Correct-by-construction code generation from
hybrid automata specification

Davide Bresolin, Luigi Di Guglielmo, Luca Geretti, and Tano Villa
Dipartimento di Informatica — Universita di Verona, ltaly
{davide.bresolin, luigi.diguglielmo, luca.geretti, &rio.villa} @univr.it

Abstract—In the last years hybrid automata have been applied the continuous blocks are either ignored, or discretizddrbe
in the design and verification of embedded systems. Once acode generation [3]. Finally, code generation typicallyame
hybrid model of the system has been proved to be correct with ganeration of tasks, and does not incorporate scheduling.
respect to the desired properties, it would be valuable to dract a C tv. th ' d bet th del and th
correct-by-construction HW/SW implementation of it. This work onsgquen Yy, (ne correspon gnce h elween the mo .e an €
discusses a methodology and a corresponding tool chain that code is broken, and formal verification results establisioed
allow to extract a HW/SW implementation of a controller mod- the model are not meaningful for the code.
eled by a subclass of timed automata, nameedastic controllers, This work proposes a complete framework for refinement
whereas the controlled environment is represented by a hyhd from the hybrid down to the discrete domain of embedded

automaton. The required tools have been either developed dm t iqinall ified b wwork of hvbrid aut i
scratch or extended from the current state-of-the-art in oder to ~ SYSt€MS, originally Speciied by a network ot hybrid autamna

support an automated flow from hybrid automata specificatiors modeling the embedded system and its continuous environ-
to correct-by-construction discrete implementations desribed in ~ ment. By a correct-by-construction procedure (relying loa t

the SystemC language. theory of AlImost-ASAPsemantics [12]) we generate code in
the SystemC language and compute performance bounds to be
satisfied by any conservative concrete hardware implementa
When designing embedded systems, often the need ariges. This refinement methodology provides the first congplet
to model systems having a mixed discrete and continuopigtform for the embedded design community to experiment
behaviour that cannot be characterized faithfully usinigezia with automatic code generation of a system specified with
discrete or continuous model only. An example is an automioybrid automata. This enabling technology realized witkrop
tive powertrain system, where a four-stroke engine is medel source code is a first step to address the open problems both in
by a switching continuous system and is controlled by theory (how to extend the class of hybrid controllers that ca
digital controller. Such systems consist of a discrete mbnt be synthesized automatically?), and in practice (what és th
part that operates in a continuous environment and are nanmeokst “efficient” transformation from the hybrid to the diste
cyberphysical or hybrid systems because of their mixedreatudomain to favour scalability?).
Hybrid automata are a powerful formalism for the design and The paper is organized as follows. Section Il summarizes
verification of such embedded systems [8], since they allawe related works. Section Il describes the proposed ngetho
to describe, in the earlier design phase, the functional aolbgy for code generation from the specification of hybrid
quantitative temporal aspects of the continuous and descrautomata. Section IV describes two case studies on which the
components, and can be composed together generating a magkgthodology has been applied. Finally, Section V is related
of the whole system that can be formally verified. Howevetp concluding remarks.
while the problems of modeling and verifying networks of
hybrid systems are extensively studied in the literaturechm Il. RELATED WORKS
less work has been done in developing techniques to automat®nly few works in literature focus on the correct-by-
the subsequent phases of the design flow. Once a hybrid mad®istruction extraction of an implementation startingniro
of the system has been proved to be correct with respecthigh level hybrid models [2].
the desired properties, it would be valuable to extract aecor In [12] an alternative semantics for timed automata is pro-
by construction HW/SW implementation of it. This is called gosed to extract from a timed mod®glof a digital component
refinement phase: given a high-level description of theesgst a correct by construction discrete implementatiop in a
refine it into another description such that all the “impotta systematic way. The new semantics, named Almost-ASAP,
properties of the original one are preserved. takes into account the digital and imprecise aspects of the
Even though many tools support automatic code generatioardware in which the hybrid automaténis being executed,
from the hybrid model (for example, Matlab Simulink), the.e. it relaxes the instantaneousness and the perfectsmreci
emphasis has been on performance-related optimizatiads, &/pical of the hybrid models, allowing the authors to id&nti
many issues relevant to correctness are not satisfactdily a relaxed hybrid modeC% that - once formally verified -
dressed. First, the precise relationship between the nasdkl guarantees the existence of a discrete implementatiom. &uc
the generated code is rarely specified or formalized. Secomdplementation consists of a program that, executed inyo an

