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ABSTRACT. Interval temporal logics provide both an insight into a nature of time and a framework
for temporal reasoning in various areas of computer science. In this paper we present sound and
complete relational proof systems in the style of dual tableaux for relational logics associated
with modal logics of temporal intervals and we prove that the systems enable us to verify validity
and entailment of these temporal logics. We show how to incorporate in the systems various
relations between intervals and/or various time orderings.
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1. Introduction

Interval temporal logics provide both an insight into a nature of time and a frame-
work for temporal reasoning in the area of artificial intelligence (reasoning about ac-
tion and change, qualitative reasoning, planning, and natural language processing),
theoretical computer science (specification and automatic verification of programs and
reactive systems) and databases (temporal and spatio-temporal databases). In the lit-
erature various propositional and first-order interval temporal logics have been pro-
posed (a comprehensive survey can be found in [GOR 04]). Among others, the most
significant propositional ones are Halpern and Shoham’s HS [HAL 91, VEN 90], Ven-
ema’s CDT logic [GOR 03a, GOR 06, VEN 91], Moszkowski’s Propositional Interval
Temporal Logic (PITL) [MOS 83], and Goranko, Montanari, and Sciavicco’s Propo-
sitional Neighborhood Logic (PNL) [BRE 05b, BRE 06, GOR 03b].
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Propositional interval temporal logics are very expressive (it can be shown that
both HS and CDT are strictly more expressive than every point-based temporal logic
on linear orders): they make it possible to express properties of pairs of time points
(think of intervals as constructed out of points), rather than single time points. In
linear orders 13 different binary relations between intervals are possible [ALL 83]:
equals (1′), ends (E), during (D), begins (B), overlaps (O), meets (M ), precedes (P )
together with their converses.

current interval:
ends :

during :
begins :

overlaps :

meets :
precedes (or before):

Figure 1. caption of the figure

These relations are usually called Allen’s relations, and lead to a rich interval algebra,
called Allen’s Interval Algebra. Propositional interval temporal logics are usually
characterized by modalities of the form 〈R〉 and 〈R〉, whereR is any of these relations
and R denotes the converse of R. To the best of our knowledge, there are no interval
logics where the modalities corresponding to overlaps and its converse are chosen as
primitive.

In this paper we present relational proof systems in the style of dual tableaux for
relational logics associated with modal logics of temporal intervals and we prove that
the systems enable us to verify validity and entailment of these temporal logics. In
constructing the systems we apply the method known for various non-classical logics,
in particular for standard modal and temporal logics [ORŁ 95, ORŁ 96]. The key
steps of the method are:

– Development of a relational logic RLL appropriate for a given interval temporal
logic L.

– Development of a validity preserving translation from the language of logic L
into the language of logic RLL.

– Construction of a proof system for RLL such that for every formula ϕ of L, ϕ is
valid in L iff its translation τ(ϕ) is provable in RLL.

Each logic RLL is based on the classical relational logic of binary relations,
RL(1, 1′), which provides a means for proving the identities valid in the class of repre-
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sentable relation algebras (see e.g., [GOL 06a, ORŁ 96]). RLL is capable of express-
ing both binary relations holding between points of time and binary relations holding
between time intervals. The proof systems developed in this paper are extensions of
the proof system for RL(1, 1′) originated in [ORŁ 88], see also [GOL 06a, ORŁ 96].
The systems are founded on the Rasiowa-Sikorski system for the first order logic
[RAS 63] which is extended with the rules for equality predicate in [GOL 06b]. In
constructing deduction rules for our systems we follow the general principles of defin-
ing relational deduction rules presented in [MAC 02]. In sections 2, 3, 4, 5, and 6 we
develop a relational proof system for the Halpern and Shoham’s logic HS [HAL 91]
in accordance with the three steps mentioned above. Next, in section 7 we show how
this system can be extended or modified in order to incorporate the remaining interval
relations of Allen [ALL 83, LAD 87] and/or other time orderings.

A recent implementation of the proof system for RL(1, 1′) is described in
[DAL 05]. The system is available at http://www.logic.stfx.ca/reldt/. In
[FOR 05] an implementation of translation procedures from non-classical logics to
relational logic RL(1, 1′) is presented. The system can be downloaded from http:
//www.di.univaq.it/TARSKI/transIt/.

2. Syntax and semantics of HS

Halpern and Shoham’s logic [HAL 91, VEN 90] is a propositional interval logic
characterized by four temporal modalities, that correspond to Allen’s relations begins,
ends, and their converses. These four modalities suffice to define all unary modalities
corresponding to Allen’s relations. Hence, HS is the most expressive interval temporal
logic featuring only unary modalities. Formally, HS-formulas are generated by the
following abstract syntax:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈B〉ϕ | 〈E〉ϕ | 〈B〉ϕ | 〈E〉ϕ.

The other propositional connectives, such as ∧,→ and the propositional constants >
(true) and ⊥ (false), as well as the necessity modalities [B], [E], [B] and [E] can be
defined as usual.

Given a strict linear ordering 〈D,<〉, a non-strict interval onD is a pair [c, d] such
that c ≤ d. We denote the set of all non-strict intervals onD as I(D)+. A model for an
HS-formula is a tuple M+ = 〈D, I(D)+,V〉, where 〈D,<〉 is a strict linear ordering
and V : AP → 2I(D)+

is a valuation function assigning to every propositional letter
p ∈ AP the set of intervals where p holds. The semantics of HS is defined recursively
by the satisfiability relation |= as follows. Let M+ = 〈D, I(D)+,V〉 be some given
HS-model, and let [c, d] ∈ I(D)+:

– for every propositional letter p ∈ AP , M+, [c, d] |= p iff [c, d] ∈ V(p);
– M+, [c, d] |= ¬ψ iff M+, [c, d] 6|= ψ;
– M+, [c, d] |= ψ1 ∨ ψ2 iff M+, [c, d] |= ψ1, or M+, [c, d] |= ψ2;
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– M+, [c, d] |= 〈B〉ψ iff ∃c′ ∈ D such that c′ < d, and M+, [c, c′] |= ψ;
– M+, [c, d] |= 〈E〉ψ iff ∃c′ ∈ D such that c < c′, and M+, [c′, d] |= ψ;
– M+, [c, d] |= 〈B〉ψ iff ∃c′ ∈ D such that d < c′, and M+, [c, c′] |= ψ;
– M+, [c, d] |= 〈E〉ψ iff ∃c′ ∈ D such that c′ < c, and M+, [c′, d] |= ψ.

Note that I(D)+ includes also intervals of the form [c, c], that are called point
intervals. Since point intervals have no intervals that begin and/or end them, they can
be distinguished by the formulas [B]⊥ and [E]⊥. This allow us to define two derived
operators, [[BP ]] and [[EP ]], that express properties that hold on the begin point and
on the end point of the current interval, respectively:

[[BP ]]ϕ ::= ([B]⊥ ∧ ϕ) ∨ 〈B〉([B]⊥ ∧ ϕ)

[[EP ]]ϕ ::= ([E]⊥ ∧ ϕ) ∨ 〈E〉([E]⊥ ∧ ϕ)

In the presence of point intervals, it is possible to define in HS the modalities
corresponding to the other Allen’s relations as follows:

〈D〉ϕ ::= 〈B〉〈E〉ϕ 〈D〉ϕ ::= 〈B〉〈E〉ϕ

〈O〉ϕ ::= 〈B〉〈E〉ϕ 〈O〉ϕ ::= 〈B〉〈E〉ϕ

〈M〉ϕ ::= [[BP ]]〈E〉ϕ 〈M〉ϕ ::= [[EP ]]〈B〉ϕ

〈P 〉ϕ ::= 〈M〉〈M〉ϕ 〈P 〉ϕ ::= 〈M〉〈M〉ϕ
It is worth noticing that in [HAL 91], as well as in most of the interval logic literature
[GOR 03b, GOR 04], the modalities 〈M〉 and 〈M〉 are denoted as 〈A〉 and 〈A〉 (after),
respectively. In this paper we choose to change the usual notation, in order to be
coherent with Allen’s terminology.

