals beginning at d;, is not critical (intervals ending at
d;, are removed as well), there can be some points d < d;, such that
some formulae (A)1 € REQ(d) are fulfilled in Lg, but they are not ful-
filled in L} anymore. We fix such defects (if any) one-by-one by properly
redefining £}. Let d < dj; and (A)Y € REQ(d) such that ¢ € L([d,d;,])
and there exists no d € D\ {d;,} such that ¢y € £/|([d,d']). Since
REQ(d) contains at most m (A)-formulae, there exists at least one
point d;, € {dj,,...,d;,} such that the atom £} ([d,d;,]) either fulfills
no (A)-formulae or it fulfills only (A)-formulae which are also fulfilled
by some other g-atom L/ ([d,d']). Let dj, one of such “useless” points.
We can redefine £([d, d;,]) by putting £7([d,d;,]) = L([d,d},]), thus
fixing the problem with (A)1) € REQ(d). Notice that, since REQ(d}, ) =
REQ(d;;,) = REQq, such a change has no impact on the right neighbor-
ing intervals of [d, dj,]. In a similar way, we can fix the other possible
defects caused by the removal of d;,. We repeat such a process until we
remain with exactly m distinct points d such that REQ(d) = REQ;.
Let Ly = ((D1,1(D1)), £1) be the resulting LIS. It is immediate to show
that it is fulfilling and that it satisfies ¢. O

To deal with the case of infinite (fulfilling) LISs, we introduce the
notion of ultimately periodic LIS.

Definition 4.12. An infinite LIS L = ((D,I(D)7), L) is wultimately
periodic, with prefix | and period p > 0, if and only if for all ¢ > [,

REQ(di) = REQ(ditp).

The following theorem shows that if there exists an infinite fulfilling
LIS that satisfies ¢, then there exists an ultimately periodic fulfilling
one that satisfies ¢. Furthermore, it provides a bound to the prefix and
period of such a fulfilling LIS which closely resembles the one that we
established for finite fulfilling LISs.

Theorem 4.13. Let L = ((D,I(D)7), L) be an infinite fulfilling LIS
)

that satisfies ¢ and let m = ‘TFQ(“D |, Then there ewists an ultimately

periodic fulfilling LIS L = ((D,1(D)~), L), with prefiz | and period p,
that satisfies ¢ such that:

1. for every pair of points Eiﬂj € D, with dyg < d; < d; and Ej > dj,
REQ(d;) # REQ(d;), that is, points belonging to the prefix and
points belonging to the period have different sets of requests;
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2. for every éz € ﬁLwith do < d; < d;, REQ(d;) occurs at most m
times in {da,...,d;};

3. for every pair of points Ei,ajie D, with diy, < &,@ < Elﬂ,, if
i # j, then REQ(d;) # REQ(d;).

Proof. Let ¢ be a satisfiable formula and let L = ((D,I(ID)7), £) be an
infinite fulfilling LIS that satisfies . We define the following sets:

— Fin(L) = {REQ(d;) : there exists a finite number of points d € D
such that REQ(d) = REQ(d;)};

— Inf(L) = {REQ(d;) : there exists an infinite number of points
d € D such that REQ(d) = REQ(d;)}.

We build an infinite ultimately periodic LIS L, with prefix I < m -
|Fin(L)| + 1 and period p = |Inf(L)|, that satisfies ¢ (and respects
Conditions 1 - 3) as follows.

Let n € N be the index of the smallest point in D such that, for every
i > n, REQ(d;) € Inf(L). We first collect and (arbitrarily) enumerate
the elements of Inf(L), that is, let Inf(L) = {REQq,...,REQ,_4}.
The cardinality p of Inf(L) is the period of L. As a first step, we
define an ultimately periodic LIS L = ((D, (D)), £) (which respects
Condition 3), with prefix n — 1 and period p, in such a way that:

— for all 0 < i < n, REQ(d;) remains unchanged;
— for all i > n, REQ(d;) becomes REQ

i—n)modp*

To make the ultimately periodic LIS L’ a fulfilling LIS satisfying ¢
which respects the above conditions on REQ(d;), for all i > 0, we must
properly define the labelling £'. We distinguish two cases:

(i) d1 < d; < dy. Since L is a fulfilling LIS, for all (A)y) € REQ(d;)
there exists a point d; > d; such that ¢ € L([d;, d;]). Two cases
may arise:

— if dj < dn, we put E’([dz,dﬂ) = E([dl,d]]),

— if dj > d,, then REQ(d;) in L belongs to Inf(L). We have
that there exist infinitely many points dy > d, such that
REQ(dj) in L' is equal to REQ(d;) in L. Let dj, be one of such

points for which the labelling £'([d;, di]) has not been defined
yet. We fulfill (A)« in L’ by putting £'([d;, di]) = L([d;, d;]).

We repeat such a construction until we fulfill (in L’) all (A)-
formulae belonging to REQ(d;). To complete the labelling £’ on
the remaining intervals [d;, di], we (arbitrarily) put £'([d;, di]) =
L([d;,d;]), with d; such that REQ(d) in L’ is equal to REQ(d;)
in L.
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(ii) d; > d,,. We have that there exists a point d; > d, such that
REQ(d;) in L is equal to REQ(d;) in L. Let (A)y € REQ(d;)
(in L’). Since L is fulfilling, there exists a point dj > dj, with
REQ(dy) € Inf(L), such that ¢ € L([d},dy]). From REQ(d) €
Inf(L), it follows that there exist infinitely many points d; > d;
such that REQ(d;) in L' is equal to REQ(dj) in L. Let d; be one of
such points for which the labelling £'([d;, d;]) has not been defined
yet. We fulfill (A)y by putting £'([d;, d;]) = L([d;, dk]). We can
repeat such a construction until we fulfill (in L) all (A)-formulae
belonging to REQ(d;). To complete the labelling of the remaining
intervals [d;, d;], we arbitrarily put £'([d;, d;]) = L([d;, dk]), with
d, such that REQ(dy) in L is equal to REQ(d;) in L.