I. INTRODUCTION

2) Implementability analysisThis phase consists of deter-
mining if a discrete implementatio6py of the digital
controller can preserve the functional and temporal
behaviors of the original hybrid modél i.e.,Cp is able

Qﬁlmplementab“ity analysis to safely handle€ according to the seP of properties.

*:nv:gg 3) Extraction of the discrete implementatiomhis phase

________ consists of refining the hybrid model of the digital
(o T yes controllerC by extracting a discrete implementati6p
3 - - which captures the functional and temporal aspects of
Discrete implementation its original hvbrid model
extraction 9 y :

The novel aspects of the proposed methodology are de-
scribed thoroughly in the following sections.

Fix the

Digital
components
model

A. Implementability Analysis

Environment
[CIF]

Ariadne

Fig. 1. Methodology overview.

platform with a certain worst-case-execution-time anchveit
sufficiently precise clock, refines correctly the originadahel.
Unfortunately, this methodology uses an ad hoc language to
model the hybrid system and, moreover, the generated code
can be executed only on a toy OS, i.e., BrickOS [9]. System
Notice that modifying the semantics may not be the only model
way to enforce the implementability. Indeed, in [1] the auth

Controller
[CIF]

Region of space

engine

ask the question whether similar results can be obtained @
without introducing a new semantics, but acting on modeling —
instead, thanks to the introduction of new assumptions en th Formal Hybrid Verification

program type or execution platform by means of changes, in
a modular way, on the corresponding models. The authors
propose an implementation methodology for timed automata
which allows to transform a timed automaton into a program
and to check whether the execution of this program on a given
platform satisfies a desired property. Unlike the work in][12
an open problem of this approach is how to guarantee that,
when a platformP is replaced by a “better” platforn®’, a

Fig. 2. Formal Hybrid Verification flow.

Environment | Properties
[CIF]
v }

Controller
[CIF]

program proved correct fdP is also correct foP’; the authors Ariadne

reported examples where this does not hold for a reasonable controter | | “ment Region of space
assumption of a “better” platform, namely, whéh and P’ mote J e L{ engine H

are identical, but?’ provides a periodic digital clock running System model

twice as fast as the one d?; the reason is that a program LA/‘

using the faster clock has a higher “sampling rate” and thus

may generate more behaviors than a program using the slower Implementability Analysis

clock, so this situation may result in a violation of projest
Fig. 3. Implementability Analysis flow.
Ill. FORMAL VERIFICATION AND REFINEMENT

METHODOLOGY Once the hybrid model has been proved to be correct
The developed methodology for extracting a correct-byy formal hybrid verification (Figure 2), i.e., the conteil
construction discrete HW/SW implementation, startingnfroC safely handles the environme#t under the assumption
a hybrid model of the system (Figure 1), is divided into threef infinite variables precision and zero-delays typical loé t
phases: hybrid domain, it is possible to proceed with the analysis of
1) Formal verification of the hybrid systenThis phase the system implementability (Figure 3). This analysis &ite
consists of formally verifying the correctness of th@roblem of the semantic gap between the hybrid models and
hybrid modelM of the system, composed of a digitathe discrete implementations. In particular:
controllerC and a continuous environmefitagainstthe o infinite precision Variables of hybrid automata take their
set’P of properties that the system should respect, i.e., values from a dense set (i.&), whereas variables in
C is able to safely handl€ according to the seP of the hardware domain are always discrete and thus have
properties. limited precision;