3. Relational logic for HS

The vocabulary of the language RLHS consists of the pairwise disjoint sets listed be-
low:

– a countable infinite set IV = {i, j, k, . . .} of interval variables;
– since intervals are meant to be certain pairs of points, to every interval variable i

we associate two point variables denoted i1, i2, with the intuition that i = [i1, i2]. We
define the countable infinite set of point variables as PV = {i1, i2 : i ∈ IV};

– a countable infinite set IRV of interval relational variables;
– a set PRC = {1′, <} of point relational constants;
– a set IRC = {1, B,E} of interval relational constants;
– a set OP = {−,∪,∩, ; ,−1} of relational operation symbols.

The constants 1′ and < are intended to represent the identity relation and the ordering
on the set of time points, respectively. We use a traditional relation-algebraic notation
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for constants 1′ and 1 (Boolean unit). The unary operators − and −1 bind stronger
than the binary ∪,∩ and ;.

The specific relational operations of converse (−1) and composition (;) are defined as
usual. For binary relations A,B on a set U :

A−1 = {(x, y) ∈ U × U : (y, x) ∈ A}

A;B = {(x, y) ∈ U × U : ∃z ∈ U [(x, z) ∈ A ∧ (z, y) ∈ B]}

Relational terms and formulas:

– The set of point relational terms PRT is the smallest set of expressions that
includes PRC and is closed with respect to the operation symbols from OP.

– The set of interval relational terms IRT is the smallest set of expressions that
includes IRA = IRV∪ IRC and is closed with respect to the operation symbols from
OP.

– The set of point relational formulas PRF consists of expressions of the form
x R y where x, y ∈ PV and R ∈ PRT.

– The set of interval relational formulas IFR consists of expressions of the form
i R j where i, j ∈ IV and R ∈ IRT.

– The setRF of RLHS -formulas (or, simply formulas if it is clear from the context),
consists of expressions from PRF ∪ IRF.

– R is said to be an atomic relational term whenever R ∈ PRC ∪ IRA. x R y is
said to be an atomic formula whenever R is an atomic relational term.

Semantics:

An RLHS -model is a tuple M = (U, I(U)+,m), where U and I(U)+ are non-
empty sets andm : PRT ∪ IRT→ 2U×U ∪2I(U)+×I(U)+

is a meaning function which
assigns binary relations on U × U to point relational terms and binary relations on
I(U)+ × I(U+) to interval relational terms as follows:

(1) m(1′) = IdU ;
(2) m(<) is a strict linear ordering on U , that is for every c, d, e ∈ U the following

holds:
(Irref) (c, c) 6∈ m(<);
(Trans) if (c, d) ∈ m(<) and (d, e) ∈ m(<), then (c, e) ∈ m(<);
(Lin) (c, d) ∈ m(<) or (d, c) ∈ m(<) or (c, d) ∈ m(1′);

(3) m extends to all compound relational terms R ∈ PRT as follows:

- m(−R) = (U × U) \m(R);
- m(R ∪ S) = (m(R) ∪m(S));
- m(R ∩ S) = (m(R) ∩m(S));
- m(R−1) = m(R)−1;
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- m(R;S) = (m(R);m(S));
(4) I(U)+ = {[c, d] ∈ U × U : (c, d) ∈ m(< ∪ 1′)};
(5) m(1) = I(U)+ × I(U)+;
(6) m(B) = {([c, d], [c′, d′]) ∈ m(1) : (c, c′) ∈ m(1′) ∧ (d′, d) ∈ m(<)};
(7) m(E) = {([c, d], [c′, d′]) ∈ m(1) : (c, c′) ∈ m(<) ∧ (d, d′) ∈ m(1′)};
(8) m extends to all compound relational terms R ∈ IRT as in (3) except for the

clause for −R: m(−R) = m(1) \m(R).

An RLHS -valuation in a modelM = (U, I(U)+,m) is any function v : PV ∪ IV →
U ∪ I(U)+ such that:

– if x ∈ PV then v(x) ∈ U ;
– if i ∈ IV then v(i) = [v(i1), v(i2)] ∈ I(U)+.

We say that v satisfies a formula x R y (M, v |= x R y for short) iff (v(x), v(y)) ∈
m(R). A formula is true inM whenever it is satisfied inM by every valuation v. A
formula is RLHS -valid whenever it is true in every RLHS -model.

4. Translation

In this section we present a translation of the formulas of logic HS into relational
terms of RLHS . We follow a general principle of translation of modal formulas pre-
sented in [ORŁ 88]: modal formulas should be mapped into terms which represent
right ideal relations, that is the relations satisfying the condition R; 1 = R. It is
known that the Boolean operations preserve the property of being a right ideal rela-
tion, and the composition of any relation with a right ideal relation results in a right
ideal relation. So our definition of translation enforces the property of having a right
ideal translation for propositional variables. It follows that the property is guaranteed
for the formulas built with the classical propositional connectives. Moreover, since
the translation of the formulas built with the possibility operator is defined as a com-
position of the constant denoting an accessibility relation with the translation of the
formula to which the possibility operator is applied, the translation results in a term
representing a right ideal relation.

We consider the following translation function τ , that maps HS-formulas ϕ to
RLHS -formulas of the form x R y as follows:

– for every propositional letter p ∈ AP , τ(p) = P ; 1, where P ∈ IRV is a
relational variable;

– τ(¬ψ) = −τ(ψ);
– τ(ψ1 ∨ ψ2) = τ(ψ1) ∪ τ(ψ2);
– τ(〈B〉ψ) = B; τ(ψ);
– τ(〈E〉ψ) = E; τ(ψ);
– τ(〈B〉ψ) = B−1; τ(ψ);
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– τ(〈E〉ψ) = E−1; τ(ψ).

PROPOSITION 1. — For every HS-model M+ and for every HS-formula ψ there is an
RLHS -modelM such that ψ is true in M+ iff i τ(ψ) j is true inM, where i, j ∈ IV
and i 6= j.

PROOF. — Let ψ be an HS-formula, and let M+ = 〈D, I(D)+,V〉 be an HS-model.
We define the corresponding RLHS -modelM = (U, I(U)+,m) as follows:

– U = D;
– I(U)+ = I(D)+;
– m(<) = {(c, d) ∈ U : c < d};
– m(1) = I(U)+ × I(U)+ and m(1′) = IdU ;
– for every p ∈ AP , m(P ) = {([c, d], [c′, d′]) ∈ m(1) : [c, d] ∈ V(p)};
– m(B) = {([c, d], [c′, d′]) ∈ m(1) : c = c′, d′ < d};
– m(E) = {([c, d], [c′, d′]) ∈ m(1) : c < c′, d′ = d}.

Given a valuation v we show by induction on the structure of ψ that the following
property holds:

M+, v(i) |= ψ iffM, v |= i τ(ψ) j.

From that, we can conclude that ψ is true in M+ iff i τ(ψ) j is true inM. By way
of example we prove the required condition for the formulas of the form: ψ1 ∨ ψ2,
〈B〉ψ1 and 〈E〉ψ1.

– If ψ = ψ1∨ψ2 then M+, v(i) |= ψ1∨ψ2 iff M+, v(i) |= ψ1 or M+, v(i) |= ψ2,
iff, by inductive hypothesis, M, v |= i τ(ψ1) j or M, v |= i τ(ψ2) j, iff M, v |=
i (τ(ψ1) ∪ τ(ψ2)) j iffM, v |= i τ(ψ1 ∨ ψ2) j.

– If ψ = 〈B〉ψ1 then M+, v(i) |= 〈B〉ψ1 iff there exists c′ < v(i2) such
that M+, [v(i1), c′] |= ψ1, iff, by inductive hypothesis and by definition of M,
(v(i), [v(x1), c′]) ∈ m(B) and ([v(i1), c′], [v(j1), v(j2)]) ∈ m(τ(ψ1)), iff M, v |=
i (B; τ(ψ1)) j iffM, v |= i τ(〈B〉ψ1) j.