Condition 3 of the theorem is respected by construction. Condi-
tions 1 and 2 require that the prefix {dp,...,d,—1} does not include
points d such that REQ(d) € Inf(L) and that for every point d in
{do,...,dn-1}, REQ(d) occurs at most m times in {da,...,d,_1}, re-
spectively. These two conditions are not necessarily guaranteed by L.
We turn L’ into a fulfilling ultimately periodic LIS L satisfying ¢ that
respects conditions 1 and 2 by means of a two-step removal process.

— Step 1. We replace the LIS L’ by a LIS L” = ((D",I(D")~), £")
which is obtained from L’ by deleting all points di < d; < d,, such
that REQ(d;) € Inf(L). The resulting LIS L” is still ultimately
periodic, but it is not necessarily fulfilling. As an effect of the
removal of d;, there can be some point d in the prefix such that
some formula (A)y € REQ(d) was fulfilled in £, but it is not
fulfilled in £” anymore. We can fix such a defect by redefining £”
in an appropriate way. Since L’ is fulfilling, there exists a point
d;j > d such that ¢ € £'([d,d;]) and d; does not belong to L".
This happens if (and only if) REQ(d;) € Inf(L) and thus there
exist infinitely many points dj such that REQ(dg) in L” is equal
to REQ(d;) in L'. Let dj, be one of these points which is “useless”
(see the proof of Theorem 4.11). We can fulfill (A)y) by putting
L"([d,d]) = L£'([d,dj]). In a similar way, we can fix the other
possible defects caused by the removal of d;. By repeating such
a process for every other point that must be removed (if any),
we guarantee that L” is a fulfilling ultimately periodic LIS that
satisfies ¢.

— Step 2. If there exists some point d” belonging to the prefix
{dg,...,d}} of L” such that REQ(d") occurs more than m times
in {dj,...,d}}, we can proceed as in the proof of Theorem 4.11 to
obtain a new fulfilling ultimately periodic LIS L satisfying ¢ with
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prefix {dp,...,d;} such that every set of requests of the prefix is
repeated at most m times in {do,...,d;}. ]

5. The complexity of the satisfiability problem for RPNL™

In this section we provide a precise characterization of the computa-
tional complexity of the satisfiability problem for RPNL™.

5.1. AN UPPER BOUND TO THE COMPUTATIONAL COMPLEXITY

A decision procedure for RPNL™ can be derived from the results of
Section 4 in a straightforward way. Theorems 4.11 and 4.13 indeed
provide a bound on the size of the LISs to be checked:

— by Theorem 4.11, we have that if there exists a finite LIS satisfy-
ing ¢, then there exists a finite one of size less than or equal to

|REQ,, | - ‘TF(‘P)l + 1 which satisfies ¢;

— by Theorem 4.13, we have that if there exists an infinite LIS sat-
isfying ¢, then there exists an ultimately periodic one, with prefix
I <|REQ, |- % + 1 and period p < |REQ,, |, which satisfies
®.

A simple decision algorithm to check the satisfiability of an RPNL™
formula ¢ that nondeterministically guesses a LIS L satisfying it can
be defined as follows.

First, the algorithm guesses the set Inf(L) = {REQ;,...,REQ,},
with Inf(L) € REQ,, of the sets of requests that occur infinitely often

in L. If p = 0, then it guesses the length [ < |REQ,,| - ‘TF(“a)l +1ofa
finite LIS. Otherwise, it takes p as the period of an ultlmately periodic
LIS and it guesses the length I < (|REQ,, | —p)- lTF(SD)l +1 of its prefix.
Next, the algorithm guesses the labelling of the 1n1t1al interval [dy, d1],
taking an atom A[g, 4,) that includes ¢, and it initializes a counter ¢ to
1. If ¢ < I, then it guesses the labelling of the intervals ending in ds, that
is, it associates an atom A, 4,] With [do, d2] and an atom A(g, 4, With
[d1, d2] such that A[do,dﬂ R, A[d1,d2]7 with REQ(dz) € REan \Inf(L),
and it increments ¢ by one. The algorithm proceeds in this way, incre-
menting ¢ by one for every point d; it considers and checking that, for
every pair of atoms A, 4; and A[d 4] Aldy.d) Be Ajd; ;- For each
point d;, it must guarantee that REQ( i) € REQ¢ \Inf(L) and that

REQ(d;) occurs at most % times in {do,...,d;}.
When c reaches the value [, two cases are possible. If p = 0, then d
is the last point of the finite LIS L, and the algorithm checks whether it
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is fulfilling. If p > 0, it checks if the guessed prefix and period represent
a fulfilling LIS by proceeding as follows:

— for every atom A, 4 in the prefix and for every formula (A4)y €
Alg;.d;)> 1t checks if either there exists an atom A4, 4,1 in the prefix
that contains v or there exists an atom A’ containing v and a set
REQ), € Inf(L) such that REQ), = A'NTF(p) and Ay, 4 Ry A%

— for every atom Ay, 4.1 in the prefix and for every set REQ,, €
Inf(L), it checks if there exists an atom A’ such that REQ,; =
A'NTF(p) and Ay, 4 Ry A%

— for every set REQ,, € Inf(L) and for every formula (A)1y) € REQy,,
it checks if there exists an atom A’ containing 1) and a set REQ,, €
Inf(L) such that REQ, = A’NTF(p) and REQ,, R, A’;

— for every pair of sets REQ,,,REQ;, € Inf(L), it checks if there
exists an atom A’ such that REQ;, = A’'NTF(¢) and REQ,, R, A’.