« instantaneousnes€ommunication between the interact- 3) Communication with the environment is allowed only
ing components of the hybrid model is instantaneous, through events.
whereas communication in real implementations always4) Continuous variables are restricted to clocks (i.e. con-
introduces delays and it is mandatory to make sure tinuous variables measuring the elapsing of time).

that the control strategy remains correct when the lattgrmust be remarked that the restrictions above are peyfect
happen. reasonable from the controller implementation viewpoimd a

For these reasons, a model that has been proved correcélgnnot represent a major limitation in terms of applicapilit

the traditional semantics may not be implementable (at al9f the method.

or it may not be possible to turn it automatically into an To perform the refinement analysis, we automatically extrac

implementation that is correct by construction [7]. from M a new modelM’ that, when proved to be correct
As a consequence, an implementability analysis must tak@ainst the hybrid system specifications, guarantees the ex

into account the digital and imprecise aspects of the harlwastence of a discrete implementation that refines the aalgin

on which the discrete model of the digital component is beiftyPrid model. The modeM’ is given by the composition

executed. In particular, it concerns: of the continuous environmert and the relaxed controller
. . - . . that is obtained fro by applying the modifications
« the relaxation of the variable precisiomontinuous vari- Cr . ”C Y apply g/ . . .
. - ey summarized above. After its generatiowt is verified against

ables can be modeled only with a finite precision a - . e :
e setP of original properties. The verification results provide

;(I)z;]‘s(i?:?:r;gag:s%sgég rounded according to the H he maximum value\ for ¢ that returns a relaxed safe system.
« the relaxation of the instantaneousness of reaction t%lven A, the expressiom > 4Ap + 3A,, proved in [12]

. : . relates it to the actual constraints of the discrete impteme
timeouts and eventany reaction to a timeout and an

ta}{ion such as the clock period\p) and communication

incoming or outgoing event introduces delays that depep ency (Ar). It holds that, ifA represents a strictly positive

o a
on the HW platiorm characteristics. value for §, then a discrete implementatiafi, such Ap

By considering these relaxations, it is possible to deteentfi and A, satisfy the above expression is able to control the
the hybrid model of a digital component can be refined into@ntinuous environmer respecting the original properties,
discrete implementation. Thielaxed modeis characterized and, moreover, it can be refined automatically framas

by a parameted such that: described in the following section.
« ¢ relaxes the continuous variable precisiofhe guards : : .
- . . . B. Extracting the Discrete Implementation
of the transitions that involve the evaluation of the contin 9 P
uous variable are parameterizeddysimulating variable

rounding; @
« ¢ relaxes the reactions to timeoutAny transition that Contraller E""‘;g;]m“‘l
can be taken by the automaton becomes urgent after a

small delay modeled by the parameter T

« 0 relaxes the reactions to eventd distinction is made
between the occurrence of an event in the sender (oc- Controllr | | EMron- Discrete
model men —> engine ontroller
currence) and the acknowledgement of the event by the model [Systemc]
receiver (perception). The time difference between the System model
occurrence and the perception of the event is bounded by SEXTRACT
d.
Ly e . . . Discrete Implementation Extraction
By considering such modifications to the original hybrid rabd
of a digital component, which are consistent with the Almost Fig. 4. Discrete Implementation Extraction flow.

ASAP semantics [12], it is possible to determine how much

the model behavior can be relaxed while preserving systemginally, once the relaxed model turns out to be imple-

correctness. Notice that the relaxed model exhibits a sepermentable, it is possible to proceed with the discrete implem

of the original behavior, the latter corresponding to axeth tation extraction phase (Figure 4) that consists of extrgct

value A = 0 for the parametes. Consequently, in order for hehaviors from the hybrid model in such a way that the code

the relaxed model to be implementable at all, a necess@iplementing the digital components (e.g., the contralleis

condition is that there exists a valuk > 0 for which the correct by construction.

required properties are satisfied (Figure 1). In order to allow the correct acknowledgement of input
Currently, the proposed approach is valid on a subclaggents and the emission of output events without missing the

of timed automata, calle@lastic controllers featuring the synchronization with the continuous components, the gener

following restrictions: ated discrete implementation is composed of several teread

1) Only urgent transitions are allowed; « amain threadwith period Ap that implements the func-
2) The guards must be closed expressions; tional aspects of the original hybrid model, in which the

CLOSE?