– Finally, if ψ = 〈E〉ψ1 then M+, v(i) |= 〈E〉ψ1 iff there exists c′ < v(i1)
such that M+, [c′, v(i2)] |= ψ1, iff, by inductive hypothesis and by definition ofM,
(v(i), [c′, v(i2)]) ∈ m(E−1) and ([c′, v(i2)], [v(j1), v(j2)]) ∈ m(τ(ψ1)), iffM, v |=
i (E−1; τ(ψ1)) j iffM, v |= i τ(〈E〉ψ1) j. n

PROPOSITION 2. — For every RLHS -modelM and for every HS-formula ψ there is
an HS-model M+ such that ψ is true in M+ iff i τ(ψ) j is true inM, where i, j ∈ IV
and i 6= j.

PROOF. — Let ψ be an HS-formula, and letM = (U, I(U)+,m) be an RLHS -model.
We define the corresponding HS-model M+ = 〈D, I(D)+,V〉 as follows:

– D = U ;
– for all c, d ∈ U , c < d iff (c, d) ∈ m(<);
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– for all p ∈ AP , [c, d] ∈ V(p) iff ([c, d], [c′, d′]) ∈ m(P ; 1), for all [c′, d′] ∈
I(U)+.

Since m(<) is a strict linear ordering on U , then 〈D,<〉 is a strict linear ordering, and
thus M+ is correctly defined.

Given a valuation v we show by induction on the structure of ψ that the following
property holds:

M, v |= i τ(ψ) j iff M+, v(i) |= ψ.

From that, we can conclude that i τ(ψ) j is true inM iff ψ is true in M+. By way of
example we prove the required condition for the formulas of the form: ¬ψ1, 〈E〉ψ1

and 〈B〉ψ1.

– If ψ = ¬ψ1 then M, v |= i τ(¬ψ1) j iff M, v |= i (−τ(ψ1)) j iff M, v 6|=
i τ(ψ1) j iff, by inductive hypothesis, M+, v(i) 6|= ψ1 iff, M+, v(i) |= ¬ψ1.

– If ψ = 〈E〉ψ1 then M, v |= i τ(〈E〉ψ1) j iff M, v |= i (E; τ(ψ1)) j iff,
there exists [c′, d′] ∈ I(D)+ such that (v(i), [c′, d′]) ∈ m(E) and ([c′, d′], v(j)) ∈
m(τ(ψ1)), iff, by the definition of m(E) and by inductive hypothesis, v(i2) = d′,
v(i1) < c′, and M+, [c′, d′] |= ψ1, iff M+, v(i) |= 〈E〉ψ1.

– If ψ = 〈B〉ψ1 then M, v |= i τ(〈B〉ψ1) j iff M, v |= i (B−1; τ(ψ1)) j iff,
there exists [c′, d′] ∈ I(D)+ such that (v(i), [c′, d′]) ∈ m(B−1) and ([c′, d′], v(j)) ∈
m(τ(ψ1)), iff, by the definition of m(B−1) and by inductive hypothesis, v(i1) = c′,
d′ > v(i2), and M+, [c′, d′] |= ψ1, iff M+, v(i) |= 〈B〉ψ1. n

From the above propositions we obtain:

THEOREM 3. — For every HS-formula ψ, ψ is HS-valid iff i τ(ψ) j is RLHS -valid.

5. The proof system for logic RLHS

The proof system for logic RLHS presented in this section belongs to the family
of dual tableau systems, as mentioned in Section 1. It consists of axiomatic sets of
formulas and rules which apply to finite sets of formulas. The axiomatic sets take the
place of axioms. There are three groups of rules: the rules which reflect definitions
of the standard relational operations; the rules which enable us to decompose interval
relations into point relations according to the definitions recalled in Section 1; the
rules which reflect the properties of the temporal ordering assumed in the models of
the HS logic. The rules have the following general form:

(∗) Φ
Φ1 | . . . |Φn

where Φ1, . . . ,Φn are finite non-empty sets of formulas, n ≥ 1, and Φ is a finite
(possibly empty) set of formulas. Φ is called the premise of the rule, and Φ1, . . . ,Φn
are called its conclusions. A rule of the form (∗) is said to be applicable to a set X of
formulas whenever Φ ⊆ X . As a result of application of a rule of the form (∗) to a
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set X , we obtain the sets (X \Φ)∪Φi, i = 1, . . . , n. As usual, any concrete rule will
always be presented in a short form without set brackets.

In dual tableau systems proofs have the form of finitely branching trees. Branching
is interpreted as conjunction and the sets of formulas in the nodes of the trees are
interpreted as disjunctions of their members. A formula is provable whenever there
exists a closed proof tree for it. We close a branch of the proof tree whenever it
contains a node with an axiomatic set of formulas. The tree is closed if all of its
branches are closed.

The completeness theorem states that any valid formula has a closed proof tree.
This theorem is usually proved by contradiction. Assuming that a valid formula does
not have a closed proof tree, we consider any of those trees. It necessarily has an
infinite branch (it is guaranteed by König’s lemma). We make this tree complete:
whenever a rule is applicable to a node of the tree, then it has been applied. The
principles of construction of a complete proof tree are stated in the form of what is
called completion conditions (Section 5.5). Next, from the syntactic resources of an
infinite branch we construct a branch structure (Section 5.6) and we prove that it is a
model of logic RLHS in which the original formula is not true.

We say that a variable in a rule is new whenever it appears in a conclusion of the rule
and does not appear in its premise.

5.1. Decomposition rules

Standard decomposition rules

Let x, y, z ∈ PV and R,S ∈ PRT or x, y, z ∈ IV and R,S ∈ IRT.

(∪)
x (R ∪ S) y
x R y, x S y

(−∪)
x −(R ∪ S) y

x −R y | x −S y

(∩)
x (R ∩ S) y
x R y |x S y

(−∩)
x −(R ∩ S) y
x −R y, x −S y

(−)
x −−R y

x R y

(−1)
x R−1 y

y R x
(−−1)

x −R−1 y

y −R x

(;)
x (R;S) y

x R z, x (R;S) y | z S y, x (R;S) y
z is any variable

(−;)
x −(R;S) y

x −R z, z −S y
z is a new variable

Decomposition rules from interval relations to point relations

For i, j ∈ IV and R ∈ IRA:
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(R1)
i R j

i1 1′ k1, i R j | i2 1′ k2, i R j | k R j, i R j
with k any interval variable.

(R2)
i R j

j1 1′ k1, i R j | j2 1′ k2, i R j | i R k, i R j
with k any interval variable.

For i, j ∈ IV:

(B)
i B j

i1 1′ j1, i B j | j2 < i2, i B j
(−B)

i −B j

i1 −1′ j1, j2 −< i2, i −B j

(E)
i E j

i2 1′ j2, i E j | i1 < j1, i E j
(−E)

i −E j

i2 −1′ j2, i1 −< j1, i −E j

5.2. Specific rules

Rules for 1′

For x, y ∈ PV and R ∈ PRC:

(1′1)
x R y

xRz, x R y | y 1′ z, x R y
(1′2)

x R y

x 1′ z, x R y | z R y, x R y

with z any point variable.

Rules for <

For x, y ∈ PV:

(Irref<)
x < x

(Tran<)
x < y

x < y, x < z |x < y, z < y
z is any point variable

5.3. Axiomatic sets

An axiomatic set is a set including a subset of any of the following forms:

(a1) x R y, x −R y, for either x, y ∈ PV and R ∈ PRT or x, y ∈ IV and R ∈ IRT;
(a2) x 1′ x for x ∈ PV;
(a3) x < y, x 1′ y, y < x for x, y ∈ PV;
(a4) i 1 j for i, j ∈ IV;
(a5) i1 < i2, i1 1′ i2 for i ∈ IV.
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5.4. Proof trees and soundness of the proof system

A finite set of formulas {x1 R1 y1, . . . , xn Rn yn} is said to be an RLHS -set
whenever for every RLHS -model M and every valuation v in M there exists i ∈
{1, . . . , n} such that xi Ri yi is satisfied by v inM.