By Theorems 4.11 and 4.13, it follows that the algorithm returns
true if and only if ¢ is satisfiable. As for the computational complexity
of the algorithm, we observe that:

1. 1 is less than or equal to | REQ, | - M + 1, while p is less than
or equal to | REQ,, |;
2. for every point d; < d; < dj, the algorithm guesses exactly j atoms
Ald, ;)3
3. checking for the fulfillness of the guessed LIS takes time polynomial
in p and in the number of guessed atoms;
4. [TF(p)| is linear in the length of ¢, while | REQ,, | is exponential
in it.
Hence, if |¢| = n, the number of guessed sets in Inf(L) plus number
of guessed atoms in the prefix is bounded by

[ TF ()|

|IREQ, | + > i

i=1

!TF(@l)Q

o (IrBQ, |-

that is, it is exponential in the length of . This implies that the satisfia-
bility problem for RPNL™ can be solved by the above nondeterministic
algorithm in nondeterministic exponential time.
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Theorem 5.1. The satisfiability problem for RPNL™, over natural
numbers, is in NEXPTIME.

5.2. A LOWER BOUND TO THE COMPUTATIONAL COMPLEXITY

We now provide a NEXPTIME lower bound for the complexity of the
satisfiability problem for RPNL™ by reducing to it the exponential
tiling problem, which is known to be NEXPTIME-complete [1].

Let us denote by N, the set of natural numbers less than m and by
N(m) the grid N,,, x Np,. A domino system is a triple D = (C, H, V),
where C' is a finite set of colors and H,V C C' x C are the horizontal
and vertical adjacency relations. We say that D tiles N(m) if there
exists a mapping 7 : N(m) — C such that, for all (z,y) € N(m):

1. if 7(z,y) = cand 7(x + 1,y) = ¢, then (¢, ) € H;
2. if 7(z,y) = cand 7(z,y + 1) = ¢, then (¢,d) € V.

The exponential tiling problem consists in determining, given a natural
number n and a domino system D, whether D tiles N(2") or not.
Proving that the satisfiability problem for RPNL™ is NEXPTIME-hard
can be done by encoding the exponential tiling problem with a formula
©(D), of length polynomial in n, which uses propositional letters to
represent positions in the grid and colors, and by showing that ¢(D) is
satisfiable if and only if D tiles N (2"). Such a formula consists of three
main parts. The first part imposes a sort of locality principle; the second
part encodes the N(2") grid; the third part imposes that every point
of the grid is tiled by exactly one color and that the colors respect
the adjacency conditions. Intervals are exploited to express relations
between pairs of points.

Theorem 5.2. The satisfiability problem for RPNL™, over natural
numbers, is NEXPTIME-hard.

Proof. Given a domino system D = (C, H,V), we build an RPNL™
formula ¢, of length polynomial in n, that is satisfiable if and only if
D tiles N(2™).

The models for ¢ encode a tiling 7 : N(2") — C in the following
way. First, we associate with every point z = (z,y) € N(2") a 2n-bit
word (2o, _122n_2...2120) € {0,1}?" such that z = ?;01 22" and y =

214,217 Pairs of points [z, ] of N(2") are represented as intervals
by means of the propositional letters Z;, T;, with 0 < ¢ < 2n — 1, as
follows:

éZi: Z; = 1; j} ;ti:: 1.

Moreover, the colors of z = (x,y) and ¢t = (2’,y’) are expressed by

means of the propositional letters Z., T, with ¢ € C, as follows:
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Ze:1(x,y)=c¢; To:7(2),y) =c

To ease the writing of the formula ¢ encoding the tiling problem, we
use the auxiliary propositional letters Z (for 0 <i < 2n—1) and ZH}
(for n <i < 2n — 1), with the following intended meaning;:

Z7 s forall0<j<i,zj=1; ZH} : foralln <j <i,z; = 1.

To properly encode the tiling problem, we must constrain the rela-
tionships among these propositional letters.

Definition of auxiliary propositional letters. As a preliminary
step, we define the auxiliary propositional letters Z, with 0 < 7 <
2n —1, and ZH;, with n <¢ < 2n — 1, as follows:

2n—1

[A][A] (ZE)‘ NN(ZE o (ZEa A Zil)))

=1

[A][A4] (ZH;; A QTKI (ZH « (ZH', AZ“))) .
i=n-+1

Let us call a the conjunction of the above two formulae.

Locality conditions. Then, we impose a sort of “locality principle” on
the interpretation of the propositional letters. Given an interval [z, ],
we encode the position z = (z,y) (resp., t = (2/,y')) and its color 7(z, y)
(resp., 7(2,y’)) by means of the propositional letters Z;, Z, ZH}, and
Z. (resp., T; and T;) by imposing the following constraints:

— all intervals [z, w] starting in z must agree on the truth value of
Z;, 27, ZHY, and Z;

— for every pair of neighboring intervals [z, t], [¢,w], the truth value
of T; and T, over [z,t] must agree with the truth value of Z; and
Z. over [t,w].

