
November 30, 2010 15:24 WSPC/INSTRUCTION FILE gandalf-ijfcs

International Journal of Foundations of Computer Science
c© World Scientific Publishing Company

On Begins, Meets and Before

Davide Bresolin

Pietro Sala

University of Verona
Verona, Italy

davide.bresolin@univr.it, pietro.sala@univr.it

Guido Sciavicco

University of Murcia
Murcia, Spain
guido@um.es

University for Information Science and Technology
Ohrid, Macedonia

guido.sciavicco@uist.edu.mk

Received (Day Month Year)
Accepted (Day Month Year)

Communicated by (xxxxxxxxxx)

Interval temporal logics (ITLs) are logics for reasoning about temporal statements expressed over in-
tervals, i.e., periods of time. The most famous temporal logic for intervals studied so far is probably
Halpern and Shoham’s HS, which is the logic of the thirteen Allen’s interval relations. Unfortunately,
HS and most of its fragments have an undecidable satisfiability problem. This discouraged the research
in this area until recently, when a number non-trivial decidable ITLs have been discovered. This pa-
per is a contribution towards the complete classification of all different fragments of HS. We consider
different combinations of the interval relations begins (B), meets (A), later (L) and their inversesA,
B and L. We know from previous work that the combination ABBA is decidable only when finite
domains are considered (and undecidable elsewhere), and that ABB is decidable over the natural
numbers. We extend these results by showing that decidability of ABB can be further extended to
capture the languageABBL, which lies in betweenABB andABBA, and that turns out to be max-
imal w.r.t decidability over strongly discrete linear orders (e.g. finite orders, the naturals, the integers).
We also prove that the proposed decision procedure is optimal with respect to the EXPSPACE com-
plexity class, and that the language is powerful enough to polynomially encode metric constraints on
the length of the current interval.

Keywords: Interval Temporal Logic; Decidability; Complexity.

1. Introduction

Interval temporal logics (ITLs) are logics for reasoning about temporal statements ex-
pressed over intervals instead of points. The most famous temporal logic for interval stud-
ied so far is probably Halpern and Shoham’s HS [8], which is the logic of (the thirteen)
Allen’s interval relations between intervals [1]. It features a modal operator for each rela-

1



November 30, 2010 15:24 WSPC/INSTRUCTION FILE gandalf-ijfcs

2 D. Bresolin, P. Sala, & G. Sciavicco

tion, that is meets (〈A〉) (sometimes called after), begins (〈B〉), ends (〈E〉), overlaps (〈O〉),
during (〈D〉), later (〈L〉), and their inverses (denoted by 〈X〉, where 〈X〉 is a modal op-
erator), although some of them are definable in terms of others. Since HS is undecidable
when interpreted over almost any interesting classes of linearly ordered sets, it is natural to
ask whether there exist decidable fragments of it, and how the properties of the underlying
linearly ordered domain can influence their decidable/undecidable status. In the literature,
the classes of linear orderings that have received more attention are i) the class of all lin-
early ordered sets, ii) the set of all discrete linearly ordered sets, iii) the class of all dense
linearly ordered sets. In the second case one can also distinguish among strong discrete-
ness (i.e., N,Z-like), and weak discreteness (which allows non-standard models such as
N+ Z). In recent years, a number of papers have been published in which new, sometimes
unexpected, decidable and undecidable fragments are presented. Among them, we men-
tion the fragment AA, also known as PNL, presented in [6], and studied also in [4], which
is decidable over all interesting classes of linear orders, and the fragment ABB (and, by
symmetry, AEE) which is decidable when interpreted over natural numbers [10]. Interest-
ingly enough, the extension ABBA (and AEEA) turns out to be decidable only when finite
models are considered, and undecidable as soon as an infinite ascending (resp., descending)
chain is admitted [9]. Other interesting fragments are BB and EE, that are decidable in most
cases [7], while any other combination of the four operators B, B, E, and E immediately
leads to undecidability [2]. Other combinations such as ABB, and the simpler AB, though,
remain still uncovered.

In this paper, we present another piece of this complicated puzzle by considering also
the Allen’s relation before, that captures any interval ending at some point before the be-
ginning point of the current interval, and it can be defined as 〈A〉〈A〉. We will show that
the logic ABBL (and the symmetric logic AEEL) is decidable (precisely, EXPSPACE-
complete) when interpreted in the class of all strongly discrete linear orders. It is worth
emphasizing that adding any other non-definable Allen’s relation to ABBL and to AEEL
leads to undecidability over all considered structures (with the exception of A and A, re-
spectively, over finite orders). Hence, our results shows also that ABBL and AEEL are
maximal fragments of HS with respect to decidability in the class of all strongly discrete
linear orders. We focus our attention on the so-called strict semantics, thus excluding point-
intervals from our models, but all results can be easily extended to include them. Moreover,
we discuss the relationship between the logic ABBL and some metric extension of inter-
val temporal logics recently presented in the literature [5, 3]: we show that we are able to
embed metric constraints on the length of intervals by means of a non-trivial, polynomial
encoding, which is somehow surprising given that the intuitive embedding is exponential.

The structure of this paper is as follows. In Section 2 we introduce syntax and semantics
of our logic. In Section 3, we discuss the decidability of the satisfiability problem over finite
and infinite structures, while in Section 4 we discuss its complexity. In Section 5 we show
how to polynomially encode metric constraints on the length of intervals inABBL. Finally,
in Section 6 we draw some conclusions and outline future research directions.
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2. The interval temporal logic ABBL

In this section, we briefly introduce syntax and semantics of the logic ABBL, and we com-
pare its expressiveness with two related interval temporal logics recently introduced in the
literature. Then, we give the basic notions of atom, type, and dependency. We conclude the
section by providing an alternative interpretation ofABBL over labeled grid-like structures.

2.1. Syntax and semantics

The logic ABBL features four modal operators 〈A〉, 〈B〉, 〈B〉 and 〈L〉, and it is interpreted
over interval temporal structures based on strongly discrete linear orders endowed with
the four Allen’s relations A (“meets”), B (“begins”), B (“begun by”) and L (“before”). We
recall that a linear order O = 〈O,<〉 is strongly discrete if and only if there are only finitely
many points between any pair of points x < y ∈ O. Example of strongly discrete linear
orders are all finite linear orders, and the sets N and Z.

Given a set Prop of propositional variables, formulas of ABBL are built up from Prop

using the boolean connectives ¬ and ∨ and the unary modal operators 〈A〉, 〈B〉, 〈B〉,
〈L〉. As usual, we shall take advantage of shorthands like ϕ1 ∧ ϕ2 = ¬(¬ϕ1 ∨ ¬ϕ2),
[A]ϕ = ¬〈A〉¬ϕ, [B]ϕ = ¬〈B〉¬ϕ, etc. Hereafter, we denote the size of ϕ by |ϕ|. Given
any strongly discrete linear order O = 〈O,<〉 we define IO as the set of all closed intervals
[x,y], with x,y ∈ O and x < y. For any pair of intervals [x,y], [x ′,y ′] ∈ IO, the Allen’s
relations “meets” A, “begins” B, “begun by” B, and “before” L are defined as follows:

• “meets” relation: [x,y] A [x ′,y ′] iff y = x ′;

• “begins” relation: [x,y] B [x ′,y ′] iff x = x ′ and y ′ < y;

• “begun by” relation: [x,y] B [x ′,y ′] iff x = x ′ and y < y ′;

• “before” relation: [x,y] L [x ′,y ′] iff y ′ < x.

Given an interval structure S = (IO,A,B,B,L,σ), where σ : IO → P(Prop) is a
labeling function that maps intervals in IO to sets of propositional variables, and an initial
interval I = [x,y], we define the semantics of an ABBL formula as follows:

• S, I � a iff a ∈ σ(I), for any a ∈ Prop;

• S, I � ¬ϕ iff S, I 6� ϕ;

• S, I � ϕ1 ∨ ϕ2 iff S, I � ϕ1 or S, I � ϕ2;

• for every relation R ∈ {A,B,B,L}, S, I � 〈R〉ϕ iff there is an interval J ∈ IO such
that I R J and S, J � ϕ.

Given an interval structure S and a formula ϕ, we say that S satisfies ϕ (and hence ϕ is
satisfiable) if there is an interval I in S such that S, I � ϕ. Accordingly, we define the
satisfiability problem for ABBL as the problem of establishing whether a given ABBL-
formula ϕ is satisfiable.