Opening Idle Closing
d:l/Ta =0 'a:-1/Ta

Physics
%= fiyg(a) fours(x)

a) Tank automaton

OPEN? OPEN? as0 CLOSE?
OPEN? up?
b) Valve automaton a) Environment automaton
t2T HIGH?

Increase
t=1
t<T

HIGH! Low! Nothing Decrease
t=1 t=1
Shallow t<T
X < Xrign
LOW? T

¢) Evaluator automaton d) Timed controller automaton P2N? N2P?
b) Controller automaton c) Evaluator automaton

Fig. 5. Hybrid model of the watertank system.
Fig. 6. Hybrid model of the Power Supply Selector system.

guards of the transitions related to timeouts are annotated
with the temporal constraink so that no active transition High andLow. During such transitions, the supply voltaye
is missed due to clocks rounding; (which supplies the considerable load given by the equitale

. many input handler threadgone for each input event) resistance of the core circuit) must follow a linearly rggn
aiming (in aA, time units window) to catch and dispatchfalling reference voltag’. as closely as possible. Essentially,
to the main thread the input events coming from th@ controller provides periodi¢/ P or DOW N events that
environment, in such a way that even asynchronous input§mately make the supply voltage rise or fall by a fixed step
can be correctly detected by the periodic main thread.of voltage: by ensuring that the controller issues events at

The discrete model obtained in this way is described & ProPerly high frequency, the core voltage can follow the
means of SystemC [10]. SystemC is the de facto ESL (E|er@_ference voltage, guaranteeing a bounded voltage differe
tronic System Level) language based on C++. Thus, unlike PetweenV,. and V...
plain sequential C code, its adoption allows to handle tiead-
HW/SW components at different abstraction levels (TLM a
RTL) guaranteeing that the generated description can i useThe first step of the methodology consists of verifying the
as a reference model for the discrete refinement phase.dndéwo systems against the properties they should satisfy. To
the SystemC simulation and verification environment gihes tcheck the watertank system we used the following simple
possibility to exploit current existing assertion-basedifica- propertyy = always(z < Tmaez & T > Tmae) that requires
tion methodologies to validate the discrete implementatib that the water levet is always kept between the safe bounds
each step of the subsequent discrete refinement process. Tmas = 8.25 andx i, = 5.25 (While 4,4, = 8.0 andzo., =
5.5). To check the PSS system, instead, the property chosen
wasy = always(Vy >= —L & V; <= L), meaning that the

The methodology described in this work has been validategdltage differencél; = V,. — V., must maintain an absolute
on two hybrid systems: the watertank system [6], and thalue not greater thah = 0.1. Thanks to the adoption of the
Power Supply Selector (PSS) system that comes from @ompositional Interchange Format (CIF) [11] for modeling
industrial example [5]. the two hybrid systems, it has been possible to interface to

The watertank system is depicted in Figure 5, where foafready existing verification tools for hybrid models such a
different automata are shown: a tank, a valve, an evaluatbr &riadne [4]. Ariadne can read a CIF description of the system
a timed controller. Briefly, the system is centered on a water which each component is modeled as a separate automaton
tank, which is characterized by an uncontrolled outbourtdmposed with the others by using parallel compositions Thi
water flow, while the inbound water flow is controlled by thenotably simplifies the system design due to the fact that the
aperture of a valve. The controller acts on the aperture ®f thomposed system is automatically generated from the single
valve a in order to keep the water level in a safe interval automata by the internal engine of the tool. Ariadne cankhec
Tomin < T < Tmaz- safety reachability properties that are internally coteeinto

