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Abstract. Interval temporal logics formalize reasoning about in-
terval structures over (usually) linearly ordered domains, where time
intervals are the primitive ontological entities and truth of formulae
is defined relative to time intervals, rather than time instants. In this
paper, we introduce and study Metric Propositional Neighborhood
Logic (MPNL) over natural numbers. MPNL features two modalities
referring, respectively, to an interval that is “met by” the current one
and to an interval that “meets” the current one, plus an infinite set
of length constraints, regarded as atomic propositions, to constrain
the lengths of intervals. We argue that MPNL can be successfully
used to capture important concepts and scenarios in different areas
of artificial intelligence combining qualitative and quantitative inter-
val temporal reasoning, thus providing a viable alternative to well-
established logical frameworks such as Duration Calculus. We show
that MPNL is decidable in double exponential time and that it is ex-
pressively complete with respect to a well-defined subfragment of the
two-variable fragment FO2[N,=, <, s] of first-order logic for lin-
ear orders with successor function, interpreted over natural numbers.
Moreover, we show that MPNL can be extended in a natural way to
cover full FO2[N,=, <, s], but, unexpectedly, the latter (and hence
the former), turns out to be undecidable.

1 Introduction

Interval temporal logics provide a natural framework for temporal
reasoning about interval structures over linearly (or partially) ordered
domains. They take time intervals as the primitive ontological entities
and define truth of formulae relative to time intervals, rather than
time instants. Interval logics feature modal operators that correspond
to various relations between pairs of intervals. In particular, the logic
HS, introduced by Halpern and Shoham in [17], features a set of
modal operators that makes it possible to express all Allen’s interval
relations [1].

Interval-based formalisms have been extensively used in various
areas of AI, such as, for instance, planning and plan validation, theo-
ries of action and change, natural language processing, and constraint
satisfaction problems. However, most of them make severe syntactic
and semantic restrictions that considerably weaken their expressive
power. Interval temporal logics relax these restrictions, thus allowing
one to cope with much more complex application domains and sce-
narios. Unfortunately, many of them, including HS and the majority
of its fragments, turn out to be undecidable (a comprehensive survey

1 University of Verona, Italy, davide.bresolin@univr.it
2 University of Udine, Italy, dario.dellamonica@dimi.uniud.it
3 Technical University of Denmark, Denmark, vfgo@imm.dtu.dk
4 University of Udine, Italy, angelo.montanari@dimi.uniud.it
5 University of Murcia, Spain, guido@um.es

can be found in [7]). One of the few cases of decidable interval logic
with truly interval semantics, that is, not reducible to point-based
semantics, is Propositional Neighborhood Logic (PNL), interpreted
over various classes of interval structures (all, dense, and discrete lin-
ear orders, integers, natural numbers) [16]. PNL is a fragment of HS
with only two modalities, corresponding to Allen’s relations meets
and its inverse met by.

In this paper, we consider a proper extension of PNL over natu-
ral numbers, called Metric PNL (MPNL), that features a family of
special atomic propositions representing integer constraints (equali-
ties and inequalities) on the length of the intervals over which they
are evaluated. The uni-modal right-neighborhood fragment of MPNL
has recently been introduced and studied in [9] – the main precursor
of this paper, which extends and strengthens it substantially. MPNL
is particularly suitable for quantitative interval reasoning, and thus it
emerges as a viable alternative to existing logical systems for quan-
titative temporal reasoning. Various metric extensions to point-based
temporal logics have been proposed in the literature. They include
Timed Propositional Temporal Logic (TPTL), developed by Alur and
Henzinger in [2], Montanari and de Rijke’s two-sorted metric tem-
poral logics [20], Hirshfeld and Rabinovich’s Quantitative Monadic
Logic of Order [18], and Owakine and Worrell’s Metric Temporal
Logic [22]. Little work has been done in the interval logic setting.
Among the few contributions, we mention the extension of Allen’s
Interval Algebra with a suitable notion of distance developed by
Kautz and Ladkin in [19]. The most important quantitative interval
temporal logic is Duration Calculus (DC) [11], which is quite ex-
pressive, but undecidable. A number of variants and fragments of DC
have been proposed in the literature to model and reason about real-
time processes and systems [5, 11, 12, 13]. Many of them recover
decidability by imposing semantic restrictions, such as the locality
principle, that essentially reduce the interval system to a point-based
one.

The main results of the present paper are: (i) decidability and com-
plexity of the satisfiability problem for MPNL (Section 4); (ii) ex-
pressive completeness of MPNL with respect to a well-defined sub-
fragment of FO2[N,=, <, s] (Section 5); (iii) an extension of MPNL
which is expressively complete with respect to full FO2[N,=, <, s]
and proof of their undecidability (Section 5).