2.2. Expressivity

Focusing our attention on strongly discrete linear orderings only, we compare ABBL with
two other fragments of Halpern and Shoam’s HS whose decidability has been recently
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ABB (Decidable over finite and strongly discrete structures [10])

ABBL (Decidable over finite and strongly discrete structures [this paper])

ABBA (Decidable only over finite structures [9])
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Figure 1. Expressive power of some fragments of HS.

studied in the literature. The first result we consider has been stated in [10], where the
fragment ABB has been studied and shown to be decidable over strongly discrete linear
oderings. Later on, the extension that includes also 〈A〉 has been analyzed in [9], where it
has been proved that decidability still hold, but only over finite structures, therefore leaving
as open the problem of establishing if there exists a fragment that locates itself between
those two, and it is still decidable over infinite structures.

This is exactly the case of the fragment ABBL: on the one side, it is easy to see that
it can be embedded into ABBA, since S, I � 〈L〉ϕ iff S, I � 〈A〉〈A〉ϕ for every structure
S, and on the other side, since the modal operators 〈A〉, 〈B〉 and 〈B〉 allow the language to
capture only intervals whose endpoints are greater or equals to the endpoints of the interval
were a formula is interpreted, it is strictly more expressive than ABB. As a consequence of
the results presented in this paper, we can conclude that ABBL is strictly less expressive
thanABBA, since the former is decidable in a wider class of linear orderings than the latter.

2.3. Atoms, types, and dependencies

Let S = (IO,A,B,B,L,σ) be an interval structure that satisfies the ABBL-formula ϕ. In
the sequel, we relate intervals in S with respect to the set of sub-formulas of ϕ they satisfy.
To do that, we introduce the key notions of ϕ-atom and ϕ-type.

First of all, we define the closure Cl(ϕ) of ϕ as the set of all sub-formulas of ϕ and of
their negations (we identify ¬¬α with α, ¬〈A〉α with [A]¬α, etc.). For technical reasons,
we also introduce the extended closure Cl+(ϕ), which is defined as the union of Cl(ϕ) with
the set of all formulas of the forms 〈R〉α and ¬〈R〉α, with R ∈ {A,B,B,L} and α ∈ Cl(ϕ).
A ϕ-atom is any non-empty set F ⊆ Cl+(ϕ) such that (i) for every α ∈ Cl+(ϕ), we have
α ∈ F iff ¬α 6∈ F and (ii) for every γ = α ∨ β ∈ Cl+(ϕ), we have γ ∈ F iff α ∈ F
or β ∈ F (intuitively, a ϕ-atom is a maximal locally consistent set of formulas chosen
from Cl+(ϕ)). Note that the cardinalities of both sets Cl(ϕ) and Cl+(ϕ) are linear in the
number |ϕ| of sub-formulas of ϕ, while the number of ϕ-atoms is at most exponential
in |ϕ| (precisely, we have |Cl(ϕ)| = 2|ϕ|, |Cl+(ϕ)| = 18|ϕ|, and there are at most 29|ϕ|

distinct atoms). We define Aϕ as the set of all possible atoms that can be built over Cl+(ϕ).
We associate the set of all formulas α ∈ Cl+(ϕ) such that S, I � α with each interval

I ∈ S. Such a set is called ϕ-type of I and it is denoted by TypeS(I). We have that every
ϕ-type is a ϕ-atom, but not vice versa. Hereafter ϕ-atoms (resp., ϕ-types) will be simply
called atoms (resp., types). Given an atom F, we denote by Obs(F) the set of all observable
of F, namely, the formulas α ∈ Cl(ϕ) such that α ∈ F. Similarly, given an atom F and a
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Figure 2. Correspondence between intervals and the points of a grid.

relation R ∈ {A,B,B,L}, we denote by ReqR(F) the set of all R-requests of F, namely, the
formulas α ∈ Cl(ϕ) such that 〈R〉α ∈ F. Taking advantage of the above sets, we can define
the following three relations between two atoms F and G:

F A−→G iff ReqA(F) = Obs(G) ∪ ReqB(G) ∪ ReqB(G)

F B−→G iff


Obs(F) ∪ ReqB(F) ⊆ ReqB(G) ⊆ Obs(F) ∪ ReqB(F) ∪ ReqB(F)

Obs(G) ∪ ReqB(G) ⊆ ReqB(F) ⊆ Obs(G) ∪ ReqB(G) ∪ ReqB(G)

ReqL(F) = ReqL(G).

F L−→G iff Obs(G) ∪ ReqL(G) ⊆ ReqL(F)

Note that the relations B−→ and L−→ are transitive, while A−→ is not. Moreover, all A−→ ,
B−→ and L−→ satisfy a view-to-type dependency, namely, for every pair of intervals I, J in
S, we have that

I A J implies TypeS(I)
A−→ TypeS(J)

I B J implies TypeS(I)
B−→ TypeS(J)

I L J implies TypeS(I) L−→ TypeS(J).

2.4. Compass structures

The logic ABBL can be equivalently interpreted over grid-like structures (hereafter called
compass structures [12]) by exploiting the existence of a natural bijection between the
intervals I = [x,y] and the points p = (x,y) of an O × O grid such that x < y. As an
example, in Fig. 2 are shown five intervals I0, ..., I4, such that I0 B I1, I0 B I2, I0 A I3,
and I0 L I4, together with the corresponding points p0, ...,p4 of a grid (note that the
four Allen’s relations A,B,B,L between intervals are mapped to the corresponding spatial
relations between points).

Definition 1. Given anABBL formulaϕ, a (consistent and fulfilling) compassϕ-structure
is a pair G = (PO,L), where PO is the set of points of the form p = (x,y), with x,y ∈ O
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and x < y, and L is function that maps any point p ∈ PO to a ϕ-atom L(p) in such a way
that:

• for every pair of points p,q ∈ PO and every relation R ∈ {A,B,L}, if p R q
holds, then L(p) R−→L(q) follows (consistency);

• for every point p ∈ PO, every relation R ∈ {A,B,B,L}, and every formula α ∈
ReqR

(
L(p)

)
, there is a point q ∈ PO such that p R q and α ∈ Obs

(
L(q)

)
(fulfillment).

We say that a compassϕ-structure G = (PO,L) features a formula α if there is a point p ∈
PO such that α ∈ L(p). The following proposition implies that the satisfiability problem
for ABBL is reducible to the problem of deciding, for any given formula ϕ, whether there
exists a ϕ-compass structure featuring ϕ.

Proposition 2. An ABBL-formula ϕ is satisfied by some interval structure if and only if it
is featured by some ϕ-compass structure.

3. Deciding the satisfiability problem for ABBL

In this section, we prove that the satisfiability problem forABBL is decidable by providing
a small-model theorem for it. For the sake of simplicity, we first show that the satisfiabil-
ity problem for ABBL interpreted over finite interval structures is decidable and then we
extend such a result to infinite interval structures based on strong discrete linear orders.

As a preliminary step, we introduce the key notions of shading, of witness set, and
of compatibility between rows of a compass structure. Let G = (PO,L) be a compass
structure and let y ∈ O. The shading of the row y, denoted by ShaG(y), is the defined as
the set ShaG(y) =

{
L(x,y) : x < y

}
, namely, the set of the atoms of all points in PO

whose vertical coordinate has value y. Similarly, a witness set for y, denoted by Wit(y),
is any minimal set Wit(y) ⊆ {(xψ,yψ) : xψ < yψ ∧ yψ > y} that respects the following
property: for every ψ ∈ Cl(ϕ) that appears in the labeling of some point (x ′,y ′) with
y ′ > y, there exists a witness (xψ,yψ) ∈Wit(y) such that:

(1) ψ ∈ L(xψ,yψ) , and

(2) yψ is minimal, that is, for all (x ′,y ′) with y < y ′ < yψ, ¬ψ ∈ L(x ′,y ′).

Since Wit(y) is minimal we have that there is at most one point for every ψ ∈ Cl(ϕ) and
thus |Wit(y)| < |Cl(ϕ)| = 2 · |ϕ|. Intuitively, a witness set for a row y is a set that contains
a witness (xψ,yψ) for every formula ψ that occurs in some point above the row y, that is,
a point that satisfies ψ such that the distance yψ − y is minimal.

Let P ⊆ PO a set of points and let y ∈ O be a row of the compass structure. We define
the projection of P on the row y (and we denote it by πy(P)) as the set πy(P) = {x :

(x,y) ∈ P ∧ x < y)}. The projection operator, paired with the notion of shading and of
witness set, allows us to determine whether two rows are compatible or not.