Let Φ be a non-empty set of RLHS -formulas. A rule
Φ

Φ1 | . . . | Φn
is RLHS -

correct whenever the following property holds: Φ is an RLHS -set if and only if Φi is
an RLHS -set, for every i ∈ {1, . . . , n}. When Φ is empty, RLHS -correctness can be
expressed as follows: rule

Φ1 | . . . | Φn
is RLHS -correct if and only if there exists

i ∈ {1, . . . , n} such that Φi is not an RLHS -set.

DEFINITION 4. — Let x R y be an RLHS -formula. An RLHS -proof tree for x R y is
a tree with the following properties:

– the formula x R y is at the root of the tree;

– each node except the root is obtained by application of an RLHS -rule to its pre-
decessor node;

– a node does not have successors whenever it is an RLHS -axiomatic set.

Due to the forms of the rules we obtain the following:

REMARK 5. — If a node of an RLHS -proof tree does not contain an axiomatic sub-
set and contains an RLHS -formula x R y or x −R y, for atomic R, then all of its
successors contain this formula as well. 2

A branch of an RLHS -proof tree is said to be RLHS -closed whenever it contains a node
with an axiomatic set of formulas. A proof tree is RLHS -closed if and only if all of its
branches are closed.

A formula is provable whenever there is a closed RLHS -proof tree for it.

PROPOSITION 6. —

1) All RLHS -rules are correct.

2) All RLHS -axiomatic sets are RLHS -sets.

PROOF. —

Proof of 1) We show the correctness of rules (B) and (−E). Proving correctness of
the other rules is similar. LetM = (U, I(U)+,m) be an RLHS -model and let v be an
RLHS -valuation.

It is easy to see that if {i B j} is an RLHS -set, then {i1 1′ j1, i B j} and {j2 <
i2, i B j} are RLHS -sets. Assume M, v |= i1 1′ j1 and M, v |= j2 < i2, that is
v(i), v(j) ∈ I(U)+, (v(i1), v(j1)) ∈ m(1′) and (v(j2), v(i2)) ∈ m(<). By the
definition ofm(B), we obtain (v(i), v(j)) ∈ m(B). In the remaining cases the proofs
are similar.
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The proof of correctness of the rule (−E) is analogous. AssumeM, v |= i2 −1′ j2
or M, v |= i1 −< j1, that is v(i), v(j) ∈ I(U)+ and (v(i2), v(j2)) 6∈ m(1′) or
(v(i1), v(j1)) 6∈ m(<). By the definition of m(E), we obtain (v(i), v(j)) 6∈ m(E),
hence (v(i), v(j)) ∈ m(−E). The remaining parts of the proof are obvious.

Proof of 2) It suffices to show that all sets of the forms (a1)-(a5) are RLHS -sets. We
prove it for sets (a4) and (a5). In the remaining cases the proofs are similar.

By the definition of an RLHS -model, for every RLHS -valuation v and for every
i, j ∈ IV, (v(i), v(j)) ∈ I(U)+ × I(U)+, hence (v(i), v(j)) ∈ m(1). Therefore
{i 1 j} is an RLHS -set.

By the definition, for every RLHS -valuation v and for every i ∈ IV, v(i) ∈ I(U)+,
that is (v(i1), v(i2)) ∈ m(<∪1′). Therefore in every RLHS -modelM,M, v |= i1 <
i2 orM, v |= i1 1′ i2. Hence {i1 < i2, i1 1′ i2} is an RLHS -set. n

Due to Proposition 6, we obtain the following theorem.

THEOREM 7. — Let x R y be an RLHS -formula. If x R y is provable, then it is
RLHS -valid.

5.5. Completion conditions

Given a proof tree and a branch b in it, we write, by abusing the notation, x R y ∈ b
if x R y belongs to a set of formulas of a node of branch b. A non-closed branch b is
said to be RLHS -complete whenever it satisfies the following completion conditions.

For all variables x, y, z and relational terms R,S such that either x, y, z ∈ PV and
R,S ∈ PRT or x, y, z ∈ IV and R,S ∈ IRT:

– Cpl(∪) (Cpl(−∩)) If x (R ∪ S) y ∈ b (resp. x −(R ∩ S) y ∈ b), then both
x R y ∈ b (resp. x −R y ∈ b) and x S y ∈ b (resp. x −S y ∈ b).

– Cpl(∩) (Cpl(−∪)) If x (R ∩ S) y ∈ b (resp. x −(R ∪ S) y ∈ b), then either
x R y ∈ b (resp. x −R y ∈ b) or x S y ∈ b (resp. x −S y ∈ b).

– Cpl(−) If x (−−R) y ∈ b, then x R y ∈ b.
– Cpl(−1) If x R−1 y ∈ b, then y R x ∈ b.
– Cpl(−−1) If x −R−1 y ∈ b, then y −R x ∈ b.
– Cpl(;) If x (R;S) y ∈ b, then for every z either x R z ∈ b or z S y ∈ b.
– Cpl(−;) If x −(R;S) y ∈ b, then for some z both x −R z ∈ b and z −S y ∈ b.

For all x, y ∈ PV and R ∈ PRC:

– Cpl(1′1) If x R y ∈ b then, for every z ∈ PV, x R z ∈ b or y 1′ z ∈ b.
– Cpl(1′2) If x R y ∈ b then, for every z ∈ PV, z 1′ x ∈ b or z R y ∈ b.

For all x, y ∈ PV:
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– Cpl(Irref<) x < x ∈ b.
– Cpl(Tran<) If x < y ∈ b then, for every z ∈ PV, x < z ∈ b or z < y ∈ b.

For all i, j ∈ IV:

– Cpl(R1) If i R j ∈ b, then for every k ∈ IV either i1 1′ k1 ∈ b, i2 1′ k2 ∈ b, or
k R j ∈ b.

– Cpl(R2) If i R j ∈ b, then for every k ∈ IV either j1 1′ k1 ∈ b, j2 1′ k2 ∈ b, or
i R k ∈ b.

– Cpl(B) If i B j ∈ b then either i1 1′ j1 ∈ b or j2 < i2 ∈ b.
– Cpl(−B) If i −B j ∈ b then i1 −1′ j1, j2 −< i2 ∈ b.
– Cpl(E) If i E j ∈ b then either i2 1′ j2 ∈ b or i1 < j1 ∈ b.
– Cpl(−E) If i −E j ∈ b then i2 −1′ j2, i1 −< j1 ∈ b.

An RLHS -proof tree is said to be RLHS -complete if and only if all of its non-
closed branches are RLHS -complete. An RLHS -complete non-closed branch is said to
be RLHS -open.

By Remark 5 and since the set containing a subset {x R y, x −R y} is axiomatic, the
following fact can be easily proved by induction:

FACT 8. — Let b be an open branch of an RLHS -proof tree. Then there is no RLHS -
formula x R y such that x R y ∈ b and x −R y ∈ b.

5.6. Branch model

Let b be an open branch of a proof tree. The branch structureMb = (U b, I(U b)+,
mb) is defined as follows:

– U b = PV;
– mb(R) = {(x, y) ∈ U b × U b : x R y 6∈ b} for R ∈ PRC;
– mb extends to all compound relational terms R ∈ PRT as in RLHS -models;
– I(U b)+ = {[c, d] : c, d ∈ U b, (c, d) ∈ mb(< ∪ 1′)};
– mb(R) = {(i, j) ∈ I(U b)+ × I(U b)+ : i R j 6∈ b} for R ∈ IRV;
– mb(1) = I(U b)+ × I(U b)+;
– mb(B) = {([c, d], [c′, d′]) ∈ I(U b)+ × I(U b)+ : (c, c′) ∈ mb(1′) ∧ (d′, d) ∈

mb(<)};
– mb(E) = {([c, d], [c′, d′]) ∈ I(U b)+ × I(U b)+ : (c, c′) ∈ mb(<) ∧ (d, d′) ∈

mb(1′)};
– mb extends to all compound relational terms R ∈ IRT as in RLHS -models.