2 MPNL over Natural Numbers

Given a linearly ordered domain D = 〈D,<〉, interpreted as the set
of natural numbers N or any finite subset of it, a (non-strict) interval
over D is any ordered pair [i, j] such that i ≤ j. An interval structure
is a pair 〈D, I(D)〉, where I(D) is the set of all intervals over D. An
interval model is a tuple M = 〈D, I(D), V 〉, where 〈D, I(D)〉 is



an interval structure and V : AP → 2I(D) is a valuation function
assigning to every atomic proposition the set of intervals over which
it holds. We define the standard distance function δ : N×N→ N as
δ(i, j) = |i−j| (notice that natural numbers appear both as points in
the interval structure and as interval lengths). As a matter of fact, all
results we will provide may be suitably rephrased for any function δ
satisfying the standard properties of distance over a linear order.

To add a metric dimension to PNL, we introduce a set of special
propositional letters referring to the length of the current interval.
They can be viewed as a metric generalization of the modal constant
π of PNL that ‘identifies’ intervals of the form [i, i] [16]. Formally,
for every k ∈ N and C ∈ {<, ≤, =, ≥, >}, we define the length
constraint lenCk. The formulae of MPNL, denoted by ϕ,ψ, . . ., are
generated by the following grammar:

ϕ ::= lenCk | p | ¬ϕ | ϕ ∨ ϕ | 3rϕ | 3lϕ.

Given an interval modelM = 〈D, I(D), V 〉 and an interval [i, j] over
it, the semantics of MPNL-formulae is given by the clauses:

• M, [i, j] 
 lenCk iff δ(i, j)Ck;
• M, [i, j] 
 p iff p ∈ V ([i, j]) for any p ∈ AP;
• M, [i, j] 
 ¬ψ iff it is not the case that M, [i, j] 
 ψ;
• M, [i, j] 
 ψ ∨ τ iff M, [i, j] 
 ψ or M, [i, j] 
 τ ;
• M, [i, j] 
 3rψ iff there exists h ≥ j such that M, [j, h] 
 ψ;
• M, [i, j] 
 3lψ iff there exists h ≤ i such that M, [h, i] 
 ψ.

A MPNL-formula ϕ is satisfiable if there exist a model M and an
interval [b, e] over it such that M, [b, e] 
 ϕ. We can limit ourselves
to consider only length constraints of the form len=k, as all the re-
maining ones can be defined in terms of them.

3 MPNL at Work

Finding an appropriate balancing between expressive power and
computational complexity is a challenge for every knowledge rep-
resentation and reasoning formalism. Interval temporal logics are
not an exception in this respect. We believe that MPNL features a
good compromise between the two requirements. In the following,
we show that MPNL makes it possible to encode metric versions of
basic operators of point-based linear temporal logic (LTL) as well as
of interval modalities corresponding to Allen’s relations; in addition,
we show that it allows one to express limited forms of fuzziness.

First, MPNL is expressive enough to encode the strict sometimes
in the future (resp., sometimes in the past) operator of LTL:

3r(len>0 ∧3r(len=0 ∧ p)). (1)

Moreover, length constraints allow one to define a metric version of
the until (resp., since) operator. For instance, the condition: ‘p is true
at a point in the future at distance k from the current interval and,
until that point, q is true (pointwise)’ can be expressed as follows:

3r(len=k ∧3r(len=0 ∧ p)) ∧ 2r(len<k → 3r(len=0 ∧ q)). (2)

MPNL can also be used to constrain interval length and to express
basic interval relations. First, we can easily constrain the length of
the intervals over which a given property holds to be at least (resp.,
at most, exactly) k. As an example, the following formula constrains
p to hold only over intervals of length greater than k and less than k′:

[G](p→ len≥k ∧ len≤k′), (3)

where the universal modality [G] is defined as in [16]. By exploiting
such a capability, a metric version of all, but one (the ‘during’ rela-
tion), Allen’s relations can be expressed. As an example, we can state
that: ‘p holds over an interval of bounded length l, with k ≤ l ≤ k′,
that begins an interval (of arbitrary length) over which q holds’:

p≤k
′

≥k ∧ [G]

k′^
i=k

(p ∧ len=i → 3l3r(len>i ∧ q)), (4)

where p≤k
′

≥k is a shorthand for (3). As another example, Allen’s rela-

tion contains can be expressed by pairing p≤k
′

≥k with:

[G]

k′^
i=k

(p ∧ len=i →
_

j,j′,j+j′<i

(3l3r(len=j ∧3r(len=j′ ∧ q)))). (5)

Finally, length constraints allow one to express some form of
‘fuzziness’. As an example, the condition: ‘p is true over the cur-
rent interval and q is true over some interval close to it’, where by
‘close’ we mean that the right endpoint of the p-interval is at distance
at most k from the left endpoint of the q-interval, can be expressed
as follows:

p ∧ (3r3l(len<k ∧3l3rq) ∨3r(len<k ∧3rq)). (6)

MPNL capabilities suffice to cope with various application do-
mains. As a source of exemplification, we show how to express some
basic safety requirements of the classical gas-burner example (a for-
malization of such an example in DC can be found in [11]). Let the
propositional letter Gas (resp., Flame, Leak) be used to state that
gas is flowing (resp., burning, leaking), e.g., M, [i, j] 
 Gas means
that gas is flowing over the interval [i, j]. The formula

[G](Leak ↔ Gas ∧ ¬Flame) (7)

states that Leak holds over an interval if and only if gas is flowing
and not burning over that interval. The condition: ‘it never happens
that gas is leaking for more than k time units’ can be expressed as:

[G](¬(len>k ∧ Leak)). (8)

Similarly, the condition: ‘the gas burner will not leak for k time units
after the last leakage’ can be formalized as:

[G](Leak → ¬3l(len<k ∧3lLeak)). (9)

We conclude the section by mentioning two application domains
where MPNL features are well-suited, namely, medical guidelines
and ambient intelligence. In the area of medical guidelines [23],
events with duration, e.g., ‘running a fever’, possibly paired with
metric constraints, e.g., ‘if a patient is running a fever for more than
k time units, then administrate him/her drug D’, are quite common.
In general, many relevant phenomena are inherently interval-based
as there are no general rules to deduce their occurrence from point-
based data. The use of temporal logic in ambient intelligence, specif-
ically in the area of Smart Homes [3, 4, 15] , has been advocated
by Combi et al. in [14]. MPNL can be successfully used to express
safety requirements referring to situations that can be properly mod-
eled only in terms of time intervals, e.g., ‘being in the kitchen’.

4 Decidability of MPNL
In this section, we use a model-theoretic argument to show that the
satisfiability problem for MPNL has a bounded-model property with



respect to finitely presentable ultimately periodic models, and it is
therefore decidable. For lack of space, we only sketch the proofs of
the main technical results. From now on, letϕ be any MPNL-formula
and let AP be the set of propositional letters of the language.

Definition 1 The closure of ϕ is the set CL(ϕ) of all subformu-
lae of ϕ and their negations (we identify ¬¬ψ with ψ). The set
of temporal requests from CL(ϕ) is the set TF (ϕ) of all tempo-
ral formulae in CL(ϕ), that is, TF (ϕ) = {3rψ,3lψ,2rψ,2lψ |
3rψ,3lψ,2rψ,2lψ ∈ CL(ϕ)}.

Definition 2 A ϕ-atom is a set A ⊆ CL(ϕ) such that for every
ψ ∈ CL(ϕ), ψ ∈ A iff ¬ψ 6∈ A and for every ψ1 ∨ ψ2 ∈ CL(ϕ),
ψ1 ∨ ψ2 ∈ A iff ψ1 ∈ A or ψ2 ∈ A.

We denote the set of all ϕ-atoms by Aϕ. One can easily prove that
|CL(ϕ)| ≤ 2|ϕ|, |TF (ϕ)| ≤ 2(|ϕ| − 1), and |Aϕ| ≤ 2|ϕ|. We now
introduce a suitable labeling of interval structures based on ϕ-atoms.

Definition 3 A (ϕ-)labeled interval structure (LIS for short) is a
structure L = 〈D, I(D),L〉, where 〈D, I(D)〉 is the interval structure
over natural numbers (or over a finite subset of it) and L : I(D) →
Aϕ is a labeling function such that for every pair of neighboring in-
tervals [i, j], [j, r] ∈ I(D), if 2rψ ∈ L([i, j]), then ψ ∈ L([j, r]),
and if 2lψ ∈ L([j, r]), then ψ ∈ L([i, j]).

Notice that every interval modelM is a LIS, where the labeling func-
tion is the valuation function:

ψ ∈ L([i, j]) iff M, [i, j] 
 ψ.

Thus, LIS can be thought of as quasi-models for ϕ, in which the
truth of formulae containing neither 3r , 3l nor length constraints
is determined by the labeling (due to the definitions of ϕ-atom and
LIS). To obtain a model, we must also guarantee that the truth of the
other formulae is in accordance with the labeling. To this end, we
introduce the notion of fulfilling LIS.

Definition 4 A LIS L = 〈D, I(D),L〉 is fulfilling iff:

• for every length constraint len=k ∈ CL(ϕ) and every interval
[i, j] ∈ I(D), len=k ∈ L([i, j]) iff δ(i, j) = k;

• for every temporal formula 3rψ ∈ TF (ϕ) and every interval
[i, j] ∈ I(D), if 3rψ ∈ L([i, j]), then there exists r ≥ j such that
ψ ∈ L([j, r]);

• for every temporal formula 3lψ ∈ TF (ϕ) and every interval
[i, j] ∈ I(D), if 3lψ ∈ L([i, j]), then there exists r ≤ i such that
ψ ∈ L([r, i]).

Clearly, every interval model is a fulfilling LIS. Conversely, ev-
ery fulfilling LIS L = 〈D, I(D),L〉 can be transformed into a
model M(L) by defining the valuation in accordance with the la-
beling. Then, one can prove that for every ψ ∈ CL(ϕ) and interval
[i, j] ∈ I(D), ψ ∈ L([i, j]) iff M(L), [i, j] |= ψ by a routine induc-
tion on ψ.