Definition 3. Given a compass structure G and two rows y0 < y1, we say that y0 and y1
are compatible if and only if the following properties holds:
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(1) ShaG(y0) = ShaG(y1);

(2) L(y0 − 1,y0) = L(y1 − 1,y1);

(3) there exists a witness set Wit(y1) for y1 and an injective mapping function w :

πy1
(Wit(y1)) 7→ {x : x < y0} s.t. L(x,y1) = L(w(x),y0) for every x ∈

πy1
(Wit(y1)), that assigns a point on the row y0 for every witness (xψ,yψ) in

Wit(y1) with xψ 6 y1.

Notice that, given two witnesses (xψ,yψ), (xξ,yξ) ∈Wit(y1) such that xψ = xξ, by the
definition of the projection operator, the function w assigns the same point (w(x),y0) to
both of them.

3.1. A small-model theorem for finite structures

Let ϕ be an ABBL formula. It is easy to see that ϕ is satisfiable over a finite model if and
only if the formula ϕ∨ 〈B〉ϕ∨ 〈A〉ϕ∨ 〈A〉〈A〉ϕ is featured by the initial point (0, 1) of
a finite compass structure G = (PO,L).

In the following, given a compass structure G = (PO,L), we refer to the number of
points in O as the size of G. We will prove that we can restrict our attention to compass
structures whose size is bounded by a double exponential in |ϕ|. We start with the following
lemma that proves two simple, but crucial, properties of the relations A−→ , B−→ , and L−→ .

Lemma 4. Let F,G,H be some atoms:

(1) if F A−→H and G B−→H hold, then F A−→G holds as well;

(2) if F B−→G and G L−→H hold, then F L−→H holds as well.

Proof. The proof for property 1 can be found in [10]. As for property 2, we have that, by
the definition of B−→ , if F B−→G then ReqL(F) = ReqL(G). This implies that Obs(H) ∪
ReqL(H) ⊆ ReqL(F) and thus F L−→H holds as well.

The next lemma shows that, under suitable conditions, a given compass structure G may
be reduced in length, preserving the existence of atoms featuring ϕ.

Lemma 5. Let G be a finite compass structure of size N featuring ϕ on the initial point
(0, 1). If there exist two compatible rows 0 < y0 < y1 < N in G, then there exists a
compass structure G ′ of size N ′ = N− y1 + y0 that features ϕ.

Proof. Suppose that 0 < y0 < y1 < N are two compatible rows of G. By Definition 3, we
have that ShaG(y0) = ShaG(y1), L(y0−1,y0) = L(y1−1,y1), and there exists a witness
set Wit(y1) for y1 and an injective mapping function w : πy1

(Wit(y1)) 7→ {x : x < y0}.
Then, we can define a function f : {0, ...,y0 − 1} 7→ {0, ...,y1 − 1} such that, for every
0 6 x < y0, L(x,y0) = L(f(x),y1) and for every (xψ,yψ) ∈ Wit(y1) if xψ < y1 then
f(w(xψ)) = xψ.

Let k = y1−y0,N ′ = N−k, O ′ = 〈{0, . . . ,N ′−1},<〉, and PO′ be the correspondent
portion of the grid. We extend f to a function that maps points in PO′ to points in PO as
follows:
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• if p = (x,y), with 0 6 x < y < y0, then we simply let f(p) = p;

• if p = (x,y), with 0 6 x < y0 6 y, then we let f(p) = (f(x),y+ k);

• if p = (x,y), with y0 6 x < y, then we let f(p) = (x+ k,y+ k).

We denote by L ′ the labeling of PO′ such that, for every point p ∈ PO′ , L ′(p) = L(f(p))

and we denote by G ′ the resulting structure (PO′ ,L ′) (see Figure 3). We have to prove
that G ′ is a consistent and fulfilling compass structure that features ϕ. First, we show that
G ′ satisfies the consistency conditions for the relations B, A, and L; then we show that G ′

satisfies the fulfillment conditions for the B-, B-, A, and L-requests; finally, we show that
G ′ features ϕ.

CONSISTENCY WITH RELATION B. Consider two points p = (x,y) and p ′ = (x ′,y ′) in
G ′ such that p B p ′, i.e., 0 6 x = x ′ < y ′ < y < N ′. We prove that L ′(p) B−→L ′(p ′)

by distinguishing among the following three cases (notice that exactly one of such cases
holds):

(1) y < y0 and y ′ < y0,

(2) y > y0 and y ′ > y0,

(3) y > y0 and y ′ < y0.

If y < y0 and y ′ < y0, then, by construction, we have f(p) = p and f(p ′) = p ′. Since
G is a (consistent) compass structure, we immediately obtain L ′(p) = L(p) B−→L(p ′) =

L ′(p ′).
If y > y0 and y > y0, then, by construction, we have either f(p) = (f(x),y + k) or

f(p) = (x+ k,y+ k), depending on whether x < y0 or x > y0. Similarly, we have either
f(p ′) = (f(x ′),y ′ + k) = (f(x),y ′ + k) or f(p ′) = (x ′ + k,y ′ + k) = (x + k,y ′ + k).
This implies f(p) B f(p ′) and thus, since G is a (consistent) compass structure, we have
L ′(p) = L(f(p)) B−→ L(f(p ′)) = L ′(p ′).

If y > y0 and y ′ < y0, then, since x < y ′ < y0, we have by construction f(p) =

(f(x),y + k) and f(p ′) = p ′. Moreover, if we consider the point p ′′ = (x,y0) in G ′, we
easily see that (i) f(p ′′) = (f(x),y1), (ii) f(p) B f(p ′′) (whence L(f(p)) B−→L(f(p ′′))),
(iii) L(f(p ′′)) = L(p ′′), and (iv) p ′′ B p ′ (whence L(p ′′) B−→L(p ′)). It thus follows that
L ′(p) = L(f(p)) B−→L(f(p ′′)) = L(p ′′) B−→ L(p ′) = L(f(p ′)) = L ′(p ′). Finally, by
exploiting the transitivity of the relation B−→ , we obtain L ′(p) B−→L ′(p ′).

CONSISTENCY WITH RELATION A. Consider two points p = (x,y) and p ′ = (x ′,y ′)

such that p A p ′, i.e., 0 6 x < y = x ′ < y ′ < N ′. We define p ′′ = (y,y + 1) in such a
way that p A p ′′ and p ′ B p ′′ and we distinguish between the following two cases:

(1) y > y0,

(2) y < y0.

If y > y0, then, by construction, we have f(p) A f(p ′′). Since G is a (consistent)
compass structure, it follows that L ′(p) = L(f(p)) A−→ L(f(p ′′)) = L ′(p ′′).

If y < y0, then, by construction, we have L(p ′′) = L(f(p ′′)). Again, since G is a
(consistent) compass structure, it follows that L ′(p) = L(f(p)) = L(p) A−→ L(p ′′) =

L(f(p ′′)) = L ′(p ′′).
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Figure 3. Contraction G ′ of a compass structure G.

In both cases we have L ′(p) A−→L ′(p ′′). Now, we recall that p ′ B p ′′ and that, by
previous arguments, G ′ is consistent with the relation B. We thus have L ′(p ′) B−→L ′(p ′′).
Finally, by applying Lemma 4, we obtain L ′(p) A−→L ′(p ′).

CONSISTENCY WITH RELATION L. Consider two points p = (x,y) and p ′ = (x ′,y ′) in
G ′ such that p L p ′, i.e., 0 6 x ′ < y ′ < x < y < N ′. We prove that L ′(p) L−→L ′(p ′) by
distinguishing among the following cases:

(1) y < y0 and y ′ < y0,

(2) y > y0 and y ′ > y0,

(3) y > y0 and y ′ < y0.

If y < y0 and y ′ < y0, then, by construction, we have f(p) = p and f(p ′) = p ′. Since
G is consistent, we immediately obtain L ′(p) = L(p) L−→L(p ′) = L ′(p ′).

If y > y0 and y ′ > y0, then, by construction, we have either f(p ′) = (f(x ′),y ′+k) or
f(p ′) = (x ′ + k,y ′ + k), depending on whether x ′ < y0 or x ′ > y0. Since y0 6 y ′ < x,
we have f(p) = (x+k,y+k). This implies f(p) L f(p ′) and thus, since G is a (consistent)
compass structure, we have L ′(p) = L(f(p)) L−→ L(f(p ′)) = L ′(p ′).