PROPOSITION 9. — mb(1′) is an equivalence relation on U b.

PROOF. — x 1′ x 6∈ b for every x ∈ U b, because {x 1′ x} is axiomatic. Thus,
(x, x) ∈ mb(1′) for every x ∈ U b. Therefore mb(1′) is reflexive. Assume (x, y) ∈
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mb(1′), that is x 1′ y 6∈ b. Suppose (y, x) 6∈ mb(1′). Then y 1′ x ∈ b. By the com-
pletion condition Cpl(1′1) we get y 1′ y ∈ b or x 1′ y ∈ b, a contradiction. Therefore
mb(1′) is symmetric. Assume (x, y) ∈ mb(1′) and (y, z) ∈ mb(1′) that is x 1′ y 6∈ b
and y 1′ z 6∈ b. Suppose (x, z) 6∈ mb(1′). Then x 1′ z ∈ b. By the completion
condition Cpl(1′1) we obtain x 1′ y ∈ b or z 1′ y ∈ b. In the first case we get a con-
tradiction. In the second case, by the application of the completion condition Cpl(1′1)
to z 1′ y ∈ b we obtain z 1′ z ∈ b or y 1′ z ∈ b, and in both cases we get a contra-
diction. Therefore mb(1′) is transitive, and hence mb(1′) is an equivalence relation.

n

PROPOSITION 10. — Let b be an open branch. A structureMb satisfies the condi-
tions (2)-(8) from the definition of RLHS -models.

PROOF. — The conditions (3)-(8) are satisfied by the definition of a branch structure.
Therefore it suffices to show that mb(<) satisfies the conditions (Irref), (Trans) and
(Lin).

By the completion condition Cpl(Irref<), for every x ∈ U b, we have x < x ∈ b, but
it means that (x, x) 6∈ mb(<) for every x ∈ U b, therefore mb(<) is irreflexive.

To prove transitivity, assume (x, y) ∈ mb(<) and (y, z) ∈ mb(<), that is x < y 6∈
b and y < z 6∈ b. Suppose (x, z) 6∈ mb(<). Then x < z ∈ b. By the completion
condition Cpl(Tran<) x < y ∈ b or y < z ∈ b, a contradiction. Therefore mb(<)
satisfies the condition (Trans).

Since b is open, for all x, y ∈ U b, x < y 6∈ b or y < x 6∈ b or x 1′ y 6∈ b. It means
that (x, y) ∈ mb(<) or (y, x) ∈ mb(<) or (x, y) ∈ mb(1′), therefore mb(<) satisfies
the condition (Lin). n

Given a structureMb = (U b, I(U b)+,mb), let vb : PV ∪ IV→ U b ∪ I(U b)+ be such
that vb(x) = x for every x ∈ PV and v(i) = [i1, i2] for every i ∈ IV.

PROPOSITION 11. — Let b be an open branch, and let Mb be the corresponding
branch structure. The function vb satisfies the definition of RLHS -valuation.

PROOF. — By the definition of vb, if x ∈ PV then vb(x) ∈ U b and, if i ∈ IV then
vb(i) = [vb(i1), vb(i2)]. It remains to show that for every i ∈ IV, (vb(i1), vb(i2)) ∈
mb(<∪1′). Suppose that there exists i ∈ IV such that (vb(i1), vb(i2)) 6∈ mb(<∪1′).
This implies that (vb(i1), vb(i2)) 6∈ mb(<) and (vb(i1), vb(i2)) 6∈ mb(1′). By the
definition of mb, this implies that i1 < i2 ∈ b and i1 1′ i2 ∈ b, which means that b is
closed, a contradiction. n

Let satisfiability of formulas inMb be defined as for RLHS -models.

PROPOSITION 12. — Let b be an open branch and let x R y be an RLHS -formula.
Then the following holds:

(∗) ifMb, vb |= x R y, then x R y 6∈ b
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PROOF. — The proof is by induction on the complexity of formulas. ForR ∈ PRC∪
IRV and its complement, (∗) holds by the definition.

– For R = 1, (∗) holds trivially, since i 1 j is axiomatic.
– Let R = B. Assume (i, j) ∈ mb(B), that is (i1, j1) ∈ mb(1′) and (j2, i2) ∈

mb(<). Then i1 1′ j1 6∈ b and j2 < i2 6∈ b. Suppose i B j ∈ b. By the completion
condition Cpl(B), either i1 1′ j1 ∈ b or j2 < i2 ∈ b, a contradiction.

– Let R = −B. Assume (i, j) 6∈ mb(B), that is (i1, j1) 6∈ mb(1′) or (j2, i2) 6∈
mb(<). Then i1 1′ j1 ∈ b or j2 < i2 ∈ b. Suppose i −B j ∈ b. By the completion
condition Cpl(−B), both i1 −1′ j1 ∈ b and j2 −< i2 ∈ b, a contradiction.

– Let R = E. Assume (i, j) ∈ mb(E), that is (i1, j1) ∈ mb(<) and (j2, i2) ∈
mb(1′). Then i1 < j1 6∈ b and j2 1′ i2 6∈ b. Suppose i E j ∈ b. By the completion
condition Cpl(E), either i1 < j1 ∈ b or j2 1′ i2 ∈ b, a contradiction.

– Let R = −E. Assume (i, j) 6∈ mb(E), that is (i1, j1) 6∈ mb(<) or (j2, i2) 6∈
mb(1′). Then i1 < j1 ∈ b or j2 1′ i2 ∈ b. Suppose i −E j ∈ b. By the completion
condition Cpl(−E), both i1 −< j1 ∈ b and j2 −1′ i2 ∈ b, a contradiction.

Therefore (∗) holds for all atomic formulas and its complements. The remaining cases
can be proved in a standard way using the completion conditions and the property of
Fact 8. See also [GOL 06a]. n

It is easy to check that the branch structure satisfies the extensionality property.

PROPOSITION 13. — LetMb be a branch structure determined by an open branch
b. Then the following hold:

– For every R ∈ PRC and for all x, y, z, t ∈ PV: if (x, y) ∈ mb(R) and
(x, z), (y, t) ∈ mb(1′), then (z, t) ∈ mb(R).

– For every R ∈ IRA and for all i, j, k, l ∈ IV such that i = [i1, i2], j =
[j1, j2], k = [k1, k2], l = [l1, l2]: if (i, j) ∈ mb(R) and (i1, k1), (i2, k2),
(j1, l1), (j2, l2) ∈ mb(1′), then (k, l) ∈ mb(R).

Since mb(1′) is an equivalence relation on U b, given a branch structureMb, we
may define the quotient modelMb

q = (U bq , I(U bq )+,mb
q) as follows:

– U bq = {‖x‖ : x ∈ U b}, where ‖x‖ is the equivalence class of mb(1′) generated
by x;

– I(U bq )+ = {[‖c‖, ‖d‖] : [c, d] ∈ I(U b)+};
– mb

q(R) = {(‖x‖, ‖y‖)) ∈ U bq × U bq : (x, y) ∈ mb(R)}, for every R ∈ PRC;

– mb
q extends to all compound relational terms R ∈ PRT as in RLHS -models;

– mb
q(R) = {([‖c‖, ‖d‖], [‖c′‖, ‖d′‖]) ∈ I(U bq )+ × I(U bq )+ : ([c, d], [c′, d′]) ∈

mb(R)}, for every R ∈ IRA;
– mb

q extends to all compound relational terms R ∈ IRT as in RLHS -models.
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Due to Proposition 13, the quotient modelMb
q is well defined, that is the definitions

of mb
q(R) and I(U bq )+ do not depend on the choice of the representatives of the equiv-

alence classes.