Definition 5 Given a LIS L = 〈D, I(D),L〉 and an interval [i, j] ∈
I(D), the set of left temporal requests at i (resp., right temporal
requests at j), denoted by REQL(i) (resp., REQR(j)), is the set
of temporal formulae of the forms 3lϕ, 2lϕ (resp., 3rϕ, 2rϕ) in
TF (ϕ) belonging to the labeling of any interval beginning in i (resp.,
ending in j). Given a point r ∈ D, the set REQ(r) is defined as
REQ(r)=REQL(r) ∪ REQR(r),

We denote by REQ(ϕ) the set of all possible sets of temporal re-

quests over CL(ϕ). It is easy to show that |REQ(ϕ)| = 2
|T F (ϕ)|

2 .
From now on, we will use the symbol m for |TF (ϕ)|

2
and k for the

maximum among all natural numbers occurring in the length con-
straints in ϕ. For example, if ϕ = 3r(len>3 ∧ p→ 3l(len>5 ∧ q)),
then m = 2 and k = 5. It is easy to observe that given any set of
temporal requests REQR(j) (resp., REQL(i)), all formulae in it
can be satisfied using at most m different points r such that r > j
(resp., r < i).

Now, consider any MPNL-formula ϕ such that ϕ is satisfiable on
a finite model. We have to show that we can restrict our attention to
models with a bounded dimension.

Definition 6 Given any LIS L = 〈D, I(D),L〉, we say that a (k-)
sequence in L is a sequence of (k) consecutive points in D. Given a
sequence σ in L, its sequence of requests REQ(σ) is defined as the
sequence of temporal requests at the points in σ. We say that i ∈ L
starts a k-sequence σ if the temporal requests at i, . . . , i+ k − 1
form an occurrence of REQ(σ). Moreover, the sequence of requests
REQ(σ) is said to be abundant in L (on an interval [i, j]) iff it has
at least 2 · (m2 +m) · |REQ(ϕ)|+ 1 disjoint occurrences in D (in
the interval [i, j]).

Lemma 7 Let L = 〈D, I(D),L〉 be any LIS such that REQ(σ)
is abundant in it. Then, there exists an index q such that for each
elementR ∈ {REQ(d) | iq < d < iq+1}, where iq and iq+1 begin
the q-th and the q + 1-th occurrence of σ, respectively, R occurs at
least m2 +m times before iq and at least m2 +m times after jq+1.

Lemma 8 Let L = 〈D, I(D),L〉 be a fulfilling LIS that satisfies
ϕ. Suppose that there exist an abundant k-sequence of requests
REQ(σ) and let q be the index whose existence is guaranteed by
Lemma 7. Then, there exists a fulfilling LIS L = 〈D, I(D),L〉 that
satisfies ϕ such that D = D \ {iq, . . . iq+1 − 1}.

Proof. [sketch] Let L = 〈D, I(D),L〉 be a fulfilling LIS satisfying ϕ
at some [b, e],REQ(σ) be an abundant k-sequence in L, and q be the
index identified by Lemma 7. Moreover, letD− = {iq, . . . iq+1−1}
and D′ = D \D−. We denote by I(D′) the set of all intervals over
D′. We have the problem of suitably re-defining the evaluation of
all intervals on D′ in a way preserving the temporal requests at all
points in D′ and still satisfying ϕ.

First, we consider all points d < iq and for each of them, for all p
such that 0 ≤ p ≤ k− 1, we put L′([d, iq+1 + p]) = L([d, iq + p]).
In such a way, we guarantee that the intervals whose length has been
shortened as an effect of the elimination of the points in D− have a
correct labeling in terms of all length constraints of the forms len=k′

and ¬len=k′ , with k′ ≤ k. Moreover, since the requests (in both di-
rections) in L at iq+1 + p are equal to the requests at iq + p, this op-
eration is safe with respect to universal and existential requirements.
Finally, since the lengths of intervals beginning before iq and ending
after iq+1 are greater than k both in L and in L′, there is no need to
change their labeling.

The structure L′ = 〈D′, I(D′),L′〉 defined so far is obviously a
LIS, but it is not necessarily a fulfilling one. The removal of the
points in the setD− may generate defects, that is, situations in which
there exists a point d < iq (resp., d ≥ iq+1) and a formula of the
type 3rψ (resp., 3lψ) belonging to REQ(d), which was satisfied
on [d, d′] (resp., [d′, d]), with d′ ∈ D−, and it is not satisfied any-
more. In order to repair such defects, one can simply redefine the
labels at intervals starting at d and ending at some (eliminated) d′



using the m2 +m ‘copies’ of d′ that, by hypothesis, are in D′ (as al-
ready pointed out, at most m points are needed to satisfy all requests
at d′). This construction is similar to the one used in [9] to show that
the single-modality metric PNL has the small-model property. If we
repeat such a procedure sufficiently many times, we obtain a finite
sequence of LIS, the last one of which is the required L.

The lemma above guarantees that we can eliminate sequences of re-
quests that occur ‘sufficiently many’ times in a LIS, without ‘spoil-
ing’ the LIS. This eventually allows us to prove the following small
model theorem for finite satisfiability of MPNL.

Theorem 9 (Small Model Theorem) If ϕ is any finitely satisfiable
formula of MPNL, then there exists a fulfilling, finite LIS L =
〈D, I(D),L〉 that satisfies ϕ such that |D| ≤ |REQ(ϕ)|k ·(2·(m2+
m) · |REQ(ϕ)|+ 1) · k + k − 1.