The hybrid model depicted in Figure 6 represents the Powaeregion of space: the system is safe as long as its reached
Supply Selector (PSS) included in the MAGALI platform [5]region lies inside the safe region. Due to the conservative
The basic behavior of the PSS is to control the supply voltageunding of values, the reached region is provided as an over
V. of a generic unit of the platform. More precisely, due tapproximation of the actual region; it must be noticed that
DVFS (Dynamic Voltage and Frequency Scaling) operationthie quality of the approximation depends on the evolution
the supply voltage can switch dynamically between two \&lueand discretisation parameters chosen. In particular,enbilv

né' Formal Safety Verification

IV. CASE STUDY

quality can prevent verification in some cases, high qualitiyon the other hand we choose a frequencyldf Hz for a
necessarily requires a longer verification time. For thasom, platform whose latency is bounded Byms the controller is
Ariadne implements an iterative mechanism for verification unable to promptly provide output signals to the environtnen
starts using a low-quality approximation and refines it luntihus not preventing it from entering an error state. For the
an answer to the verification problem is obtained. If a pesiti PSS system, the tool retrieved an upper bound¥arqual to
answer is ultimately found, then the system is safe in thalid€.0011248779296%gain, if for example the communication
case of infinite clock precision and zero-delays. delay is bounded b0 us, then the controller must guarantee
a clock frequency not slower thd Mhz(i.e. clock precision

of 10 us).

1.05

C. Discrete Implementation Extraction

Once the controllers embedded into the two systems are
verified as being implementable, by using Sextract it is pos-
sible to extract their discrete implementations. We dgwetb
Sextract from scratch in such a way that it reads the system
implementation (i.e. the CIF model of the controliérand

the environment) and the valueA synthesized during the
fout implementability analysis phase, and extracts the funatio
(a) Watertank (b) PSS behaviors of the hybrid model af annotated with the cor-
Fio 7 Watertank: roiect " | t the haixte region (i responding temporal constrailt. Such an implementation
I 5 Watenank: proecton o the - piane of e velle 961 (1 provides a. refinement of the functionaliies of the timed
level anda is the valve aperture. (b) PSS: projection on the.-V,; plane controller that allows the correct acknowledgement of inpu
of the reachable region (in the center) and of the unsafe)meg)'n_top and eayents and the emission of output events, coming from and
bottom), wheret,.: is the controller clock and’; is the voltage difference. destined to the environment respectively.
The structure of the implementations (Listing 1 and 2)

Figure 7 shows the results of the reachability analysig characterized by (i) a main thread that models the con-
performed by Ariadne, respectively for (a) the watertantl artroller behavior (e.gWTcontroller::automaton(and PSScon-

(b) the PSS systems. Notice that an overapproximation of tieller::automaton() and (ii) support threads that handle the
systems evolution is shown after discretization as a set iofoming events (e.gVTcontroller::checkHIGH() and PSS-
boxes in the center of the figures, while the unsafe regioggntroller::check N2P()) notifying them to the related main
are the ones represented at the left and right extremesthnead. The execution of such threads is completely managed
(@) and at the top and bottom extremes in (b). Since th¥ the SystemC simulation kernel [10].

(overapproximated) reachable regions do not intersect theéAbout the controller, it is worth noting how its model is

unsafe regions, the systems are safe. refined: (i) the guards of the transitions related to timsout
3 _ are annotated with the temporal constraifst to identify
B. Implementability Analysis correctly the transitions active in presence of discreteld

