Architetture di Internet – Simulazione d'esame

Davide Bresolin

a.a. 2015/2016

Esercizio 1. Confrontare due collegamenti FTP tra gli USA e l'Europa:

- un collegamento con una banda media raggiunta di 10 kByte/s su una linea terrestre con velocità di trasmissione 300 kbit/s (utilizzazione del 27%) e lunghezza 3000 km;
- una comunicazione satellitare con la stessa velocità, quindi sempre di 300 kbit/s, banda media 30 kbit/s (10% di utilizzazione) e lunghezza 10000 km.

In entrambi i collegamenti la velocità di propagazione del segnale è di $2.5 \cdot 10^8$ m/s e la dimensione del segmento è di 1.5 kByte.

- a) calcolare il ritardo totale dei due collegamenti (4 punti)
- b) Perché, a parità di velocità della linea, la connessione terrestre ha una prestazione superiore? (2 punti)
- c) Quale dovrebbe essere la grandezza minima dei buffer dei router incontrati lungo la linea terrestre per riuscire ad ottenere una utilizzazione del 100%? (2 punti)
- d) Quale dovrebbe essere la grandezza minima dei buffer dei router incontrati lungo la linea satellitare per riuscire ad ottenere una utilizzazione del 100%? (2 punti)

Soluzione:

a) Per la linea terrestre:

$$d_{prop} = \frac{D}{V} = \frac{3000 \cdot 10^3}{2.5 \cdot 10^8} \ s = 12 \cdot 10^{-3} \ s = 12 \ ms$$

$$d_{trasm} = \frac{L}{R} = \frac{1.5 \cdot 8 \cdot 10^3}{300 \cdot 10^3} \ s = 0.04 \ s = 40 \ ms$$

$$d_{tot} = d_{prop} + d_{trasm} = 12 + 40 \ ms = 52 \ ms$$

Per la linea satellitare:

$$\begin{split} d_{prop} = & \frac{D}{V} = \frac{10000 \cdot 10^3}{2.5 \cdot 10^8} \ s = 40 \cdot 10^{-3} \ s = 40 \ ms \\ d_{trasm} = & \frac{L}{R} = \frac{1.5 \cdot 8 \cdot 10^3}{300 \cdot 10^3} \ s = 0.04 \ s = 40 \ ms \\ d_{tot} = & d_{prop} + d_{trasm} = 40 + 40 \ ms = 80 \ ms \end{split}$$

- b) Perché il ritardo totale è inferiore rispetto alla linea satellitare
- c) Pari al prodotto banda-ritardo di propagazione:

$$R \cdot d_{prop} = 300 \cdot 10^3 \cdot 12 \cdot 10^{-3} \ bit = 3600 \ bit$$

d) Pari al prodotto banda-ritardo di propagazione:

$$R \cdot d_{prop} = 300 \cdot 10^3 \cdot 40 \cdot 10^{-3} \ bit = 12000 \ bit$$

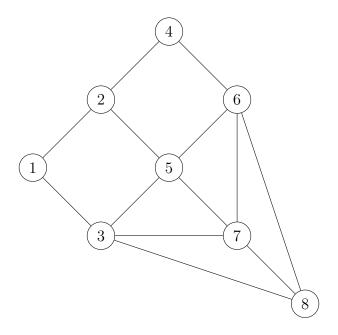
Esercizio 2. Si assuma che in una sessione FTP si utilizzi per il trasporto dei dati il protocollo TCP e che il RTT (round trip time) dei segmenti TCP tra i due host (il client a Bologna e il server a Pasadena) sia fisso e uguale a 10 ms. Si assuma inoltre che i segmenti inviati abbiano lunghezza fissa di 2400 bit e che la banda massima a disposizione tra i due host sia di 1 Megabyte per secondo. Rispondere ai seguenti quesiti.