PROPOSITION 14. — The structureMb
q is an RLHS -model.

PROOF. — We have to show that mb
q(1
′) is the identity on U bq . Indeed, for every

x, y ∈ PV we have:

(‖x‖, ‖y‖) ∈ mb
q(1
′) iff (x, y) ∈ mb(1′) iff ‖x‖ = ‖y‖

n

Let vbq be such that vbq(x) = ‖x‖, for every x ∈ PV, and vbq(i) = [‖i1‖, ‖i2‖], for
every i ∈ IV. It is easy to see that vbq is an RLHS -valuation inMb

q , since vb satisfies
the definition of RLHS -valuation.

By an easy induction we can prove the following:

PROPOSITION 15. — For every RLHS -formula x R y:

(*) Mb, vb |= x R y iff Mb
q, v

b
q |= x R y

The above propositions enable us to prove the completeness of the proof system.

THEOREM 16 (COMPLETENESS OF RLHS -SYSTEM). — Let x R y be an
RLHS -formula. If x R y is RLHS -valid, then x R y is RLHS -provable.

PROOF. — Assume x R y is RLHS -valid. Suppose there is no closed RLHS -proof
tree for x R y. Consider a non-closed RLHS -proof tree for x R y. We may assume
that this tree is complete. Let b be an open branch of the complete RLHS -proof tree for
x R y. Since x R y ∈ b, by Proposition 12, the branch structureMb does not satisfy
x R y. By Proposition 15 also the quotient modelMb

q does not satisfy x R y. Since
Mb

q is an RLHS -model, x R y is not RLHS -valid, a contradiction. n

6. HS-validity and RLHS -provability

In this section we conclude the discussion of Sections 4 and 5 and we show how
the proof system of logic RLHS can be used to verify the validity and entailment of
formulas of logic HS. We also present examples of derivations.

The following theorem follows from Theorems 3 and 16.

THEOREM 17. — For every HS-formula ϕ, ϕ is HS-valid if and only if i τ(ϕ) j is
RLHS -provable.

As an example of validity checking, consider the HS-formula ϕ = 〈B〉〈B〉p →
〈B〉p, which express the fact that 〈B〉 is a transitive modality. By the semantics of
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i (−(B; (B; (P ; 1))) ∪ (B; (P ; 1))) j

i −(B; (B; (P ; 1))) j, i (B; (P ; 1)) j

(∪)

i −B k, k −(B; (P ; 1)) j, i (B; (P ; 1)) j

(−;), k new

i −B k, k −B l, l −(P ; 1) j, i (B; (P ; 1)) j

(−;), l new

i −B k, k −B l, l −(P ; 1) j, i B l, i (B; (P ; 1)) j . . . , l −(P ; 1) j, l (P ; 1) j,. . .
Axiomatic

(;), l

i1 −1′ k1, k2 −< i2,
i −B k, k −B l, l −(P ; 1) j, i B l, i (B; (P ; 1)) j

(−B)

i1 −1′ k1, k2 −< i2, k1 −1′ l1, l2 −< k2,
i −B k, k −B l, l −(P ; 1) j, i B l, i (B; (P ; 1)) j

(−B)

i1 1′ l1, . . . , i1 −1′ k1,
. . . , k1 −1′ l1, . . .

(B)

l2 < i2, . . . , k2 −< i2,
. . . , l2 −< k2, . . .

i1 1′ k1, . . . , i1 −1′ k1, . . .
Axiomatic

k1 1′ l1, . . . , i1 −1′ l1, . . .
Axiomatic

(1′1), k1

l2 < k2, . . . , l2 −< k2, . . .
Axiomatic

(Tran<), k2

k2 < i2, . . . , k2 −< i2, . . .
Axiomatic

Figure 2. Proof tree for 〈B〉〈B〉p→ 〈B〉p

HS, it is easy to see that ϕ is valid. The translation τ(ϕ) of the above formula into
a relational term of RLHS is −(B; (B; (P ; 1))) ∪ (B; (P ; 1)). Figure 2 depicts an
RLHS -proof tree that shows that the relational formula i τ(ϕ) j is RLHS -valid, and
thus that ϕ is HS-valid. In each node of the proof tree we underline the formula to
which a rule has been applied during the construction of the proof tree.

Let R1, . . . , Rn, R be binary relations on I(U)+ and let 1 = I(U)+× I(U)+. It is
known that R1 = 1, . . . , Rn = 1 imply R = 1 iff (1;−(R1 ∩ . . . ∩Rn); 1) ∪R = 1.
Therefore, for every RLHS -modelM,M |= i R1 j, . . . ,M |= i Rn j implyM |=
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i R j iff M |= i (1;−(R1 ∩ . . . ∩Rn); 1) ∪R) j which means that entailment in
RLHS can be expressed in its language.

i [(1;−(−B ∪ (B; B)); 1) ∪ (−(B−1, (P ; 1)) ∪ (B−1; (B−1; (P ; 1))))] j

i (1; (−(−B ∪ (B; B)); 1)) j, i ((−(B−1; (P ; 1))) ∪ (B−1; (B−1; (P ; 1)))) j

(∪)

i (1; (−(−B ∪ (B; B)); 1)) j, i −(B−1; (P ; 1)) j, i (B−1; (B−1; (P ; 1))) j

(∪)

i (1; (−(−B ∪ (B; B)); 1)) j, i −B−1 k, k −(P ; 1) j, i (B−1; (B−1; (P ; 1))) j

(−;), k new

i (1; (−(−B ∪ (B; B)); 1)) j, k −B i, k −(P ; 1) j, i (B−1; (B−1; (P ; 1))) j

(−1)

. . . , i 1 k, . . .
Axiomatic.

(;), k

. . . , k ((−(−B ∪ (B; B))); 1) j, . . .

. . . , k −(−B ∪ (B; B)) i, . . .

(;), i

. . . , i 1 j, . . .
Axiomatic.

. . . , k (−− B) i, . . .

(−∪)

. . . , k −(B; B) i, . . .

. . . , k B i, . . . , k −B i, . . .
Axiomatic.

(−)

. . . , k −B l, l −B i, . . . , k −(P ; 1) j, i (B−1; (B−1; (P ; 1))) j, . . .

(−;), l new

. . . , l −B i, . . . , i B−1 l, . . .

(;), l

. . . , k −B l, . . . , k −(P ; 1) j, l (B−1; (P ; 1)) j, . . .

. . . , l −B i, . . . , l B i, . . .
Axiomatic.

(−1)

. . . , k −B l, . . . , l B−1 k . . .

(;), k

. . . , k −(P ; 1) j, k P ; 1 j, . . .
Axiomatic.

. . . , k −B l, . . . , k B l . . .
Axiomatic.

(−1)

Figure 3. Proof tree showing that DenseRLHS entails DenseHS
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As an example of entailment in RLHS , suppose that< is a dense linear ordering. It
can be shown that density can be expressed in terms of the relation B by the following
axiom:

DenseRLHS := B ⊆ (B;B),

that is equivalent to −B ∪ (B;B) = 1. In [VEN 90], the following HS-axiom is
proposed to express density:

DenseHS := 〈B〉p→ 〈B〉〈B〉p.

Its RLHS -translation is τ(DenseHS) = −(B−1; (P ; 1)) ∪ (B−1; (B−1; (P ; 1))). To
prove that DenseRLHS entails DenseHS it is sufficient to show that the relational for-
mula

i [(1;−(−B ∪ (B;B)); 1) ∪ (−(B−1; (P ; 1)) ∪ (B−1; (B−1; (P ; 1))))] j

is RLHS -valid. Figure 3 depicts a closed proof tree for this formula, thus proving that
DenseHS is valid for every dense ordering. As in the previous example, in each node
of the proof tree we underline the formula to which a rule has been applied during the
construction of the proof tree.

It is known that the formula DenseHS is satisfiable in a non-dense model, so DenseHS
does not entail DenseRLHS .