To deal with formulae that are satisfiable only over infinite models,
we need to introduce a finite (periodic) representation for them and,
then, to show that we are able to bound the length of the prefix and
the period.

Definition 10 A LIS L = 〈D, I(D),L〉 is ultimately periodic, with
prefix L, period P , and threshold k if:

• for every interval [i, j] such that i ≥ L, L([i, j]) =
L([i+ P , j + P ]);

• for every interval [i, j] such that j ≥ L and δ(j, i) > k,
L([i, j]) = L([i, j + P ]).

It is worth noticing that, in every ultimately periodic LIS,
REQ(i) = REQ(i+ P ), for i ≥ L, and that every ultimately peri-
odic LIS is finitely presentable: it suffices to define its labeling only
on the intervals [i, j] such that j ≤ L+P+max(k, P ); thereafter, it
can be uniquely extended by periodicity. Furthermore, we can iden-
tify a finite LIS with an ultimately periodic one with a period P = 0.

Lemma 11 Let L = 〈N, I(N),L〉 be an infinite fulfilling LIS over
N that satisfies a formula ϕ on [b, e] for some b, e ∈ N. Then, there
exists an infinite ultimately periodic fulfilling LIS L = 〈N, I(N),L〉
over N that satisfies ϕ on [b, e].

Proof. [sketch] Let [b, e] be an interval such that ϕ ∈ L([b, e]). We
define the set REQinf (L) as the subset of REQ(ϕ) containing all
and only the sets of requests that occur infinitely often in L. We can
choose two points L,M , with L + k < M such that L,M are the
least points in N that satisfy the following conditions: (i) L ≥ e; (ii)
for each point r ≥ L, REQ(r) ∈ REQinf (L); (iii) every set of
requests R ∈ REQinf (L) occurs at least m2 + m times before L
and it occurs at least m2 +m times between L and M ; (iv) for each
point i < L and any formula 3rψ ∈ REQ(i), ψ is satisfied over
some interval [i, j], with j < M ; and (v) the k-sequences of requests
starting at L and at M are the same.

We put P = M − L. We can build an infinite ultimately periodic
structure L over the natural numbers with prefix L, period P , and
threshold k. To this end, for all points d < M , we put REQ(d) =
REQ(d) and, for all points M + n, with 0 ≤ n < P , we put
REQ(M+n) = REQ(L+n). The labeling can now be defined as
follows. For all intervals [i, j] such that j < M , we put L([i, j]) =
L([i, j]). As for any interval [i, j], with M ≤ j < M + P , (a)
if i ≥ M , we put L([i, j]) = L([i − P, j − P ]), (b) if i < M
and δ(i, j − P ) > k, we put L([i, j]) = L([i, j − P ]), and (c) if

i < M and δ(i, j − P ) ≤ k, we put L([i, j]) = L([l, h]), where
l and h are such that REQ(i) = REQ(l), REQ(j) = REQ(h),
and δ(h, l) > k. Existence of h and l are guaranteed by conditions
(i)−(v). This construction labels all subintervals in [0,M + P ] in
such a way that L is a LIS, but not necessarily a fulfilling one. As
a matter of fact, there could exist points L ≤ i ≤ M such that a
formula 3rψ ∈ REQ(i) is not fulfilled anymore in L. To fix such
defects, one can proceed as in the proof of Lemma 8, exploiting the
conditions (i)−(v). Finally, L can be extended over I(N) in a unique,
ultimately periodic and “fulfillness-preserving” way.

Theorem 12 (Small Periodic Model Theorem) If ϕ is any satisfi-
able formula of MPNL, then there exists a fulfilling, ultimately peri-
odic LIS satisfying ϕ such that both the length L of the prefix and the
length P of the period are less or equal to |REQ(ϕ)|k · (2 · (m2 +
m) · |REQ(ϕ)|+ 1) · k + k − 1.

Proof. Existence of an ultimately periodic fulfilling LIS is guaran-
teed by Lemma 11. The bound on the prefix and of the period can be
proved by exploiting Lemma 8.

Corollary 13 The satisfiability problem for MPNL, interpreted over
N, is decidable.

The results of the previous section immediately give a double ex-
ponential time nondeterministic procedure for checking the satisfi-
ability of any MPNL-formula ϕ. Such a procedure non determin-
istically checks models whose size, in general, is O(2|ϕ|k), where
|ϕ| is the length of the formula to be checked for satisfiability. It
has been shown in [9] that, in the case in which k is represented
in binary, the one-modality fragment of MPNL is complete for EX-
PSPACE. This means that the complexity for MPNL, in the general
case, is located between EXPSPACE and 2NEXPTIME (whereas the
exact complexity is still an open problem). It is worth noticing that
when k is a constant it does not influence the complexity class and
so, since we have a NTIME(2|ϕ|) procedure for satisfiability and a
NEXPTIME-hardness result [10], we can conclude that MPNL is
NEXPTIME-complete. Similarly, when k is expressed in unary, the
value of k increases linearly with the length of the formula and, thus,
NTIME(2k|ϕ|)=NTIME(2|ϕ|

2
); therefore, as in the previous case,

MPNL is NEXPTIME-complete.