From the above constraints, it easily follows that all intervals [w, ]
ending in ¢ must agree on the truth value of T; and T..
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Such constraints are encoded by the conjunction of the following
formulae (let us call it 3):

2n—1 2n—1

N (A2 — [AZ) A N\ AN Z — [AZ)
1=0 =0
2n—1 2n—1
N Az — [AZ5) A N\ A ZE — (A7)
=0 =0
2n—1 2n—1
./\ ((A)ZH] — [A|ZH) A ’/\ [A]((A)ZH] — [A]ZH])
ANUAZe — [A]Z) n N[A(A)Ze — [AZ)
ceC ceC
2n—1 2n—1
N AT < [A1Z) A N [AJANT < [A]Z)
1=0 1=0
AT < [A1Z) A NTAANT. < [A]Z)
ceC ceC

Encoding of the grid. Next, we must guarantee that every point
z = (z,y) € N(2"), with the exception of the upper-right corner (2" —
1,2" — 1), has a “successor” t = (a/,y'), that is, if x # 2" — 1, then
(@',y") = (z + 1,y); otherwise (z = 2" — 1), (2/,y") = (0,y + 1). Note
that, thanks to our encoding of z and t, the binary encoding of the
successor of z is equal to the binary encoding of z incremented by 1.
Such a successor relation can be encoded as follows. Given two 2n-bit
words z = ?’;al 22" and t = Z?Zal t;2%, we have that t = z + 1 if and
only if there exists some 0 < j < 2n — 1 such that:

1. zj = 0 and, for all ¢ < j, z; = 1;

2.t =1and, for all i < j, t; = 0;

3. forall j <k <2n-—1, 2z = tg.
It is easy to show that, for every i, with 0 < ¢ < 2n — 1, we can write
t; as z; @ A<, 2k, Where @ denotes the exclusive or. Taking advantage

of this fact, the successor relation can be expressed by the following
formula (let us call it ~):

2n—1
[A] <<A>ﬁ(Z§n1A22n—1) = (A4 N (T < (ZiGBZZ‘))>-
=0

Furthermore, the left conjunct of the following formula (let us call it §)
encodes the initial point (0,0) of the grid, while the right one encodes
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the final point (2" —1,2" — 1):

2n—1 2n—1
(A)(A) N\ ~Zi A (A4 N\ Z
i=0 1=0

Grid coloring. To complete the reduction, we must properly define
the tiling of the grid. To this end, we preliminary need to express
the relations of right (horizontal) neighborhood and upper (vertical)
neighborhood over the grid. We have that the following formula g
(resp., ¥y ) holds over any interval [z, t] such that ¢ is the right (resp.
upper) neighbor of z in N(2"):

2n—1 n—1
b= N\ (Zi = T)N N\(T = (Zie Z)))
i=n 1=0
n—1 2n—1
vy = N(Zi & T)N N\ (T « (Z;® ZH]))
=0 i=n

By using ¥ and ¥y, we can impose the adjacency conditions by means
of the following formula (let us call €):

[A][A] ((wﬂ - \ ZATHA@y — ZC/\TCI)).

(e,d)eH (e, eV

The fact that every point is tiled by exactly one color can be forced by
the following formula (let us call it ():

WW(VaAVn)

ceC ceC

where \/ is a generalized exclusive or which is true if and only if exactly
one of its arguments is true.

Let us define ¢ as the conjunction a AGAYAIAeA(. The length of
is polynomial in n as requested. It remains to show that ¢ is satisfiable
if and only if D tiles N(2"). As for the implication from left to right,
if a correct tiling exists, then let D = (D, <) be a linear ordering such
that:

- D= {do,dl} UN(2™) U {dT};

— dp < dy < (z,y) < d, for every (z,y) € N(2");

— given two points (z,y) and (2/,y") of N(2"), (z,y) < (x,y) iff
y<yVvVy=y rnx<a).
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Notice that we take as the domain of the interval structure the set
of elements of the grid extended with the elements dy, d;, and d+. The
elements dy, d; define the initial interval [do, d;] over which our formula
will be interpreted. The element d+ is the right endpoint of the only
interval having the last point of the grid as its left endpoint, namely,
[(2" —1,2™" —1),dT].

As for the valuation V, for any interval [z, t], with z = (z,y),t = (2/, /),
and z,t € N(2"), Z; € V([z,t]) if and only 2; = 1 and T; € V([2,t])
if and only t; = 1. Moreover, Z. € V([z,t]) (resp., T € V([z, t])) if
and only if 7(x,y) = ¢ (resp., 7(2/,y’) = ¢). Whenever, the left (resp.
right) endpoint of an interval does not belong to N(2™), the valuation
of the propositional letters Z; and Z. (resp. T; and T.) over the interval
is arbitrary. It is not difficult to prove that M = ((ID,I(D)~),V) is a
model of ¢, that is, M, [do, d1] IF .

Conversely, let M = ((D,I(D)7),V) be a model for ¢, that is,
M, [do, d1] IF ¢. To provide a tiling of N(2"), we first define a func-
tion f : N(2") — D that associates a point d € D with every point
(z,y) € N(2") in such a way that:

1. the binary representation of (x,y) coincides with the sequence of
truth values of the propositional letters Zo,_1, Zon_9,..., Zy over
the intervals [d,d'] € I(D);

2. for every (z,y),(2',y) € N(@2"), (z,y) < («/,y) iff f(z,y) <
[ ).