7. Extensions of the relational system

In the previous sections we have provided a relational proof system for the interval
temporal logic HS, interpreted over linear temporal domains. In this section we exploit
the modularity of the relational approach, and we show how to adapt it to cope with
other interval relations and other meaningful temporal domains.

7.1. Considerations on the nature of intervals

In Section 2, we considered the non-strict semantics of HS, where, given a strict
ordering 〈D,<〉, the set of non-strict intervals I(D)+ is defined as the set of all [c, d]
such that c ≤ d. This choice includes in the set of intervals also point intervals, that
are intervals of the form [c, c]. In the literature another natural semantics for interval
logics is considered, namely, the strict one, where point intervals are excluded. Given
a strict ordering 〈D,<〉, a strict interval is a pair [c, d] where c < d. The set of
all strict intervals on D will be denoted by I(D)−, and the semantics of formulas is
defined over strict interval structures 〈D, I(D)−〉 in a way analogous to the non-strict
case.

In this section we show how to modify the relational proof system for RLHS in the
case of the strict semantics. To this end, we define the relational logic RL−HS (strict



20 JANCL – 16/2006. Title of the special issue

RLHS ), characterized by the same syntax as non-strict RLHS , but with a different
semantics. An RL−HS -model is a tuple M− = (U, I(U)−,m) where U and m are
defined as in RLHS -models, and I(U)− = {[c, d] ∈ U × U : (c, d) ∈ m(<)}. An
RL−HS -valuation is any function v : PV ∪ IV→ 2U ∪ 2I(U)−×I(U)− such that:

– if x ∈ PV then v(x) ∈ U ;
– if i ∈ IV then v(i) = [v(i1), v(i2)] ∈ I(U)−.

The notions of satisfiability and validity of a formula are defined as in RLHS .

A proof system for RL−HS

A proof system for RL−HS can be obtained from the proof system for RLHS by
substituting the axiomatic set (a5) with a new one:

(a5−) i1 < i2 for i ∈ IV.

In the case of the strict semantics, for every valuation v and every interval variable
i, we have v(i) = [v(i1), v(i2)] with v(i1) < v(i2). Hence, (a5−) is an RL−HS -set.
Correctness of the other rules of the proof system follows directly from the correctness
of the rules for RLHS . Thus, soundness of the RL−HS -proof system is straightforward.

Completeness of the proof system can be proved as in the case of RLHS , with the
only difference that, given an open branch b, the branch structureMb = (U b, I(U b)−,
mb) is defined such that I(U b)− = {[c, d] : c, d ∈ U b, (c, d) ∈ mb(<)}.

7.2. Incorporating the other interval relations

In this section we show how to modify the relational logic RLHS and its proof
system to obtain a relational logic RLL (and a corresponding proof system) that is
appropriate to any interval logic L that is based on unary modalities corresponding to
Allen’s relations. Generally speaking, any interval logic L is defined by the following
abstract syntax:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | {〈Ri〉ϕ, 〈Ri〉ϕ : i ∈ I}.

with I determining any choice of basic interval relations from the 13 Allen’s rela-
tions. Given an interval logic L, the corresponding relational logic RLL differs from
RLHS only in the choice of the set of interval relational constants, that is defined as
IRC = {1} ∪ {Ri : i ∈ I}. Models of RLL are defined as in the case of RLHS while
the semantics of the relational constantsRi has to be defined in accordance with the se-
mantics of the chosen primitive interval relations. Any L-formula ϕ can be translated
to an RLL-formula i R j by means of the following validity preserving translation τ :

– for propositional letters and for propositional connectives, τ is defined as in the
case of RLHS ;

– for every basic modality 〈R〉, τ(〈R〉ψ) = R; τ(ψ);
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– for every converse modality 〈R〉, τ(〈R〉ψ) = R−1; τ(ψ).

A proof system for RLL can be obtained from the proof system for RLHS (in
the case of the non-strict semantics for intervals) or for RL−HS (in the case of the
strict semantics), by substituting rules (B), (E), (−B), and (−E) with rules that are
appropriate for the choice of basic Allen’s relations. Rules for begins and ends are
presented in Section 5, while the rules for the remaining relations are the following.

For i, j ∈ IV:

(D)
i D j

i1 < j1, i D j | j2 < i2, i D j
(−D)

i −D j

i1 −< j1, j2 −< i2, i −D j

(M )
i M j

j2 1′ i1, i M j
(−M )

i −M j

j2 −1′ i1, i −M j

(P )
i P j

j2 < i1, i P j
(−P )

i −P j

j2 −< i1, i −P j

(O)
i O j

j1 < i1, i O j | i1 < j2, i O j | j2 < i2, i O j

(−O)
i −O j

j1 −< i1, i1 < j2, j2 < i2, i −O j

It is easy to check that the rules correspond to the semantics of Allen’s relations, as
depicted in Section 1. Hence, soundness of the rules is straightforward. To prove com-
pleteness we need to appropriately expand the completion conditions and the notion of
branch structure. For instance, rules (M ) and (−M ) require the following completion
conditions:

Cpl(M ) If i M j ∈ b then j2 1′ i1 ∈ b.

Cpl(−M ) If i −M j ∈ b then j2 −1′ i1 ∈ b.

Consider now the branch structureMb = (U b, I(U b),mb) (where I(U b) can be either
I(U b)− or I(U b)+). The meaning of M inMb is defined as follows:

mb(M) = {([c, d], [c′, d′]) ∈ I(U b)× I(U b) : (d′, c) ∈ mb(1′)}.

The valuation vb and the notion of satisfiability in Mb are defined as in RLHS . To
prove completeness, we have to show thatMb, vb |= i R j if and only if i R j 6∈ b,
where R can be either M or −M .

– Let R := M . Assume (i, j) ∈ mb(M), that is (j2, i1) ∈ mb(1′). Then
j2 1′ i1 6∈ b. Suppose i M j ∈ b. By the completion condition Cpl(M ), j2 1′ i1 ∈ b,
a contradiction.

– Let R := −M . Assume (i, j) 6∈ mb(M), that is (j2, i1) 6∈ mb(1′). Then
j2 1′ i1 ∈ b. Suppose i −M j ∈ b. By the completion condition Cpl(−M ),
j2 −1′ i1 ∈ b, a contradiction.

The rest of the completeness proof is as in RLHS .
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Relational systems for other interval temporal logics.

The rules presented above allow us to easily adapt the proof system for RLHS to
any propositional interval temporal logic that is a proper fragment of HS. Here we
show two examples of such a modification.

The logic BE.

The logic BE features the two modalities 〈B〉 and 〈E〉, and has been first studied
in [LOD 00], where its undecidability has been proved. Its formulas are generated by
the following abstract syntax:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈B〉ϕ | 〈E〉ϕ.

Since BE does not have converse modalities, the relational logic RLBE appropriate
for BE is logic RLHS without the converse operator −1. A relational proof system for
RLBE can be obtained from the one for RLHS by removing rules (−1) and (−−1).

Propositional neighborhood logics.

Interval logics based on the relation meet and its converse are usually called neigh-
borhood logics. First-order neighborhood logics were first introduced and studied in
[CHA 98]. Its propositional variant, called Propositional Neighborhood Logic (PNL,
for short) has been proposed and investigated recently in [GOR 03b].

Accordingly with our notation for the interval modalities, the syntax of PNL is the
following:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈M〉ϕ | 〈M〉ϕ.
In [GOR 03b] the authors studied both the case of the non-strict and strict semantics
for PNL over linear orderings (denoted PNL+ and PNL−, respectively). The relational
logic RLPNL+ (appropriate for PNL+) is logic RLHS where the interval relational
constantM takes place ofB andE. A proof system for RLPNL+ can be obtained from
the one for RLHS by substituting rules (B), (−B), (E), and (−E) with rules (M ) and
(−M ). In the case of the strict semantics, the relational logic RLPNL− (appropriate
for PNL−) can be obtained from RL−HS in the same way.