If y > y0 and y ′ < y0, then, we have by construction that f(p ′) = p ′ and either
f(p) = (x+k,y+k) or f(p) = (f(x),y+k). In the former case we have that f(p) L f(p ′)
and thus, since G is a consistent compass structure, L ′(p) = L(f(p)) L−→L(f(p ′)) =

L ′(p ′). In the latter case it is not necessarily true that y ′ < f(x). Consider the points
p ′′ = (f(x),y1) and p ′′′ = (x,y0): by the definition of f, L(p ′′) = L(p ′′′). Moreover,
we have that f(p)Bp ′′ and p ′′′Lf(p ′) = p ′. Since G is a consistent compass structure, this
implies that L ′(p) = L(f(p)) B−→L(p ′′) = L(p ′′′) L−→L(f(p ′)) = L ′(p ′). Finally, by
applying Lemma 4, we obtain L ′(p) L−→L ′(p ′).

FULFILLMENT OF B-REQUESTS. Consider a point p = (x,y) in G ′ and some B-request
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α ∈ ReqB
(
L ′(p)

)
associated with it. Since, by construction, α ∈ ReqB

(
L(f(p))

)
and G

is a (fulfilling) compass structure, we know that G contains a point q ′ = (x ′,y ′) such that
f(p) B q ′ and α ∈ Obs

(
L(q ′)

)
. We prove that G ′ contains a point p ′ such that p B p ′ and

α ∈ Obs
(
L ′(p ′)

)
by distinguishing among the following three cases:

(1) y < y0,

(2) y ′ > y1,

(3) y > y0 and y ′ < y1.

If y < y0, then, by construction, we have p = f(p) and q ′ = f(q ′). Therefore, we
simply define p ′ = q ′ in such a way that p = f(p) B q ′ = p ′ and α ∈ Obs

(
L ′(p ′)

)
(= Obs

(
L(f(p ′))

)
= Obs

(
L(q ′)

)
).

If y ′ > y1, then, by construction, we have either f(p) = (f(x),y + k) or f(p) = (x +

k,y+k), depending on whether x < y0 or x > y0. We define p ′ = (x,y ′−k) in such a way
that p B p ′. Moreover, we observe that either f(p ′) = (f(x),y ′) or f(p ′) = (x + k,y ′),
depending on whether x < y0 or x > y0, and in both cases f(p ′) = q ′ follows. This shows
that α ∈ Obs

(
L ′(p ′)

)
(= Obs

(
L(f(p ′)

)
= Obs

(
L(q ′)

)
).

If y > y0 and y ′ < y1, then we define p = (x,y0) and q = (x ′,y1) and we observe
that f(p) B q, q B q ′, and f(p) = q. From f(p) B q and q B q ′, it follows that
α ∈ ReqB

(
L(q)

)
and hence α ∈ ReqB

(
L(p)

)
. Since G is a (fulfilling) compass structure,

we know that there is a point p ′ such that p B p ′ and α ∈ Obs
(
L(p ′)

)
. Moreover, since

p B p ′, we have f(p ′) = p ′, from which we obtain p B p ′ and α ∈ Obs
(
L(p ′)

)
.

FULFILLMENT OF B-REQUESTS. The proof is symmetric to the previous one.

FULFILLMENT OF A-REQUESTS. Consider a point p = (x,y) in G ′ and some A-request
α ∈ ReqA

(
L ′(p)

)
associated with p in G ′. Since, by previous arguments, G ′ fulfills

all B-requests of its atoms, it is sufficient to prove that either α ∈ Obs
(
L ′(p ′)

)
or

α ∈ ReqB
(
L ′(p ′)

)
, where p ′ = (y,y + 1). This can be easily proved by distinguish-

ing among the three cases y < y0 − 1, y = y0 − 1, and y > y0.

FULFILLMENT OF L-REQUESTS. Consider a point p = (x,y) in G ′ and some L-request
α ∈ ReqL

(
L ′(p)

)
associated with it. Since, by construction, α ∈ ReqL

(
L(f(p))

)
and G

is a (fulfilling) compass structure, we know that G contains a point q ′ = (x ′,y ′) such that
f(p) L q ′ and α ∈ Obs

(
L(q ′)

)
. To simplify the proofs, we assume that q ′ is minimal

with respect to the vertical coordinate, that is, for every other point q ′′ = (x ′′,y ′′) with
y ′′ < y ′, α 6∈ Obs

(
L(q ′′)

)
. We prove that G ′ contains a point p ′ such that p L p ′ and

α ∈ Obs
(
L ′(p ′)

)
by distinguishing among the following five cases (notice that exactly

one of such cases holds):

(1) y 6 y0,

(2) x < y0 and y > y0,

(3) x > y0 and y ′ < y1,

(4) x > y0 and y ′ = y1,

(5) x > y0 and y ′ > y1.
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If y < y0, then, by construction, we have p = f(p) and q ′ = f(q ′). Therefore, we
simply define p ′ = q ′ in such a way that p = f(p) L q ′ = p ′ and α ∈ Obs

(
L ′(p ′)

)
(= Obs

(
L(f(p ′))

)
= Obs

(
L(q ′)

)
).

If x < y0 and y > y0 then f(p) = (f(x),y + k). Now, consider the point
p ′′ = (f(x),y1): since f(p)Bp ′′ and G is a consistent compass structure, we have that
ReqL(p

′′) = ReqL(f(p)). By definition of f, we have that L(f(x),y1) = L(x,y0) and
thus, since G is fulfilling, there exists a point p ′ = (x ′′,y ′′) such that y ′′ < x and
α ∈ Obs

(
L(p ′)

)
. Since f(p ′) = p ′, this shows that α ∈ Obs

(
L ′(p ′)

)
as well.

If x > y0 and y ′ < y1 then f(p) = (x + k,y + k). Since G is a consistent compass
structure, we have that α ∈ ReqL(L(y1−1,y1)). By the definition of compatible rows, we
have that L(y1−1,y1) = L(y0−1,y0) and thus (by the minimality assumption) y ′ < y0
and q ′ = f(q ′). Therefore, we simply define p ′ = q ′ in such a way that p L q ′ = p ′ and
α ∈ Obs

(
L ′(p ′)

)
(= Obs

(
L(f(p ′))

)
= Obs

(
L(q ′)

)
).

If x > y0 and y ′ = y1 then L(q ′) ∈ ShaG(y1). By the definition of compatible rows,
we have that ShaG(y1) = ShaG(y0) and thus there must exists a point q ′′ = (x ′′,y0)

such that L(q ′) = L(q ′′) and y0 < y ′, against the hypothesis that q ′ is a minimal point
satisfying α. Hence, this case cannot happen.

If x > y0 and y ′ > y1 then, by the minimality assumption on q ′ we have that for every
y ′′ < y ′, α 6∈ Obs

(
L(x ′′,y ′′)

)
for any x ′′ < y ′′. Hence, by the definition of witness set,

we have that there exists a witness (xα,yα) ∈ Wit(y1) such that α ∈ Obs
(
L(xα,yα)

)
and yα = y ′ (by the minimality assumption). If xα > y1 then we define p ′ = (xα −

k,yα−k). Otherwise, xα < y1 and by the definition of the mapping functionw and of the
function f, we have that f(w(xα)) = xα: we define p ′ = (w(xα),y

′ − k). In both cases
we have that f(p ′) = (xα,yα), pLp ′ and α ∈ Obs

(
L ′(p ′)

)
.

FEATURED FORMULAS. Recall that ϕ ∈ L(0, 1). Since our contraction procedure never
changes the labelling of the initial point, ϕ ∈ L ′(0, 1) as well.

On the grounds of the above result, we can provide a suitable upper bound for the
length of a minimal finite interval structure that satisfies ϕ, if there exists any. This yields
a straightforward, but inefficient, 2NEXPTIME algorithm that decides whether a given
ABBL-formula ϕ is satisfiable over finite interval structures.

Theorem 6. An ABBL-formula ϕ is satisfied by some finite interval structure iff it is fea-
tured by some compass structure of lengthN 6 (8|ϕ|+15)2

36|ϕ|+63 ·236|ϕ|+63 (i.e., double
exponential in |ϕ|).