The formula ¢ ensures that such a function exists. Note that the
definition of f guarantees commutativity: by moving first one step
right and then one step up on the grid one reaches the same point
that can be reached by moving first one step up and then one step
right. On the basis of such a function, we define the tiling 7(z,y) = ¢
where ¢ is the unique element of C' such that M, [f(z,y),d'] IF Z,, for

every d > f(z,y). It is not difficult to prove that 7 defines a tiling of
N(2m). O

From Theorems 5.1 and 5.2, we have the following corollary.

Corollary 5.3. The satisfiability problem for RPNL™, over natural
numbers, is NEXPTIME-complete.

6. A tableau-based decision procedure for RPNL™

In this section, we define a tableau-based decision procedure for RPNL™,
whose behavior is illustrated by means of a simple example, and we
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analyze its computational complexity. Then, we prove its soundness
and completeness. The procedure is based on two expansion rules, re-
spectively called step rule and fill-in rule, and a blocking condition, that
guarantees the termination of the method. Unlike the naive procedure
described in the previous section, it does not need to differentiate the
search for a finite model from that for an infinite one.

6.1. THE TABLEAU METHOD

We first define the structure of a tableau for an RPNL™ formula and
then we show how to construct it. A tableau for RPNL™ is a suitable
decorated tree T. Fach branch B of a tableau is associated with a finite
prefix of the natural numbers D = (Dp, <). The decoration of each
node n in 7, denoted by v(n), is a pair ([d;, d;], A), where d;, d;, with
d; < dj, belong to Dp (for all branches B containing n) and A is an
atom. The root r of 7 is labelled by the empty decoration ((),0). Given
a node n, we denote by A(n) the atom component of v(n).

Given a branch B, we define a function REQ : Dp — 2TF(®) a5
follows. For every d; € D, REQ(d;) = (N; A;j) N TF(p), where n; is a
node such that v(n;) = ([d;, d;], Aj) and dy < d;j < d;. Moreover, given
a node n € B, with decoration ([d;, d;], A), and an existential formula
(Ay) € A, we say that (A)i) is fulfilled on B if and only if there exists
a node n’ € B such that v(n') = ([dj,d;],A’) and ¥ € A’. A node
n is said to be active on B if and only if A(n) contains at least one
existential formula that is not fulfilled on B.

Expansion rules. The construction of a tableau is based on the fol-
lowing expansion rules. Let B be a branch of a decorated tree 7 and
let dj, be the greatest point in Dp. The following expansion rules can
be possibly applied to extend B:

1. Step rule: if there exists at least one active node n € B, with
v(n) = ([d;, d;], A), then take an atom A’ such that A R, A’ and
expand B to B - n/, with v(n') = ([d;, dk+1], A).

2. Fill-in rule: if there exists anode n € B, with decoration ([d;, d;], A)
and d; < dy, such that there are no nodes n’ in B with decoration
([dj,dg], A"), for some A" € A, then take any atom A” € A, such
that A R, A” and REQ(dy) = A”NTF(y), and expand B to B-n",
with v(n”) = ([d;, di], A”).

Both rules add a new node to the branch B. However, while the step
rule decorates such a node with a new interval ending at a new point
dj+1, the fill-in rule decorates it with a new interval whose endpoints
were already in Dp.
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Blocking condition. To guarantee the termination of the method,
we need a suitable blocking condition to avoid the infinite application
of the expansion rules in case of infinite models. Given a branch B,
with Dp = {dp,ds,...,d}, we say that B is blocked if REQ(d}) occurs

T 1 1 times in Dp.

Expansion strategy. Given a decorated tree 7 and a branch B, we
say that an expansion rule is applicable on B if B is non-blocked and
the application of the rule generates a new node. The branch expansion
strategy for a branch B is the following one:

1. if the fill-in rule is applicable, apply the fill-in rule to B and, for
every possible choice for the atom A”, add an immediate successor
to the last node in B;

2. if the fill-in rule is not applicable and there exists a node n € B,
with decoration ([d;, d;], A) and d; < dj, such that there are no
nodes in B with decoration ([d;, di], A’), for some A’ € A, close
the branch;

3. if the fill-in rule is not applicable, B is not closed, and there exists
at least one active node in B, then apply the step rule to B and, for
every possible choice of the atom A’, add an immediate successor
to the last node in B.

Tableau. Let ¢ be the formula to be checked for satisfiability and let
Aq,..., Ag be all and only the atoms containing . The initial tableau
for ¢ is the following:

(0,0)
// \
([do, di], A1) ([do,di], A2)  -++ -++ ([do,d1], Ak)

A tableau for ¢ is any decorated tree 7 obtained by expanding the
initial tableau for ¢ through successive applications of the branch-
expansion strategy to currently existing branches, until the branch-
expansion strategy cannot be applied anymore.