Once the hybrid models have been proved to be corre®;9- Listing 1 line 21), (ii) support functions are used &mtle
we performed the subsequent implementability analysis@haClocks values (i.eget/setfunctions for handling the rounding)
Notice that we extended the internal engine of Ariadne ®d (ii) incoming events are detected by reading the value
realize automatically the transformations that deterntme Of the variable set by the related event-handler thread (e.g
implementability of a hybrid model. Thus, after loading th€heckHIGH() and check LOW().
hybrid models into Ariadne, the tool generated the corradpo ~ These implementations described by means of SystemC can
ing relaxed models and provided the maximum valughat D€ used as they are or can be wrapped into SystemC TLM
sets bounds on the relaxed safe systems. For the watertgffponents. Thus, it is possible to use one of the already
system, the tool returned an upper bound fdrequal to €xisting methodologies for going on with the discrete refine
0.289898872375for which the relationA > 4Ap + 3A; Mment phase. Moreover, the adoption of SystemC also allows
must hold. For example, if our platform is characterizet €xploit assertion-based verification approaches deetiin
by a communication latency upper bounded byms (i.e. literature to check the correctness of the subsequent define
Ay = 1/1000 sec.), the clock frequency of the controller musfnplementations.
be greater or equal thatd Hz (i.e. Ap = 1/14 sec.). If on 1 #include "../inc/controller.h”
; t doubl troller::T = 0.1;
the contrry, given the samemslatency, we choose a clock! £3rEt Sl e control o 7508
frequency of 13 Hz, then it is not possible to correctly sa@mp! void Wrcontrol ler::automaton() {
the incoming events: the controller might detect the petioap ° ! ocal _modes automaton_mode = not hi ng;
: i .6 while (true) {
of an event too late, and consequently it could miss firingza wait(); _
transition; this situation would in turn cause the enviremn ° 7 (2t omaton_mode =2 nothing)

. L. .. if (LOW pending) {
to enter an error state while waiting on a synchronizatian. LOWread. wite(! LOWread. read());

11 set _cl ock_val ue(t, 0);

12 aut omat on_node = increase;

13 } else if (H GH_pending) {

14 H GH read. wite(!H GH read.read());
15 set_cl ock_val ue(t, 0);

16 aut omat on_node = decr ease;

17

18 } else if (automaton_npde == increase) {
19 tcp(is_le(get_clock_value(t), 0.1));

20 if (is_ge(get_clock_value(t), 0.1 - delta)) {
21 OPEN. write(!OPEN. read());

22 aut omat on_node = not hi ng;

23

24 } else if (automaton_npde == decrease) {
25 tcp(is_le(get_clock_value(t), 0.1));

26 if (is_ge(get_clock_value(t), 0.1 - delta)) {
27 CLOSE. write(!CLOSE. read());

28 aut omat on_node = not hi ng;

29

30 }

31 }

32 }

33 void Wicontrol |l er::check_H GH() {
34 if (HHGH event()) {

35 H GH_pendi ng = true;

36 } else if (H GH read. event()) {
37 Hl GH_pendi ng = fal se;

38 }

39 }

40 void WIcontroller::check_LON) {
41 if (LOWevent()) {

42 LOW pendi ng = true;

43 } else if (LOWNread.event()) {
44 LOW pendi ng = fal se;

45 }

46 }

Listing 1. The discrete model of the Controller of the Watek system.

automatically

1 #include "../inc/Controller.h”

2 const double Controller::T = 0.01;

3 const double Controller::delta = 0.00112487792969;
4 void PSScontroller::automaton() {

5 | ocal _npdes aut onat on_node = Incr;

6 while (true) {

7 wait();

8 if (automaton_node == Incr) {

9 tcp(is_le(get_clock_value(t), 0.01));
10 if (is_ge(get_clock_value(t), 0.01 - delta)) {
11 UP.write(!UP.read());

12 set_cl ock_val ue(t, 0);

13 aut omat on_node = Incr;

14 } else if (P2N_pending) {

15 P2N read. wite(! P2N_read.read());
16 aut omat on_node = Incr;

17 } else if (N2P_pending) {

18 N2P_read. write(! N2P_read. read());
19 aut omat on_node = Decr;

20

21 } else if (automaton_node == Decr) {

22 tcp(is_le(get_clock_value(t), 0.01));
23 if (is_ge(get_clock_value(t), 0.01 - delta)) {
24 DOM. write(! DOMN. read());

25 set _cl ock_val ue(t, 0);
26 aut omat on_node = Decr;

27 } else if (N2P_pending) {

28 N2P_read. write(! N2P_read. read());
29 aut omat on_node = Decr;

30 } else if (P2N_pending) {

31 P2N read. wite(! P2N_read.read());
32 aut omat on_node = Incr;

33 }

34 }

35 }

}
37 void PSScontroller::check_N2P() {
38 if (N2P__event()) {
39 N2P_pendi ng = true;
40 } else if (N2P_read__event()) {
41 N2P_pendi ng = fal se;
}