Proof. Suppose that ϕ is satisfied by a finite interval structure S, and let ξ = ϕ∨ 〈B〉ϕ∨

〈A〉ϕ ∨ 〈A〉〈A〉ϕ. By Proposition 2, there is a compass structure G that features ξ on
the initial point and has some finite size N. By Lemma 5, we can assume without loss
of generality that all rows of G are pairwise incompatible. Recall from Section 2.3 that G
contains at most 29|ξ| distinct atoms. For every row y of the compass structure and every
atom F ∈ Aξ, let #(F,y) be the cardinality of the set {(x,y) : x < y and L(x,y) = F}. We
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associate to every row y of the structure a characteristic function cy : Aξ 7→ N defined as
follows:

cy(F) =

{
#(F,y) #(F,y) 6 2|ξ|

2|ξ| otherwise
(1)

Since any witness set Wit(y) contains at most 2|ξ| witnesses, it is easy to see that two rows
y0 and y1 with the same characteristic function and such that L(y0−1,y0) = L(y1−1,y1)

are compatible. The number of possible characteristic functions is bounded by (2|ξ| +

1)2
9|ξ|

, and thus G cannot have more than (2|ξ| + 1)2
9|ξ| · 29|ξ| rows. Since |ξ| = 4|ϕ| + 7

we have that N 6 (8|ϕ|+ 15)2
36|ϕ|+63 · 236|ϕ|+63, that is, double exponential in |ϕ|.

3.2. A small-model theorem for infinite structures

In general, compass structures may be infinite. Here, we prove that we can restrict our
attention to sufficiently “regular” infinite compass structures, which can be represented in
double exponential space with respect to |ϕ|. To do that, we introduce the notion of compass
structure generator, which is a finite compass structure that can be extended to an infinite
fulfilling one.

Definition 7. We say that a finite compass structure G = (PO,L) of size N is partially
fulfilling if for every point (x,y) ∈ PO such that y < N − 1, for every relation R ∈
{A,B,B,L}, and, for every formula ψ ∈ ReqR(L(p)), one of the following conditions
hold:

(1) there exists a point p ′ ∈ PO such that p R p ′ and ψ ∈ Obs(L(p ′)) (ψ is fulfilled
in p ′),

(2) R = B and ψ ∈ ReqB(L(x,N− 1)),

(3) R = A and ψ ∈ ReqB(L(y,N− 1)),

(4) R = L and ψ ∈ ReqL(L(0, 1)).

Notice that all B-requests are fulfilled in a partially fulfilling compass structure and that
B (resp., A, L) requests are either fulfilled or “transferred to the border” of the compass
structure. Moreover, any substructure G ′ of a fulfilling compass structure G is partially
fulfilling.

Definition 8. Given a finite compass structure G = (PO,L) and a row y, a future witness
set for y is any minimal set FutWit(y) ⊆ {x : x < y} such that for every F ∈ ShaG(y)

there exists a witness xF ∈ FutWit(y) that respects the following properties:

(1) L(xF,y) = F,

(2) for every ψ ∈ ReqB(F) there exists a point (xF,y ′) ∈ G with y ′ > y and ψ ∈
Obs(L(xF,y)).

Since FutWit(y) is minimal, we have that for every F ∈ Sha(y) there is exactly one
witness xF in FutWit(y). Hence, |FutWit(y))| 6 29|ϕ|.



November 30, 2010 15:24 WSPC/INSTRUCTION FILE gandalf-ijfcs

Begin, After, and Later: a Maximal Decidable Interval Temporal Logic 13

Definition 9. Given a finite compass structure G = (PO,L) and a row y, a past wit-
ness set for y is any minimal set PastWit(y) ⊆ PO such that for every request ψ ∈
ReqL(Obs(L(y − 1,y)) there exists a witness (xψ,yψ) such that ψ ∈ Obs(L(xψ,yψ))

and yψ < y− 1.

Again, by the minimality of PastWit(y) we have that there is at most one distinct point for
every L-formula in L(y − 1,y) and thus |PastWit(y)| 6 |ReqL(y− 1,y)| 6 |Cl(ϕ)| 6
2 · |ϕ|.

We concentrate our attention on infinite structures that are unbounded both on the fu-
ture and on the past (i.e., based on the set of integers Z). The case when the structure is
unbounded only in one direction (e.g., the naturals N or the set of negative integers Z−)
can be dealt with in a similar way, by appropriately adapting the following notions.

Definition 10. Given an ABBL formula ϕ and a finite, partially fulfilling compass struc-
ture G = (PO,L) of size N, we say that G is a compass generator for ϕ if there exist four
rows yϕ, y0, y1, and y2 which satisfy the following properties:

G1 y0 < y1 < y2 and y0 6 yϕ,

G2 ϕ ∈ L(yϕ − 1,yϕ) or 〈B〉ϕ ∈ L(yϕ − 1,yϕ),

G3 Sha(y1) ⊆ Sha(y0) and L(y0 − 1,y0) = L(y1 − 1,y1),

G4 there exists a past witness set PastWit(y1) such that
y0 6 min(πy1

(PastWit(y1))),

G5 Sha(N− 1) ⊆ Sha(y2) and L(y2 − 1,y2) = L(N− 2,N− 1),

G6 there exists a future witness set FutWit(y2) for y2.

The next theorem shows that the information contained in a compass generator for ϕ
is sufficient to build an infinite fulfilling compass structure featuring ϕ.

Theorem 11. An ABBL formula ϕ is satisfiable over the integers Z if and only if there
exists a compass generator G = (PO,L) for ϕ.

Proof. (⇒) Let ϕ an ABBL formula that is satisfiable over an infinite fulfilling compass
structure G = (PZ,L). Since G features ϕ we have that there exists a point (x,y) with
ϕ ∈ L(x,y) and thus the row yϕ = x+ 1 respects condition G2.

Now, let Inf (G) be the set of shadings that occurs infinitely often in G. We define y1
as the greatest row such that for every y ′ 6 y1, Sha(y ′) ∈ Inf (G), and y2 as the smallest
row such that for every y ′ > y2, Sha(y ′) ∈ Inf (G). Clearly, since G is unbounded in
the past, we can find two rows ymin and y0 such that ymin < y0, and a corresponding
portion of the grid Pymin = {(x,y) : x > ymin} such that (i) y0 6 yϕ, (ii) y0 < y1,
(iii) Sha(y1) ⊆ Sha(y0) in Pymin , (iv) L(y0 − 1,y0) = L(y1 − 1,y1), and (v) there
exists a past witness set PastWit(y1) for y1 such that y0 6 min(πy1

(PastWit(y1))) in
Pymin . Hence, conditions G3 and G4 are respected.

Symmetrically, since G is unbounded in the future, we can find a row ymax > y2 and
a corresponding portion of the grid Pymaxymin = {(x,y) : x > ymin ∧ y 6 ymax} such that
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y0

y1

N− 1

y2

Figure 4. A compass generator (left) and a portion of the generated infinite compass structure (right).

(1) Sha(ymax) ⊆ Sha(y2),
(2) L(y2 − 1,y2) = L(ymax − 1,ymax), and
(3) there exists a future witness set FutWit(y2) for y2 in Pymaxymin .

This shows that conditions G5 and G6 are respected as well. Since y0 6 yϕ and y0 <
y1 < y2 condition G1 is also respected. Since the restriction of G to the finite grid Pymaxymin

is a partially fulfilling compass structure, we have found the required compass generator
for ϕ.

(⇐) Let G = (PO,L) be a compass generator of size N for ϕ and let y0 < y1 < y2
and yϕ be the four rows that satisfy properties G1–G6 of Definition 10. We will define an
infinite sequence of partially fulfilling compass structures G0 ⊂ G1 ⊂ G2 ⊂ . . . such that
the infinite union Gω =

⋃+∞
i=0 Gi is an infinite fulfilling compass structure that features ϕ.

We start from the initial compass structure G0 = (P0,L0) where P0 = {(x,y) ∈ PO : x >
y0 − 1 ∧ y0 6 y < N} and L0(x,y) = L(x,y) for every point (x,y) ∈ P0

O, and we will
show how to iteratively build the infinite sequence of compass structures. For every step
i of the procedure, let Gi = (Pi,Li) be the current structure, and let yimin and yimax be
the minimum and maximum vertical coordinate in Pi, respectively. We guarantee that the
following invariant is respected:

(INV) ShaGi(y
i
max) ⊆ ShaG(y2),

ShaGi(y
i
min + y1 − y0) ⊆ ShaG(y0),

Li(yimax−1,yimax) = L(y2−1,y2), and Li(yimin−1,yimin) = L(y0−1,y0).