Fulfilling branches. Given a branch B of a tableau 7 for ¢, we say
that B is a fulfilling branch if and only if B is not closed and one of
the following conditions holds:

1. B is non-blocked and for every node n € B and existential formula
(A)yp € A(n), there exists a node n’ € B fulfilling (A)1y) (finite
model case);
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2. B is blocked, dj is the greatest point of Dpg, d; (# dj) is the
smallest point in Dp such that REQ(d;) = REQ(dg), and the

following conditions hold:

(a) for every node n € B and every formula (A)y € A(n) not
fulfilled on B, there exist a point d; < d; < dj, and an atom A’

such that ¢ € A’, A(n) R, A’, and REQ(d;) = A’ NTF(p);

(b) for every node n € B and every point d; < dy, < d, there

exists an atom A’ such that A(n) R, A" and REQ(d,,

A'NTF(p).

The decision procedure works as follows: given a formula ¢, it con-
structs a tableau 7 for ¢ and it returns “satisfiable” if and only if there

exists at least one fulfilling branch in 7.

I\(t [qulhng:
AL e A

(t fulﬁlkd

Not fulﬁlhng Fulfilling
AlL e A
no| hllllllvl

Blocked, not
fulfilling:
Ay repeated 3
times

Figure 2. A tableau for (A)[A]L.

="
fl

d>

o
g

We conclude the section by showing how the proposed method works
on the simple case of the formula ¢ = (A)[A] L. For sake of simplicity,
we treat the logical constants T and L as propositional letters, with
the further constraint that, for any atom A, | ¢ A. Hence, the set of

p-atoms is the following one:

Ao = {(AA]L (AT, T}
A = {(AA]L [A]L, T}
Ay = {[A[(A)T,[A]L, T}
Az = {[A{(AT AT, T}

As for the relation R, between atoms, we have that

R,= {(Ao, Ao), (Ao, A1), (Ao, A2), (Ao, A3), (A3, Ao), (A3, A3)}.

Note that A; and Ay have no R,-successors (since they both contains
[A]l). Figure 2, where dashed arrows represent applications of the
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step rule, depicts a portion of a tableau for ¢ which is sufficiently large
to include a fulfilling branch, and thus to prove that ¢ is satisfiable.
Indeed, it is easy to see that, over natural numbers, ¢ is satisfiable and
it admits only finite models.

Notice that there are no nodes in the tableau which are labelled by
intervals beginning at dy, except for the nodes associated with the initial
interval [dy, d1]. Since RPNL is not strong enough to force any condition
on intervals beginning at dy and different from [dy, d1], such intervals
can be ignored without affecting the soundness and completeness of the
method.

6.2. COMPUTATIONAL COMPLEXITY

As a preliminary step, we show that the proposed tableau method
terminates; then we analyze its computational complexity.

In order to prove termination of the tableau method, we give a bound
on the length of any branch B of any tableau for ¢:

\TF Il

1. by the blocking condition, after at most | REQ,, | - appli-
cations of the step rule, the expansion strategy cannot be applied
anymore to a branch;

2. given a branch B, between two successive applications of the step
rule, the fill-in rule can be applied at most k£ times, where k is
the current number of elements in Dp (k is exactly the number of
applications of the step rule up to that point);

3. | TF(¢p)| is linear in the length of ¢, while | REQ,, | is exponential
in it.
Hence, if || = n, the length of any branch B of a tableau 7 for ¢ is
bounded by

TR(g) TP ITF()]\2
2 .
|REQ¢|-T+ ; 1 < (|REQ¢|-2) +1
= (20-00)’
— 920(n) O(n2)
= 20(m). O(n?)
_ 20(71)’

that is, the length of a branch is (at most) exponential in |p|.

Theorem 6.1 (Termination). The tableau method for RPNL™ ter-
minates.
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Proof. Given a formula ¢, let 7 be a tableau for ¢. Since, by construc-
tion, every node of 7 has a finite outgoing degree and every branch of
it is of finite length, by Konig’s Lemma, 7 is finite. O

The computational complexity of the tableau-based decision proce-
dure depends on the strategy used to search for a fulfilling branch in
the tableau. The strategy that first builds the entire tableau and then
looks for a fulfilling branch requires an amount of time and space that
can be doubly exponential in the length of . However, by exploiting
nondeterminism, the existence of a fulfilling branch can be determined
without visiting the entire tableau, by exploiting the following alterna-
tive strategy. First, select one of the nodes decorated with ([do, di], A)
of the initial tableau and expand it as follows. Instead of generating all
successors nodes, nondeterministically select one of them and expand
it. Iterate such a revised expansion strategy until it cannot be applied
anymore. Finally, return “satisfiable” if and only if the guessed branch
is a fulfilling one.

Such a procedure has a nondeterministic time complexity which is
polynomial in the length of the branch, and thus exponential in the size
of ¢. Giving the NEXPTIME-completeness of the satisfiability problem
for RPNL™, this allows us to conclude that the proposed tableau-based
decision procedure is optimal.

6.3. SOUNDNESS AND COMPLETENESS

The soundness and completeness of the proposed method can be proved
as follows. Soundness is proved by showing how it is possible to con-
struct a fulfilling LIS satisfying ¢ from a fulfilling branch B in a tableau
7 for ¢ (by Theorem 4.8, it follows that ¢ has a model). The proof must
encompass both the case of blocked branches and that of non-blocked
ones. Proving completeness consists in showing, by induction on the
height of 7, that for any satisfiable formula ¢, there exists a fulfilling
branch B in any tableau 7 for (. To this end, we take a model for ¢
and the corresponding fulfilling LIS L, and we prove the existence of a
fulfilling branch in 7 by exploiting Theorems 4.11 and 4.13.

Theorem 6.2 (Soundness). Given a formula ¢ and a tableau T for
w, if there exists a fulfilling branch in T, then @ is satisfiable.