5 Expressive Completeness and Undecidable
Extensions

Let us denote by FO2[=] the fragment of first-order logic with equal-
ity whose language contains only two distinct variables; we can fur-
ther assume w.l.o.g. that the arity of every relation in the considered
vocabulary is exactly 2 (since atoms in the two-variable fragment
can involve at most two distinct variables). We denote its formulae
by α, β, . . .. For example, the formula ∀x(P (x) → ∀y∃xQ(x, y))
belongs to FO2, while the formula ∀x(P (x) → ∀y∃z(Q(z, y) ∧
Q(z, x))) does not. The logic FO2[N,=, <] is the extension of FO2,
interpreted over natural numbers, over a purely relational vocabu-
lary {=, <, P,Q, . . .} including equality and a distinguished binary
relation < interpreted as the standard linear ordering. Decidabil-
ity (NEXPTIME-completeness) of FO2[N,=, <] has been shown
in [21]. In [8], it has been shown that FO2[N,=, <] is expressively
complete with respect to PNL. For the comparison of these log-
ics suitable truth-preserving model transformations between interval
models and relational models have been defined.



Table 1. Translation clauses from FO2
r[N, =, <, s] to MPNL.

τ [x, y](sk(z) = sm(z)) = > (z ∈ {x, y}), if k = m τ [x, y](P (sk(x), sm(x))) =

τ [x, y](sk(z) = sm(z)) = ⊥ (z ∈ {x, y}), if k 6= m 3l3r(len=k ∧3r(len=m−k ∧ p≤)), if k < m

τ [x, y](sk(z) < sm(z)) = ⊥ (z ∈ {x, y}), if k ≥ m τ [x, y](P (sk(x), sm(x))) =

τ [x, y](sk(z) < sm(z)) = > (z ∈ {x, y}), if k < m 3l3r(len=k ∧3r(len=0 ∧ p≤ ∧ p≥)), if k = m

τ [x, y](sk(x) = sm(y)) = ⊥, if k < m τ [x, y](P (sk(x), sm(x))) =

τ [x, y](sk(x) = sm(y)) = len=k−m, if k ≥ m 3l3r(len=m ∧3r(len=k−m ∧ p≥)), if k > m

τ [x, y](sk(x) < sm(y)) = >, if k < m τ [x, y](P (sk(y), sm(y))) =

τ [x, y](sk(x) < sm(y)) = len>k−m, if k ≥ m 3r(len=k ∧3r(len=m−k ∧ p≤)), if k < m

τ [x, y](sm(y) < sk(x)) = ⊥, if k < m τ [x, y](P (sk(y), sm(y))) =

τ [x, y](sm(y) < sk(x)) = len<k−m, if k ≥ m 3r(len=k ∧3r(len=0 ∧ p≤ ∧ p≥)), if k = m

τ [x, y](¬α) = ¬τ [x, y](α) τ [x, y](P (sk(y), sm(y))) =

τ [x, y](α ∨ β) = τ [x, y](α) ∨ τ [x, y](β) 3r(len=m ∧3r(len=k−m ∧ p≥)), if k > m

τ [x, y](∃xβ) = 3r(τ [y, x](β)) ∨ 2r3l(τ [x, y](β)) τ [x, y](P (x, y)) = p≤

τ [x, y](∃yβ) = 3l(τ [y, x](β)) ∨ 2l3r(τ [x, y](β)) τ [x, y](P (y, x)) = p≥

Given an interval model M = 〈D, I(D), VM 〉, the corresponding
relational model η(M) is a pair 〈D, Vη(M)〉, where for all p ∈ AP ,
Vη(M)(P ) = {(i, j) ∈ D × D : [i, j] ∈ VM (p)}. To define the
mapping from relational models to interval ones, we associate two
propositional letters p≤ and p≥ of the interval logic with every bi-
nary relation P . Thus, Given a relational model M = 〈D, VM〉, the
corresponding interval model ζ(M) is a structure 〈D, I(D), Vζ(M)〉
such that for any binary relation P and any interval [i, j],we have
that [i, j] ∈ Vζ(M)(p

≤) iff (i, j) ∈ VM (P ) and [i, j] ∈ Vζ(M)(p
≥)

iff (j, i) ∈ VM(P ). We compare the expressive power of an interval
modal logic and a first order logic by means of effective translation
between formulae and models.

We consider the extension of FO2[N,=, <] with the successor
function s, denoted by FO2[N,=, <, s]. The terms of the language
FO2[N,=, <, s] are of the type sk(z), where z ∈ {x, y} and sk(z)
denotes z when k = 0 and s(s(. . . s| {z }

k

(z) . . .)) when k > 0. Moreover,

consider the fragment FO2
r[N,=, <, s] of FO2[N,=, <, s] on which

the following restriction is imposed: if both variables x and y occur in
the scope of an occurrence of a binary relation, other than = and <,
then the successor function s may not occur in the scope of that oc-
currence. Thus, e.g., each of the formulae sk(x) = sm(y), sk(x) <
sm(y), P (sk(x), sm(x)), P (x, y) belongs to FO2

r[N,=, <, s], but
none of P (x, s(y)) and P (s(x), y) belongs there. By using 2-pebble
games and a standard model-theoretic argument, one can show that:

FO2[N,=, <] ≺ FO2
r[N,=, <, s] ≺ FO2[N,=, <, s].