The invariant trivially holds for G0. Now, suppose that Gi respects (INV) and let kpast =
y1 − y0 and kfuture = N − y2. Figure 4 depicts how Gi+1 = (Pi+1,Li+1) can be built
from Gi. Formally, the procedure is defined as follows.
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a) yi+1
min = yimin − kpast, yi+1

max = yimax + kfuture, and Pi+1 = {(x,y) ∈ PZ :

x > yi+1
min − 1∧ yi+1

min 6 y < y
i+1
max}.

b) for every point p ∈ Pi+1 ∩ Pi, let Li+1(p) = Li(p).
c) for every point (x,y) ∈ Pi+1 \ Pi such that y 6 yimin, let Li+1(x,y) = Li(x+

kpast,y+ kpast) (red area in Fig. 4).
d) for every point (x,y) ∈ Pi+1 \ Pi such that x > yimax, let Li+1(x,y) = Li(x−

kfuture,y− kfuture) (blue area in Fig. 4).
e) By construction, for every point (x,yimin) with x < yimin − 1 we have that

Li+1(x,yimin) = Li(x+ kpast,y
i
min + kpast). Since Gi respects the invariant,

Li(x + kpast,y
i
min + kpast) = Li+1(x,yimin) ∈ ShaG(y0). Let (x,y0) be

a point on the row y0 with the same labelling of Li+1(x,yimin): we define the
labelling of all points (x,yimin+ j), with 1 6 j 6 kpast, as Li+1(x,yimin+ j) =

L(x,y0 + j). Now, since L(x,y0 + kpast) ∈ ShaG(y1) (y1 = y0 + kpast) and
ShaG(y1) ⊆ ShaG(y0) (G3), we can find a point (x̂,y0) on the row y0 with the
same labelling of Li+1(x,yimin + kpast) and define the labelling of every point
(x,yimin + kpast · j) for every 1 < j 6 i + 1. At the end of this procedure we
have labelled all points (x,y) such that y 6 y1.

f) For every point (x,y1), by construction, we have that Li+1(x,y1) ∈ ShaG(y1).
Let (x,y1) be a point such that Li+1(x,y1) = L(x,y1). As in the previous case,
we define the labelling of all points (x,y), with y1 < y 6 y2 as Li+1(x,y) =

L(x,y). At the end of this step we labelled all points (x,y) such that y 6 y2.
g) Now, by construction, for every point (x,y2) we have that Li+1(x,y2) ∈

ShaG(y2). By condition G6 of Definition 10, there exists a point x ∈ FutWit(y2)

such that Li+1(x,y2) = L(x,y2). We define Li+1(x,y2 + j) = L(x,y2 + j) for
every 1 6 j 6 kfuture. Since y2+kfuture = N−1 and Sha(N−1) ⊆ Sha(y2)

we have that Li+1(x,N − 1) ∈ Sha(y2) (G5) and thus we can repeat this proce-
dure iteratively until we have labelled all points (x,y) such that y 6 yi+1

max and
x < yimin − 1.

h) To conclude the procedure, we must define the labelling of points (x,y) such
that x > yimin − 1 and y > yimax. Note that for every point (x,yimax) with
x > yimin − 1 we have, by the invariant, that ShaGi(y

i
max) ⊆ ShaG (y2). Then

there exists a point x ∈ FutWit(y2) such that Li+1(x,yimax) = L(x,y2). We
define Li+1(x,yimax + j) = L(x,y2 + j) for every 1 6 j 6 kfuture.

It is easy to see that Gi is a partially fulfilling compass structure that respects the invari-
ant. Moreover, suppose that for some point p = (x,y) ∈ Pi and relation R ∈ {A,B,B,L}

there exists α ∈ ReqR(p) that is not fulfilled in Gi. We show that Gi+1 fulfills the R-request
α for p.

• If R = A, since Gi is partial fulfilling and it is finite we have that the point p ′ =
(y,yimax) is such that α ∈ ReqB(L(p

′)). By step h) of the procedure, and by the
definition of future witness set, Gi+1 contains a point p ′′ = (y,yimax + j) such
that α ∈ Li+1(p ′′).

• If R = B, by Definition 7 we have that all the B-requests in a partial fulfilling



November 30, 2010 15:24 WSPC/INSTRUCTION FILE gandalf-ijfcs

16 D. Bresolin, P. Sala, & G. Sciavicco

compass structure are fulfilled and thus this case connot be given.

• If R = B the case is analogous to the case of R = A.

• If R = L, since Gi is partial fulfilling and it is finite we have that α ∈
ReqL(L(y

i
min − 1,yimin)). By point c) of the construction we have that

Li(yimin − 1,yimin) = L(y0 − 1,y0) = L(y1 − 1,y1). Hence, by condition
G4 of Definition 10 and by the definition of past witness set, there exists a point
(x,y) with y0 6 x < y 6 y1 such that α ∈ L(x,y). By construction we
have that L(x,y) = Li+1(x − (i + 1) · kpast,y − (i + 1) · kpast) and thus
and thus the L-request α for the point p is fulfilled at step i + 1 by the point
(x− (i+ 1) · kpast,y− (i+ 1) · kpast).

Hence, we can conclude that the infinite compass structure Gω is fulfilling. By condi-
tion G2 of Definition 10 we have that Gω features ϕ and thus that ϕ is satisfiable over the
integers.

Theorem 11 shows that satisfiability of a formula over infinite models can be reduced
to the existence of a finite compass generator for it. However, it does not give any bound on
the size of it. In the following we will show how the techniques exploited in Section 3.1 for
finite models can be adapted to obtain a doubly exponential bound on the size of compass
generators.

Definition 12. Given a compass generator G = (PO,L), we say that two rows y < y ′ are
globally compatible if and only if the following properties holds:

(1) L(y− 1,y) = L(y ′ − 1,y ′) and ShaG(y) = ShaG(y
′),

(2) for every y ∈ {yϕ,y0,y1,y2} it is not the case that y 6 y 6 y ′,

(3) there exists a past witness set PastWit(y1) such that for every point (x,y) ∈
PastWit(y1) it is not the case that y 6 y 6 y ′,

(4) there exists a future witness set FutWit(y2) such that for every point x ∈
FutWit(y2) and every B-request α ∈ ReqB(L(x,y2) there is a point (x,y) such
that y2 < y, α ∈ Obs(L(x,y2)) and it is not the case that y 6 y 6 y ′,

(5) there exists a witness set Wit(y ′) for y ′ and an injective mapping function w :

πy′(Wit(y ′)∪PastWit(y1)∪FutWit(y2)) 7→ {x : x < y}, such that L(x,y ′) =
L(w(x),y), for every x ∈ πy′(Wit(y ′) ∪ PastWit(y1) ∪ FutWit(y2)), and
w(x) = x, for every x ∈ πy′(PastWit(y1).

Clearly, two globally compatible rows are compatible. The additional conditions of the
definition guarantees that the contraction procedure do not remove “meaningful” parts of
the compass generator, such as the rows yϕ, y0, y1, and y2 (condition 2) or future and past
witnesses (conditions 3 and 4).

Lemma 13. Let G be a compass generator for ϕ of size N. If there exist two global-
compatible rows 0 < y < y ′ < N in G, then there exists a compass generator G ′ of
size N ′ = N− y+ y ′ that features ϕ.
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Proof. We can define a function f : {0, ...,y} → {0, ...,y ′} and contract G to a smaller
compass structure G ′ in the very same way of Lemma 5. It can be easily proved that the
obtained G ′ is a partial fulfilling compass structure. Let k = y ′ − y and let y ′ϕ = yϕ if
yϕ < y, y ′ϕ = yϕ − k otherwise. To prove that G ′ is a compass generator, let us consider
the following four cases.

- If y ′ < y0, then we have that y ′i = yi − k for i ∈ {0, 1, 2,ϕ} satisfy conditions
G1-G6 in G ′.

- If y0 < y < y ′ < y1, then for every point (x,y) ∈ PastWit(y1) we have that
either f(x,y) = (x,y) (when y < y) or f(x,y − k) = (w(x),y − k) = (x,y)

(when y > y ′), and thus PastWit(y1) is a past witness set for G ′ as well. From
this we can conclude that y ′ϕ,y0,y1 − k, and y2 − k satisfy conditions G1-G6 in
G ′.

- If y0 < y1 < y < y ′ < y2, then it is easy to prove that y ′ϕ,y0,y1 and y2 − k
satisfy G1-G6 in G ′.

- If y0 < y1 < y2 < y < y ′, then it is easy to observe that y ′ϕ,y0,y1 and y2
satisfy G1-G6 in G ′.

Hence, in all possible cases G ′ is a compass generator for ϕ.