Proof. Let T be a tableau for ¢ and B a fulfilling branch in 7. We show
that, starting from B, we can build up a fulfilling LIS L satisfying .
By the definition of fulfilling branch, two cases may arise.

B is non-blocked (finite model case). We define L = ((D,I(D)~), £)
as follows:
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— D =Dg;

— L([dp,d1]) = A, where A = A(n1) and n; is the unique node of B
such that v(ny) = ([do, d1], A);

— for every [d;,d;] € I(Dp)~, with d; > doy, we put L([d;,d;]) =
A, where A = A(n) and n is the node in B such that v(n) =
([di, d;], A). Since B is not closed, such a node n exists; its unique-
ness follows from tableau rules;

— finally, for every interval [dy, d;] € I(Dp)~, with d; > d, there are
no nodes in B labelled with ([do, d;], A). We complete the definition
of £ by putting, for every d; > di, L([do,d;]) = A(n), where n is
an arbitrary node in B such that v(n) = ([d;, d;], A), for some
d; < dj.

Clearly, L is a LIS. Since B is fulfilling, for every node n € B and every
existential formula (A)1) € A(n), there exists a node n’ fulfilling (A).
Hence, by the above construction, L is fulfilling.

B is blocked (infinite model case). Let dj, be the last point of Dp and
d; # dj be the smallest point in Dp such that REQ(d;) = REQ(dg).
We build an ultimately periodic LIS L = (D', I(D")~), £) with prefix
[ =1—1 and period p = k — i, as follows:

L let D' = {dy(= do),dy(= d1),...,d},(=di),d)j,,...} be any set

isomorphic to N;
2. for every di < dj <dj, put REQ(d;) = REQ(d;);
3. for every d; > dj, put REQ(d};) = REQ(di(j—1)moap);

4. put L([dy,d}]) = A(n1), where n; is the unique node in B such
that v(ny) = <[d0,d1],A>;

5. for every pair of points d’,d;, such that dy < d; < d;, < dj,
take the node n in B such that v(n) = ([dj,dn],A) and put
[’([d;v d;n]) =4

6. for every point dj € D’ and every (A)y € REQ(d}) which has
not been fulfilled yet, proceed as follows. Let n be a node in B
decorated with ([d, d'], A) such that REQ(d') = REQ(d}). Since B
is fulfilling, by condition (a) for fulfilling branches, there exist a
point d; < dy, < dj, and an atom A’ such that ¢ € A’, A R, A’
and REQ(d,,) = A’ N TF(p). By the definition of L, we have
that there exist infinitely many points d;, > dj. in D’ such that
REQ(d],) = REQ(d,,). We can take one of such points d/, such
that £([d”, d]]) has not been defined yet and put L([d},d,]) = A’;

3> %n 3> %n
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7. once we have fulfilled all (A)-formulae in REQ(d'), for all d’ € I/,
we arbitrarily define the labelling of the remaining intervals [d’, d"].
Since B is fulfilling, we can always define £([d’, d"]) by exploiting
condition (b) for fulfilling branches;

8. as in the finite model case, there are no nodes in B labelled with
([do, dj], A), for all dj > dy. For every d; > dj, take an arbitrary
node n labelled with ([d;, d;], A") such that REQ(d;) = REQ(d})
and put L([dy, d}]) = A"

Since ¢ € L([dy, d1]), L is a fulfilling LIS satisfying ¢. O

Theorem 6.3 (Completeness). Given a satisfiable formula o, there
exists a fulfilling branch in every tableau T for .

Proof. Let ¢ be a satisfiable formula and let L = ((D,I(D)~), L) be
a fulfilling LIS satisfying ¢, whose existence is guaranteed by Theo-
rem 4.8. Without loss of generality, we may assume that L respects
the constraints of Theorem 4.11, if it is finite, and of Theorem 4.13,
if it is infinite. We prove there exists a fulfilling branch B in 7 which
corresponds to L. To this end, we prove the following property: there
exists a non-closed branch B such that, for every node n € B, if n
is decorated with ([dj,dy], A), then A = L([d;,dk]). The proof is by
induction on the height h(7") of 7.

If h(7) = 1, then 7 is the initial tableau for ¢ and, by construction,
it contains a branch

B(] = <®,®> : <[d07d1]7A>7

with A = [,([d(), dl])

Let h(7) = ¢+ 1. By inductive hypothesis, there exists a branch B;
of length ¢ that satisfies the property. Let Dp, = {do,d1,...,d;}. We
distinguish two cases, depending on the expansion rule that has been
applied to B; in the construction of 7.

— The step rule has been applied.

Let n be the active node, decorated with ([d;, d;], A), which the step
rule has been applied to. By inductive hypothesis, A = L([d;, di]).
Since L is a LIS, £([d;,d;]) Ry, L([d;,di+1]). Hence, there must
exists in 7 a successor n' of the last node of B; decorated with
(s dt1], L([dr, di+1]))- Let Biyy = By - ([di, dgq], L([dr; dip41]))-
Since the step rule can be been applied only to non-closed branches
(and it does not close any branch), B;; is non-closed.

jar.tex; 27/06/2006; 16:24; p.29



30

— The fill-in rule has been applied.