Here we will extend the result presented in [8] to the language of
MPNL. In particular, we show (i) that MPNL≡FO2

r[N,=, <, s], (ii)
that there is a natural extension of MPNL, denoted here by MPNL+

which is functionally complete for FO2[N,=, <, s], and (iii) that,
perhaps unexpectedly, FO2[N,=, <, s] (and, therefore, MPNL+)
are already undecidable, which means that the decidability result
from [21] cannot be extended by adding one successor function.

First of all consider the following standard translation STx,y of
MPNL-formulae into FO2

r[N,=, <, s], as follows:

STx,y(ϕ) = x ≤ y ∧ ST ′x,y(ϕ),

where x, y are the two first-order variables in FO2
r[N,=, <, s], and:

ST ′x,y(p) = P (x, y)

ST ′x,y(len=k) = sk(x) = y
ST ′x,y(ϕ ∨ ψ) = ST ′x,y(ϕ) ∨ ST ′x,y(ψ)
ST ′x,y(¬ϕ) = ¬ST ′x,y(ϕ)
ST ′x,y(3lϕ) = ∃y(y ≤ x ∧ ST ′y,x(ϕ))
ST ′x,y(3rϕ) = ∃x(y ≤ x ∧ ST ′y,x(ϕ)).

The fact that a formula ϕ of MPNL is satisfied on an interval model
M at an interval [i, j] if and only if STx,y(ϕ) is satisfied by substitut-
ing x with i and y with j on the model η(M) can be proved by struc-
tural induction on ϕ. The inverse translation τ from FO2[N,=, <, s]
to MPNL is given in Table 1, and we have the following lemma.

Lemma 14 For every FO2
r[N,=, <, s]-formula α(x, y), every

FO2
r[N,=, <, s]-model M = 〈N, VM 〉 and every pair i, j ∈ N,

with i ≤ j: (i) M |= α(i, j) if and only if ζ(M), [i, j] 
 τ [x, y](α),
and (ii) M |= α(j, i) if and only if ζ(M), [i, j] 
 τ [y, x](α).

As a consequence, for every FO2
r[N,=, <, s]-formula α(x, y) and

every FO2
r[N,=, <, s]-model M = 〈N, VM 〉, M |= ∀x∀yα(x, y)

if and only if ζ(M) 
 τ [x, y](α) ∧ τ [y, x](α), which implies the
following theorem.

Theorem 15 FO2
r[N,=, <, s]≡MPNL.

A natural way to extend MPNL to cover the entire FO2[N,=, <
, s] would be to add diamond modalities that shift respectively the be-
ginning, or the end, of the current interval to the right by a prescribed
distance, viz:

• M, [i, j] 
 3+k
e ψ iff M, [i, j + k] 
 ψ;

• M, [i, j] 
 3+k
b ψ iff (i + k ≤ j and M, [i + k, j] 
 ψ) or

(i+ k > j and M, [j, i+ k] 
 ψ);

We denote the resulting language as MPNL+. It is not difficult
to see that the standard translation ST ′x,y of MPNL-formulae into
FO2[N,=, <, s] can be extended to MPNL+, as well as the inverse
result, by adding suitable translation clauses to the ones of Table 1.

Theorem 16 FO2[N,=, <, s]≡MPNL+.

Finally, we sketch the proof of the following theorem.

Theorem 17 The satisfiability problem for FO2[N,=, <, s], and
consequently for MPNL+, is undecidable.



Proof. [sketch] We use a reduction from the tiling problem for the
second octant of the integer plane, that is, the problem of establish-
ing whether a given finite set of tile types T = {t1, . . . , tk} can tile
O = {(i, j) : i, j ∈ N ∧ 0 ≤ i ≤ j}: using König’s lemma, one can
prove that a tiling system tilesO if and only if it tiles arbitrarily large
squares if and only if it tiles N× N if and only if it tiles Z× Z. The
undecidability of the first one immediately follows from that of the
last one [6]. The reduction consists of three main steps: (i) the encod-
ing of an infinite chain that will be used to represent the tiles, (ii) the
encoding of the above-neighbor relation by means of a relation de-
noted by Corr, and (iii) the encoding of the right-neighbor relation,
which will make use of the successor function. Pairs of successive
points are used as cells to arrange the tiling: each pair of point of
the type i, i + 1 is used either to represent a part of the plane or to
separate two consecutive rows of the octant, each one represented by
a relation denoted Id. In the former case, the pair is labeled with the
relation T ile, in the latter case, it is labeled with the relation ∗. The
encoding is given by the following formulae:

∀x, y
V
P∈AP(P (x, y)↔ P (y, x)) (10)

∀x, y(y = s(x)↔ ∗(x, y) ∨ T ile(x, y)) (11)

∀x, y(∗(x, y)→ ¬T ile(x, y)) (12)

y = s(x) ∧ ∗(x, y) ∧ ∀x∃y(y = s(x)) (13)

∃x(x = s(y) ∧ T ile(y, x) ∧ ∗(s(y), s(x))) (14)