Theorem 14. An ABBL-formula ϕ is satisfied by some infinite interval structure iff it is
featured by some compass generator of length N 6 (2|ϕ| + 1)2

9|ϕ| · 218|ϕ|
2+9|ϕ| (i.e.,

double exponential in |ϕ|).

Proof. Suppose that ϕ is satisfied by a infinite interval structure S. By Theorem 11, there
is a compass generator G that features ϕ. By Lemma 13, we can assume without loss of
generality that all rows of G are pairwise global-incompatible. Let cy the characteristic
function defined in the proof of Theorem 6. Now, let x1 < . . . < xk be the ordered
sequence of the points in PastWit(y1). We associate to every row y a finite word Wy
of length |Wy| 6 k 6 2 · |ϕ| on the alphabet Aϕ (|Aϕ| = 29|ϕ|) such that for every
xi ∈ PastWit(y1), W(i) = L(xi,y). It is easy to prove that two rows y < y ′ in O with
cy(F) = cy′ ,Wy =Wy′ and such that L(y ′−1,y ′) = L(y−1,y) are global-compatible.

Since the number of possible characteristic functions is bounded by (2|ϕ|+1)2
9|ϕ|

, and
the number of possible words is bounded by (29|ϕ|)2·|ϕ| = 218|ϕ|

2

, G cannot have more
than (2|ϕ|+ 1)2

9|ϕ| · 218|ϕ|
2+9|ϕ| rows, and thus N is at most doubly exponential in |ϕ|.

4. Complexity bounds to the satisfiability problem for ABBL

In this section, we discuss the complexity of the satisfiability problem forABBL interpreted
over strongly discrete interval temporal structures. An EXPSPACE lower bound on the
complexity follows from the reduction of the exponential-corridor tiling problem (which is
known to be EXPSPACE-complete [11]) to the satisfiability problem for the fragmentABB
given in [10].

To give an upper bound to the complexity we claim that the existence of a compass
structure (or compass generator) G that features a given formula ϕ can be decided by veri-



November 30, 2010 15:24 WSPC/INSTRUCTION FILE gandalf-ijfcs

18 D. Bresolin, P. Sala, & G. Sciavicco

fying suitable local (and stronger) consistency conditions over all pairs of contiguous rows,
in a way similar to the EXPSPACE algorithm given in [10] for ABB. In this way, to check
those local conditions it is sufficient to store only (i) a counter y with the number of the
current row, (ii) two guessed shadings S and S ′ associated with the rows y and y + 1, and
(iii) the characteristic functions of the shadings of y and y + 1. Since all this information
needs only an exponential amount of space, the complexity of the satisfiability problem for
ABBL is in EXPSPACE. The procedure for the infinite case is depicted in Figure 4.

For the sake of brevity, given a shading S we denote with FπS the unique element of
S such that ReqB(FπS) = ∅. Note that for every row y with shading S, the type of the
unit interval [y − 1,y] is exactly FπS , while the type F of all other intervals in the row
must contain the formula 〈B〉>, and thus it cannot be the case that ReqB(F) = ∅. Given
a function cS : S → {0, ..., 8|ϕ| + 14} such that cS(FπS) 6 1, we denote with S (extended
shading) the pair 〈S, cS〉. In the code we use S to denote a shading, and S to denote an
extended-shading. Moreover, we introduce the following stronger version of the relation
B−→ :

F B7−→G iff


ReqB(F) = Obs(G) ∪ ReqB(G)

ReqB(G) = Obs(F) ∪ ReqB(F)

ReqL(F) = ReqL(G).

Finally, given two extended shadings S = 〈S, cS〉 and S ′ = 〈S ′, cS′〉, we say that S ′ is
a successor of S, and we write S 7−→S ′, if the following conditions hold:

• for every F ∈ S ′ with ReqB(F) 6= ∅ there exists G ∈ S with F B7−→G;
• there exists a set R ⊆ S ′×S× {1, ..., 8|ϕ|+ 14} such that for every (F,G,n) ∈ R,
F B7−→G, for every F ∈ S ′ we have

∑
(F,G,n)∈R

n = cS′(F), and for every G ∈ S we

have
∑

(F,G,n)∈R
n = cS(G).

The second condition ensures that all the witnesses of the lower shading S are correctly
transferred in the upper shading S ′ according to the functions cS and cS′ . It is easy to
see that, given two rows y and y + 1 with shadings S and S ′, the two extended shadings
S = 〈S, cy〉 and S ′ = 〈S ′, cy+1〉, (where cy and cy+1 are the characteristic functions of y
and y+ 1, respectively) are such that S 7−→S ′.

The main procedure basically guesses two extended shadings Spast and Sfuture which
represent the rows y0 and y2 of a compass generator, and then it checks whether a compass
generator featuring them exists. The procedure checkPast ensures that we can construct
the portion of the compass structure between y0 and y1 (see Figure 4). The procedure
starts from y0 and construct this portion incrementally row by row until it reaches y1.
The procedure exits successfully when it reaches, without exceeding the given number of
steps, a row labelled with the extended shading Spast and such that all formulas ψ ∈
ReqL(F

π
Spast

) are ”witnessed” by points with the first coordinate greater than the starting
row (i.e., points belonging to the red triangle in Figure 4) to guarantee that there exists a
past witness set for y1 that respects condition G3 of Definition 10. This condition is verified
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letφ be an input formula
letϕ be (φ ∧ [B]⊥) ∨ (〈B〉φ) ∨ (〈B〉〈A〉φ)

letM = (2|ϕ|+ 1)2
9|ϕ| · 218|ϕ|2+9|ϕ|

main

F0 ← any atom F with ReqB(F0) = ∅ andϕ ∈ S;
Spast ← any extended shading S with F0 ∈ S;
Sfuture ← any extended shading S;
if(checkPast(Spast,F0)∧
checkFinite(Spast,Sfuture)∧
checkFuture(Sfuture))

then return true
else return false

proc CHECKFINITE
(
Spast,Sfuture

)

S← Spast;
while i 6M
S′ ← any shading with S 7−→S′;
if (S′ = Sfuture)

then return true
S← S′;
i← i+ 1;

return false

proc CHECKPAST
(
Spast,F0

)

Slower ← {F0}
REQ← ReqL(F0)
i← 0;
S← Spast;
while i 6M

REQ← REQ \
⋃

F∈Slower
Obs(F);

S′ ← any extended shading with S 7−→S′;
if (S′ = Spast ∧REQ = ∅)

then return true
let f : Slower → S′ be an injective function

s.t. f(F) B7−→F for all F ∈ Slower;
S′
lower ← Img(f)∪ {Fπ

S′ };
Slower ← S′

lower;
S← S′;
i← i+ 1;

return false

proc CHECKFUTURE (Sfuture)

for all F ∈ Sfuture{
REQF ← ReqB(F);
Fabove ← F;
S← Sfuture;
while i 6M

S′ ← any shading with S 7−→S′;
for all F ∈ SfutureF

′
above ← any atom F ∈ S′ s.t. F B7−→Fabove;
Fabove ← F′

above;
REQF ← REQF \Obs(Fabove);

S← S′
;

if (S = Sfuture ∧ ∀F ∈ Sfuture(REQF = ∅))
then return true
i← i+ 1;

return false

Figure 5. the procedure for checking the satisfiability ofφ over the integers.

by means of the set Slower which keeps track of such points. The procedure checkFinite
simply checks if the extended shading Sfuture is “reachable” from the extended shading
Spast, and thus it represents the construction of the “finite part” of a compass generator,
that is, the portion between y1 and y2 in Figure 4. Finally the the procedure checkFuture
ensures that we can construct the portion between y2 and N − 1 of a compass generator.
This last procedure is similar to the procedure checkPast, and it checks whether there
exists a portion of a compass structure where both the lowest and the biggest rows are
labelled with Sfuture. To guarantee that a future witness set for y2 exists (condition G6
of Definition 10), we require that for every F ∈ Sfuture and for every ψ ∈ ReqB(F), it
is the case that ψ is fulfilled by some successor of Sfuture. This condition is ensured by
means of the set REQF, which keeps track of the formulas in ReqB(F) that still need to be
satisfied. It is worth to notice that all the counters, the extended shadings, and the shadings
using in these procedures can be represented using exponential space with respect to the
length of the input formula. Summing up, we obtain the following tight complexity result.