Let n be the node decorated with ([d;,d;], A) such that there
exist no nodes in B; decorated with ([d,dg], A") for some atom
A'. By inductive hypothesis, A = L([d;,d;]). Since L is a LIS,
L([d;,di]) Ry, L([d;,dy]). Hence, there must exists in 7 a succes-
sor of the last node of B; decorated with ([d;, di], £([d;, dx])). Let
Bi+1 = B;-([d;, dg], L([dy, dg])). As before, since the fill-in rule can
be applied only to non-closed branches (and it does not close any
branch), B;; is not closed.

Now we show that B is the fulfilling branch we are searching for.

Since B is not closed, two cases may arise.

— B is non-blocked and the expansion strategy cannot be applied any-

more. Since B is not closed, this means that there exist no active
nodes in B, that is, for every node n € B and every formula
(A)yp € A(n), there exists a node n’ fulfilling (A)t. Hence, B is a
fulfilling branch.

— B is blocked. This implies that REQ(dy) is repeated M +1

times in B. Since B is decorated coherently to L from dy to dp,
by Theorem 4.11, we can assume L to be infinite. Let d; be the
smallest point in Dp such that REQ(d;) = REQ(dj). We have
that L is ultimately periodic, with prefix [ = j — 1, since (by
Theorem 4.13) the only set of requests which has been repeated

w 4+ 1 times in B is the one associated with the first point

in the period. Furthermore, we have that, between d;; and dy_1,

there are exactly M repetitions of the period of L. This allows

us to exploit the structural properties of L to prove that B is
fulfilling.

For every node n € B decorated with ([d,d'], A) and for every
formula (A)y) € A, since L is fulfilling, there exists a point d” in
D such that ¢ € L([d',d"]). If d" < dj, then (A)y is fulfilled in
B. Otherwise, there exists some point d,,, with d; < d,, < dg,
such that REQ(d”) = REQ(d,,). Hence, the atom A’ = L([d’,d"])
can be chosen in order to satisfy condition (a) of the definition of
fulfilling branch.

For every node n € B decorated with ([d,d'], A) and for every
point d; < dp, < di, we have that REQ(d,,) € Inf(L). Hence,
there exist infinitely many points d,, in L such that REQ(d,,) =
REQ(dy) and d’ < d,,. Let d,, be one of such points. We can choose
the atom A’ = L([d, d,]) to satisfy condition (b) of the definition
of fulfilling branch. O
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7. A tableau-based decision procedure for RPNL™

In this section we briefly show how to adapt the decision procedure
for RPNL™ to RPNL™. First of all, we define the notion of non-strict
p-labelled interval structure as follows.

Definition 7.1. A non-strict p-labelled interval structure (non-strict
LIS, for short) is a pair L = ((D,I(D)"), £), where (D, [(D)") is a non-
strict interval structure and £ : I(D)™ — A, is a labelling function such
that, for every pair of neighboring intervals [d;,d;], [dj,d] € I(D)T,
E([diﬂ de Rw [’([djv dk])

It is possible to prove that Theorems 4.8, 4.11, and 4.13 hold also for
non-strict LISs. Furthermore, we can easily tailor the tableau-based de-
cision method for RPNL™ to RPNL™ by adding the following expansion
rule:

3. Point-intervals rule: if dj, is the last point of D and there exists
a node n € B decorated with ([d;,dy], A), with d; < dj, such
that there are no nodes in B decorated with ([dy, dy], A") for some
A" € A, then take any atom A” € A, such that A R, A” and
REQ(dr) = A” N TF(p), and expand B to B -n', with v(n') =
<[dk7 dk]? AH>'

The expansion strategy has to be expanded accordingly to take into
account this new rule; on the contrary, the blocking condition, the
definition of initial tableau, and the definition of fulfilling branch remain
unchanged. Termination, soundness, and completeness of the resulting
tableau method for RPNL™ can be proved as in the case of RPNL™.

Finally, to prove the optimality of the tableau for RPNL™, we can
exploit the reduction given in Section 5, provided that we replace (A)
by <, and [A] by O,.

Theorem 7.2. The satisfiability problem for RPNL™, over natural
numbers, is NEXPTIME-complete.

8. Conclusions

In this paper, we focussed our attention on interval logics of tem-
poral neighborhood. We addressed the satisfiability problem for the
future fragment of strict Neighborhood Logic (RPNL™), interpreted
over natural numbers, and we showed that it is NEXPTIME-complete.
In particular, we proved NEXPTIME-hardness by a reduction from
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the exponential tiling problem. Then, we developed a sound and com-
plete tableau-based decision procedure for RPNL™ and we proved its
optimality. We concluded the paper by briefly showing that such a
procedure can be easily adapted to non-strict RPNL (RPNL™).

The proposed decision procedure improves the EXPSPACE tableau-
based decision method for checking RPNL™ satisfiability developed by
Bresolin and Montanari in [4]. We do not see any relevant problem
in adapting our procedure to deal with the satisfiability problem for
RPNL™ interpreted over branching temporal structures (where every
branch is isomorphic to natural numbers) [5]. Furthermore, we believe
it possible to generalize it to cope with Branching Time Neighborhood
Logic [3], a branching-time interval neighborhood logic that interleaves
operators that quantify over possible branches with operators that
quantify over intervals belonging to a given branch. On the contrary,
the extension to full PNL turned out to be much more difficult. In
particular, there is not a straightforward way of generalizing the basic
removal technique exploited by Theorems 4.11 and 4.13 to bound the
search space. In the presence of past operators, indeed, the removal of
a point may affect both future existential formulae and past existential
ones, and there is not an easy way to fix the future and past defects
(see Section 4) it may introduce.
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