7.3. Properties of the temporal ordering

In all the relational systems RLL presented above, the strict ordering < is consid-
ered to be linear, without any further assumption. In this section we propose some
possible extensions and modifications of our systems in case of other temporal order-
ing.

Unbounded orderings

An ordering is said to be unboundend below (resp. above) if for every x there
exists z such that z < x (resp. x < z). Such a condition can be expressed in a
relational system RLL by means of the following rules.
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For x ∈ PV:

(No-min<)
z −< x

(No-max<)
x −< z

with z new point variable.

Soundness of the rules can be easily proved. Suppose that < is unbounded below
(the case where < is unbounded above is similar). Then, for every x, there exists z
such that z < x. Thus, z −< x cannot be an RLL-set and rule (No-min<) is correct.

To prove completeness of the system, we need to add the following completion
conditions.

Cpl(No-min<) For all x ∈ PV, there exists z ∈ PV such that z −< x ∈ b.

Cpl(No-max<) For all x ∈ PV, there exists z ∈ PV such that x −< z ∈ b.

Consider now the branch structure Mb = (U b, I(U b),mb) of RLL. To prove that
mb(<) is unbounded below, suppose by contradiction that there exists x ∈ PV such
that, for all z ∈ PV, (z, x) 6∈ mb(<). This implies that z < x ∈ b for all z ∈ PV. By
the completion condition Cpl(No-min<), there exists z ∈ PV such that z −< x ∈ b
and z < x ∈ b, a contradiction. Proving that the completion condition Cpl(No-max<)
implies that mb(<) is unbounded above is similar.

Dense orderings

An ordering < is dense if for every pair of different comparable points there exists
another point in between, namely, if ∀x, y(x < y → ∃z(x < z ∧ z < y)) holds.
Density of the time domain can be expressed by the following rule.

For x, y ∈ PV:

(Dense<)
x < y | x −< z, z −< y

with z new point variable.

Soundness is straightforward: the rule corresponds to the first-order formula
∃x, y(x < y ∧ ∀z(x −< z ∨ z −< y)), that is exactly the negation of the density
condition. As for the completeness, we add the following completion condition.

Cpl(Dense<) For all x, y ∈ PV, either x < y ∈ b or there exists z ∈ PV such
that x −< z ∈ b and z −< y ∈ b.

Consider now the branch structure, and suppose that mb(<) does not respect the den-
sity condition, that is, there exist x, y ∈ PV such that (x, y) ∈ mb(<) and, for all
z ∈ PV, (x, z) 6∈ mb(<) or (z, y) 6∈ mb(<). This implies that x < y 6∈ b and, for all
z, x < z ∈ b or z < y ∈ b. By the completion condition Cpl(Dense<), we have that
there exists z such that x −< z ∈ b and z −< y ∈ b, a contradiction.

Discrete orderings

An ordering in discrete if every point with a successor/predecessor has an imme-
diate successor/predecessor, that is:

(1) ∀x, y(x < y → ∃z(x < z ∧ ∀t(x −< t ∨ t −< z))),

and
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(2) ∀x, y(y < x→ ∃z(z < x ∧ ∀t(z −< t ∨ t −< x))).

Discreteness of the time domain is expressed by the following additional rules.

For x, y, z, t ∈ PV:

(Disc<1)
x < y | x −< z, x < t | x −< z, t < z

(Disc<2)
y < x | z −< x, z < t | z −< x, t < x

with x, y, t any point variable, z new point variable.

The lower part of rule (Disc<1) corresponds to the first-order formula ∃x, y(x <
y ∧ ∀z(x −< z ∨ ∃t(x < t ∧ t < z))), that is exactly the negation of condition (1).
Similarly, the lower part of rule (Disc<2) corresponds to the negation of condition (2).
Hence, soundness of the rules is straightforward.

To prove completeness, it is necessary to add the following completion conditions
to the system:

Cpl(Disc<1) For all x, y ∈ PV, either x < y ∈ b, or there exists z ∈ PV such
that x −< z ∈ b and, for all t ∈ PV, x < t ∈ b, or t < z ∈ b.

Cpl(Disc<2) For all x, y ∈ PV, either y < x ∈ b, or there exists z ∈ PV such
that z −< x ∈ b and, for all t ∈ PV, z < t ∈ b, or t < x ∈ b.

Consider now the branch structureMb, and suppose that mb(<) does not respect
condition (1). This implies that there exist x, y ∈ PV such that (x, y) ∈ mb(<) but,
for all z ∈ PV, either (x, z) 6∈ mb(<), or there exists t ∈ PV such that (x, t) ∈ mb(<)
and (t, z) ∈ mb(<). By the definition of branch structure, this implies that x < y 6∈ b
and either x < z ∈ b or x < t 6∈ b and t < z 6∈ b. By the completion condition
Cpl(Disc<1), one of the following may arise:

– x < y ∈ b, a contradiction;
– x −< z ∈ b and x < t ∈ b, a contradiction;
– x −< z ∈ b and t < z ∈ b, a contradiction.

8. Conclusions

We presented a sound and complete relational proof system for HS interval tempo-
ral logic. Next we showed how to extend the system to the classes of interval temporal
logics which may have some other interval relations as the accessibility relations in
their models or to the logics where the interval relations may be based on orderings
with various specific properties (e.g., unbounded, dense, discrete).

The rules presented in this paper provide also a means of a direct deduction in inter-
val algebras considered in [LAD 87]. Let< be a dense linear ordering on a non-empty
set without endpoints. The 13 relations of Allen (the relations recalled in Section 1,
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their converses, and 1′) based on such an ordering are the atoms of a proper relation al-
gebra on < × <, i.e., a subalgebra of the algebra (2<×<,∪,∩,−, ; ,−1, 1, 1′), where
1 =< × < and 1′ is the identity on the field of <. The proof system for verification of
validity of equations of the form R = 1 in this class of algebras consists of the stan-
dard decomposition rules (the rules of Section 5.1 with x, y ∈ IV and R,S ∈ IRT),
the decomposition rules for the six interval relations and their complements (the rules
for B and E from Section 5.1 and the rules for D, O, M , and P from Section 7.2),
the rules for 1′ (the rules for 1′ of Section 5.2 where the symbols of variables and
relations range either over point variables and point relations or over interval variables
and interval relations), and the rules that characterize the point ordering ((Irref<) and
(Tran<) from Section 5.2, (No-min<), (No-max<), and (Dense<) from Section 7.3).
The axiomatic sets of the system are (a1),...(a5), where in (a2) x can be either a point
variable or an interval variable.

As indicated in the paper, relational dual tableaux are modular. The rules for an
axiomatic and/or signature extension of a logic consist of the rules for this logic aug-
mented with the new rules corresponding to the new concepts introduced in the exten-
sion. If an extension of a logic is defined in terms of new conditions on the models
of the logic, then the new rules must be added which reflect these new semantic con-
straints. In defining the new rules the correspondence theory presented in [MAC 02]
can be helpful. Due to their modularity, relational dual tableaux are well suited for
providing deduction mechanisms for various classes of non-classical logics, in par-
ticular for interval temporal logics. If a logic from a class possess a Kripke-style
semantics, then the construction of a relational logic adequate for embedding in it
the given logic is usually straightforward and leads in a natural way to the appropri-
ate translation. Since several interval temporal logics are known to be decidable (see
[BOW 03, DIL 92, DIL 93, DIL 96b, DIL 96a, MON 02]), further work is needed on
dual tableau decision procedures. In the literature there are some tableaux proof sys-
tems and decision procedures for interval temporal logics (see [BOW 03, BRE 05a,
BRE 05b, BRE 06, GOR 03a]). Since tableaux and dual tableaux are known to be
dual in a precisely defined sense ([GOL 06b]), it would be interesting to explore this
relationship in order to extend the applicability of these systems. In particular, devel-
opment of relational tableaux would be of interest. One could reasonably expect that
they will have the modularity property similar to modularity of dual tableaux. Other
proof systems for temporal logics can be found in [RAS 01b] and [RAS 01a].
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