43 '}
44 void PSScontroller::check_P2N() {
45 if (P2N__event()) {

46 P2N_pendi ng = true;

47 } else if (P2N_read__event()) {
48 P2N_pendi ng = fal se;

49 }

50 }

Listing 2. The discrete model of the Controller of the PSSeays

V. CONCLUDING REMARKS

The development of techniques for the extraction of cosrect
by-construction HW/SW implementations of hybrid systems i
a new and valuable research area. This work proposes a com-
plete design flow for the extraction of functional aspectd an
temporal constraints from hybrid systems in order to ob&ain
discrete implementation. To support the methodology, wk bu
a tool chain which includes Ariadne, a hybrid automata \arifi
extended in order to support the discretization semardied,
Sextract, a new tool able to extract the necessary contstrain
from the system and ultimately generate its discrete imple-
mentation code. To the best of our knowledge, this is the first
example of a complete automatic flow that goes from a hybrid
model down to a SystemC implementation of it.

ACKNOWLEDGMENTS

This research was partly supported by the EU projects
FP7-1ST-1-217069 COCONUT and FP7-ICT-223844
CON4COORD.

REFERENCES

[1] K. Altisen and S. Tripakis. Implementation of Timed Autata: an Issue
of Semantics or Modeling? IRormal Modeling and Analysis of Timed
Systems (FORMAT)ages 273-288, 2005.

[2] R. Alur, F. Ivancic, J. Kim, I. Lee, and O. Sokolsky. Geating Em-
bedded Software from Hierarchical Hybrid Models. ACGM SIGPLAN
Conferencevolume 38-7, pages 171-182, 2003.

[3] T. Amnell, E. Fersman, L. Mokrushin, P. Pettersson, andvivVTIMES
- A Tool for Modelling and Implementation of Embedded Syssern
International Conference on Tools and Algorithms for then§tauction
and Analysis of Systems (TACABages 460-464, 2002.

[4] A. Balluchi, A. Casagrande, P. Collins, A. Ferrari, T.Il® and
A. Sangiovanni-Vincentelli. Ariadne: a Framework for Riealility
Analysis of Hybrid Automata. Irinternational Symposium on Math-
ematical Theory of Networks and Systems (MTI28D6.

[5] E. Beigné, F. Clermidy, S. Miermont, P. Vivet, and G. MANEC.
Dynamic Voltage and Frequency Scaling Architecture fort8rnte-
gration within a GALS NoC. IPACM/IEEE International Symposium
on Networks-on-Chip (NoCSpages 129-138, 2008.

[6] L. Benvenuti, A. Ferrari, E. Mazzi, and A. Vincentelli. oBtract-
based Design for Computation and Verification of a Closexq|blybrid
System.Hybrid Systems: Computation and Contrphges 58-71, 2008.

[7] F. Cassez, T. Henzinger, and J. F. Raskin. A Compariso@aftrol
Problems for Timed and Hybrid Systems. Hybrid Systems: Compu-
tation and Control (HSCG)pages 134-148, 2002.

[8] T. Henzinger. The Theory of Hybrid Automata. IREE Symposium on
Logic in Computer Science (LIC)ages 278 — 292, 1996.

[9] M. Noga. BrickOS. http://brickos.sourceforge.net.

[10] Open SystemC Initiative. SystemC, 1999. http://wwstemc.org.

[11] C. Sonntag, R. Schiffelers, D. van Beek, J. Rooda, andEgyell.
Modeling and Simulation using the Compositional Interd®frormat
for Hybrid Systems. Ininternational Conference on Mathematical
Modelling (MATHMOD) pages 640-650, 2009.

[12] M. Wulf, L. Doyen, and J. Raskin. Almost ASAP Semanti¢eom
Timed Models to Timed ImplementationSormal Aspects of Computing
17(3):319 — 341, 2005.