Theorem 15. The satisfiability problem for ABBL interpreted over strongly complete lin-
ear orders is EXPSPACE-complete.
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5. Embedding Metric Constraints

In the quest of finding more and more expressive, yet decidable, temporal logic for inter-
vals, some metric extensions of decidable HS fragments have recently appeared in the liter-
ature. We refer, in particular, to [5], where the mono-modal fragment of PNL (called RPNL)
has been extended with a family of metric operators that constrain the length of intervals,
preserving decidability, and to [3], where the results have been extended to full PNL. Since
our logic can be seen as an extension of RPNL, it makes sense to study whether it is possi-
ble to extend ABBL with metric features in the same way, preserving decidability.

A metric constraint is a special kind of atomic formula of the type len<k (resp., len=k,
len>k, len6k, len>k), where k is a natural number. Its semantics is very intuitive:

S, I � len∼k iff x− y ∼ k, with ∼∈ {=,<,>,6,>}.

As noticed [5], it is sufficient to have only one type of constraint in order to express
all the others; for example, len>k is equivalent to ¬(len<k). It is easy to see that there
is a simple, exponential, embedding of metric constraints in any language that includes
〈B〉. In fact, we have that len<k is equivalent to ¬(〈B〉 . . . 〈B〉︸ ︷︷ ︸

k−1

>). This implies that, if k is

represented in binary, we have that it is possible to encode metric constraints by non-metric
formulas that are exponential in the length of the metric ones. In the rest of this section, we
will prove that such an exponential blow-up is not necessary, at the expenses of extending
the language with enough new propositional variables.

First of all, we define the universal modality in the language of ABBL:

[U]ψ ≡ ψ∧ [A]ψ∧ [A][A]ψ∧ [B]ψ∧ [L](ψ∧ [B]ψ∧ [A]ψ∧ [A][A]ψ)

Now, let k1 < ... < kn be all the constants used in the set of metric constraints that we have
to translate. Define h = dlog2(kn)e. Clearly, anyone of the constants ki can be encoded
using a string of exactly h bits; to this purpose, we use h new propositional variables
p1, . . .ph. We use such variables to label each point of our interval structure with a unique
number between 0 and 2h − 1: to this end, we force all the intervals which share the same
starting point to agree on the values of the variables p1, . . . ,pn. Moreover, we guarantee
that this enumeration is ascending, that is, that intervals starting with two consecutive points
are associated with two consecutive numbers, with the exception of points associated with
the number 2h − 1, for which we set its immediate successor to be associated with 0. This
is obtained by the formula

ψ1 ≡ [U]((pi → [B]pi)∧ (¬pi → [B]¬pi)∧ ([B]⊥ → ψ1
+))

where ψi+ is

ψi+ ≡ (pi → 〈A〉¬pi ∧ψi+1
+ )∧ (¬pi → 〈A〉pi

h∧
j=i+1

(pj ↔ 〈A〉pj)) if 1 6 i < h, and

ψh+ ≡ (ph ↔ 〈A〉¬ph) otherwise.
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It is worth to notice that the length of the formula ψ1 is polynomial (more precisely,
quadratic) in h, since, every formula of the typeψi+1

+ is of linear length in h, and it appears
exactly once in ψ1.

In this setting, we can correctly encode the length any intervals up to 2h − 1, by using
h new propositional variables l1, . . . , lh, by simply looking at the numbers associated to
the two endpoints of every interval. For intervals with length greater than 2h − 1 we can
safely associate the length 2h − 1 (the constraint len>k is always true on such intervals).
For every interval I = [x,y] of the structure, let n(x) and n(y) be the two numbers 0 6
n(x),n(y) 6 2h − 1 associated with the endpoints of I; the following cases may arise:

• n(y) > n(x) and for every x < z < y we have n(z) 6= 0: then, the length of I is
n(y) − n(x);

• n(y) < n(x) and there exists exactly one x < z < y such that n(z) 6= 0: then the
length of I is n(y) + (2h − n(x));

• otherwise, the length of I is greater than 2h − 1.

The length of an interval I can be computed using a combination of boolean arithmetic
and ABBL operators. To simplify the encoding, we observe that the bitwise complement
of n(x) corresponds to the quantity (2h− 1) −n(x), and thus that to compute the quantity
2h−n(x) it is sufficient to add 1 to the complement of n(x). Moreover, h bits are sufficient
to store the result, since by hypothesis n(x) > 1.

For the sake of readability we introduce 2 · h additional new variables
r1, . . . , rh, c1, . . . , ch to represent the remainders of the bit-wise operations (r variables)
and the representations of the complement plus 1 (c variables). These conditions are cap-
tured by the formula

ψ2 = [U]((ψ> → ψdiff)∧ (ψ< → ψsum)∧ (¬ψ< ∧ ¬ψ> →
h∧
i=1

li)),

where:

ψ< ≡ [B]〈A〉¬ψzero ∧ψh<
ψzero ≡

∧
j=1h

¬pj

ψi< ≡ (〈A〉¬pi → ¬pi)∧ ((pi ↔ 〈A〉pi)→ ψi−1
< ), for 1 < i 6 h

ψ1
< ≡ 〈A〉pi ∧ ¬pi

ψ> ≡ (〈A〉ψzero ∨ (〈B〉〈A〉ψzero ∧ [B](〈A〉ψzero → [B]〈A〉¬ψzero))∧ψh>
ψi> ≡ (¬pi → 〈A〉¬pi)∧ ((pi ↔ 〈A〉pi)→ ψi−1

< ), for 1 < i 6 h

ψ1
< ≡ 〈A〉pi ∧ ¬pi
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ψdiff ≡ (l1 ↔ p1 ⊕ 〈A〉p1)∧ (r1 ↔ p1 ∧ 〈A〉¬p1)∧ψ2
diff

ψidiff ≡
(li ↔ 〈A〉pi ⊕ (pi ⊕ ri−1))∧

(ri ↔ (ri−1 ∧ pi)∨ (¬〈A〉pi ∧ (¬ri−1 ⊕ ¬pi)))∧ψ
i+1
diff, for 1 < i 6 h

ψsum ≡ ψcomp ∧ (l1 ↔ c1 ⊕ 〈A〉p1)∧ (r1 ↔ c1 ∧ 〈A〉p1)∧ψ2
sum

ψisum ≡
(li ↔ ri−1 ⊕ (ci ⊕ 〈A〉pi))∧

(ri ↔ (ci ∧ 〈A〉pi)∨ (ri−1 ∧ (ci ∨ 〈A〉pi)))∧ψi+1
sum, for 1 < i 6 h

ψcomp ≡ (¬p1 → c1

h∧
j=2

(cj ↔ ¬pj)∧ (p1 → c1 ∧ψ
2
comp)

ψicomp ≡ (¬pi → ci

h∧
j=i+1

(cj ↔ ¬pj)∧ (pi → ci ∧ψ
i+1
comp), for 1 < i 6 h.

Finally, for every k1 < . . . < kn, we consider the corresponding metric constraint
len<kj as a pure propositional variable, and set the correct interpretation by means of the
following formula:

ψ3 = [U](

n∧
j=1

len<kj ↔ (ψ6=kj ∧ [B]ψ6=kj)),

where ψ6=kj forces the length of the current interval to be different from kj:

ψ6=kj ≡ ¬

h∧
i=1

li ↔ biti(kj).

It is now easy to see that every metric constraint of the type len<kj holds only over intervals
of length strictly less than ki. Moreover, since the length of ψ1, ψ2 and ψ3 is polynomial
in h, we have proved that any formula ofABBL with metric constraints can be translated to
a non-metric one with only a polynomial blowup in the size of the formula. As a direct con-
sequence of this, we have that adding metric constraints to ABBL preserves decidability,
without increasing the complexity class of the satisfiability problem for the language.

6. Conclusions

We considered an interval temporal logic (ABBL) with four modalities, corresponding, re-
spectively, to Allen’s interval relations meets, begins, begun-by, and before, and interpreted
in the class of all strongly discrete linearly ordered sets, which includes, among others, all
frames built over N, Z, and all finite orders. We showed that this logic is decidable in EX-
PSPACE, and complete for this class. The importance of this result relies on the fact that,
for the considered interpretations, this logic is maximal with respect to decidability. We
also showed that metric constraints of metric languages such as RPNL+INT can be poly-
nomially embedded into this language. These results represent a non-trivial contribution
towards the complete classification of all fragments of Halpern and Shoham’s modal logic
of intervals. We plan to complete the study of this particular language when it is interpreted
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over other classes of orders, such as the class of all dense linearly ordered sets, or the class
of all linear orders, and to refine these results to include point-intervals, too.
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