∃y(y = s2(x) ∧ Id(x, y)) (15)

∀x, y(Id(x, y)→ ∗(y, s(y))) (16)

∀x, y(Id(x, y)→ ∗(x, s(x))) (17)

∀x, y(∗(x, y)→ ∃y(s(x) < y ∧ Id(x, y))) (18)

∀x, y(Id(x, y)→ Ide(s(x), y)) (19)

∀x, y(Ide(x, y) ∧ s(x) < y → Ide(s(x), y)) (20)

∀x, y(Id(x, s(y))→ Idb(x, y)) (21)

∀x, y(Idb(x, s(y)) ∧ x < y → Idb(x, y)) (22)

∀x, y((Ide(x, s(y)) ∨ Idd(x, s(y))) ∧ x < y → Idd(x, y)) (23)

∀x, y((Idb(x, y) ∨ Ide(x, y) ∨ Idd(x, y))→ ¬Id(x, y)) (24)

∀x, y
V
ν,µ∈{b,d,e},ν 6=µ(Idν(x, y)→ ¬Idµ(x, y)) (25)

∀x, y(Id(x, y)→ Corr(s(x), s(y))) (26)

∀x, y(Corr(x, y)→ T ile(x, s(x)) ∧ T ile(y, s(y))) (27)

∀x, y(Corr(x, y) ∧ ∗(s(x), s2(x))→

T ile(y, s(y)) ∧ T ile(s(y), s2(y)) ∧ ∗(s2(x), s3(x)))
(28)

∀x, y(Corr(x, y) ∧ ¬ ∗ (s(x), s2(x))→ Corr(s(x), s(y)))
(29)

∀x, y(Id(x, y)→ ¬Corr(x, y)) (30)

∀x, y(T ile(x, y)→W
T∈T T (x, y) ∧

V
T,T ′∈T ,T 6=T ′ ¬(T (x, y) ∧ T ′(x, y)))

(31)

∀x, y(T (x, y) ∧ T ile(s(x), s(y))→W
T ′∈T ,right(T )=left(T ′) T

′(s(x), s(y)))
(32)

∀x, y(Corr(x, y) ∧ T (x, s(x))→W
T ′∈T ,up(T )=down(T ′) T

′(y, s(y))).
(33)

Given any set of tiles T , the conjunction of the above formulae is
satisfiable if and only if T can tile O. The undecidability of the sat-
isfiability problem for FO2[N,=, <, s] immediately follows.

6 Concluding remarks

The main results of the paper are the decidability of MPNL, its ex-
pressive equivalence to the fragment FO2

r[N,=, <, s] of FO2[N,=
, <, s], and the undecidability of FO2[N,=, <, s]. These results to-
gether position MPNL very close to the decidability/undecidability
border and it would be interesting to know whether it can be further
extended, syntactically or semantically, in a natural way, still pre-
serving decidability. In particular, the decidability of both MPNL in-
terpreted over the integers and the extension of MPNL with rational
constraints for interval lengths, interpreted over the rational numbers,
is natural to expect. Efficient model-checking for MPNL on natural
numbers is another technical challenge ahead.
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[6] E. Börger, E. Grädel, and Y. Gurevich, The Classical Decision Problem,
Perspectives of Mathematical Logic, Springer, 1997.

[7] D. Bresolin, D. Della Monica, V. Goranko, A. Montanari, and G. Sciav-
icco, ‘Decidable and Undecidable Fragments of Halpern and Shoham’s
Interval Temporal Logic: Towards a Complete Classification’, in Proc.
of 15th Int. Conf. on Logic for Programming, Artificial Intelligence, and
Reasoning, volume 5330 of LNCS, pp. 590–604. Springer, (2008).

[8] D. Bresolin, V. Goranko, A. Montanari, and G. Sciavicco, ‘Proposi-
tional interval neighborhood logics: Expressiveness, decidability, and
undecidable extensions’, Annals of Pure and Applied Logic, 161(3),
289 – 304, (2009).

[9] D. Bresolin, V. Goranko, A. Montanari, and G. Sciavicco, ‘Right propo-
sitional neighborhood logic over natural numbers with integer con-
straints for interval lengths’, in Proc. of the 7th IEEE Conf. on Software
Engeneering and Formal Methods, pp. 240–249, (2009).

[10] D. Bresolin, A. Montanari, and G. Sciavicco, ‘An optimal decision pro-
cedure for Right Propositional Neighborhood Logic’, Journal of Auto-
mated Reasoning, 38(1-3), 173–199, (2007).

[11] Z. Chaochen and M. R. Hansen, Duration Calculus: A Formal Ap-
proach to Real-Time Systems, EATCS Monographs in Theoretical Com-
puter Science, Springer, 2004.

[12] Z. Chaochen, M. R. Hansen, and P. Sestoft, ‘Decidability and undecid-
ability results for duration calculus’, in Proc. of the 10th Int. Symposium
on Theoretical Aspects of Computer Science, volume 665 of LNCS, pp.
58–68. Springer, (1993).

[13] N. Chetcuti-Serandio and L. Fariñas Del Cerro, ‘A mixed decision
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