- a) Calcolare il valore massimo raggiunto dalla finestra di congestione, in segmenti (2 punti)
- b) Da che valore riparte la finestra di congestione se, una volta raggiunto il valore massimo precedentemente calcolato, vengono ricevuti 3 ACK duplicati? (1 punto)
- c) Da che valore riparte, in segmenti, la finestra di congestione dopo un evento di TI-MEOUT? (1 punto)
- d) Assumendo ora che:
 - il file sia composto da 40 segmenti;
 - la "Slow Start Threshold" (Soglia di Partenza Lenta) iniziale sia di 8 segmenti;
 - la prima volta che vengono trasmessi, il decimo, il ventitreesimo, il ventiquattresimo, e il trentaseiesimo segmento vengono persi (nessuna altra perdita avviene durante la connesione);

mostrare l'evoluzione della finestra di congestione del TCP (6 punti)

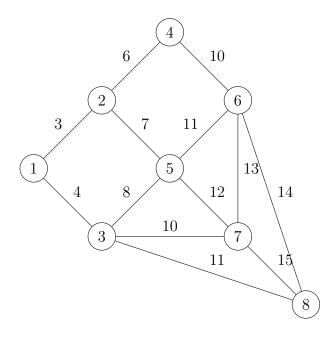
Soluzione:

a)


$$CW_{max} = \frac{R \cdot RTT}{MSS} = \frac{8 \cdot 10^6 \cdot 10 \cdot 10^{-3}}{2400} = 33.33 \text{ segmenti}$$

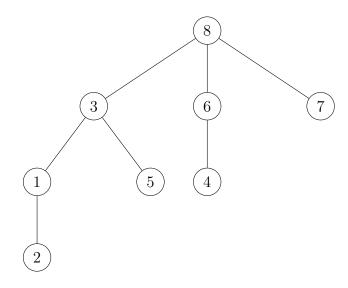
- b) Dalla metà del valore massimo, ossia da 16 segmenti
- c) Da 1
- d) Per risolvere questo esercizio si può usare una tabella simile a questa:

Round	CW	SSTRESH	Pacchetti Trasmessi	Evento
1	1	8	1	
2	2	8	2, 3	
3	4	8	4, 5, 6, 7	
4	8	8	8, 9, 10, 11, 12, 13, 14, 15	3DUPACK
5	4	4	10, 11, 12, 13	
6	5	4	14, 15, 16, 17, 18	
7	6	4	19, 20, 21, 22, 23, 24	TIMEOUT
8	1	3	23	
9	2	3	24, 25	
10	4	3	26, 27, 28, 29	
11	5	3	30, 31, 32, 33, 34	
12	6	3	35, 36, 37, 38, 39, 40	3DUPACK
13	3	3	36, 37, 38	
14	4	3	39, 40	


Esercizio 3. Considerare la rete rappresentata in figura:

- a) Assumendo che il costo di un collegamento sia pari alla somma dei valori dei nodi agli estremi (esempio: il collegamento 1–3 ha costo 4), trovare i cammini minimi dal nodo 8 verso tutti gli altri nodi. (5 punti)
- b) Disegnare l'albero dei cammini minimi a partire dal nodo 8. (2 punti)
- c) Assumere ora che il costo del collegamento 2–4 cresca linearmente nel tempo (pari a 1 all'istante 1, 2 all'istante 2, 3 all'istante 3, ecc.). Il costo degli altri collegamenti rimane inalterato. Con questa assunzione, graficare (o dare i valori corrispondenti ai singoli istanti) il peso del cammino minimo dal nodo 8 al nodo 4, per gli istanti che vanno da 1 a 8. (3 punti)

Soluzione:


a) Il costo dei collegamenti è quello riportato in figura:

Il funzionamento dell'algoritmo è descritto in tabella:

Passo	N'	D(1),p(1)	D(2),p(2)	D(3),p(3)	D(4),p(4)	D(5), p(5)	D(6),p(6)	D(7), p(7)
0	8	∞	∞	11,8	∞	∞	14,8	15,8
1	83	15,3	∞		∞	19,3	14,8	15,8
2	836	15,3	∞		24,6	19,3		15,8
3	8361		18,1		24,6	19,3		15,8
4	83617		18,1		24,6	19,3		
5	836172				24,6	19,3		
6	8361725				24,6			
7	83617254							

b) L'albero dei cammini minimi è il seguente:

c) L'andamento del cammino minimo è descritto in tabella:

Istante	Cammino minimo	Costo	
1	8-3-1-2-4	19	
2	8-3-1-2-4	20	
3	8-3-1-2-4	21	
4	8-3-1-2-4	22	
5	8-3-1-2-4	23	
6	8-3-1-2-4 oppure 8-6-4	24	
7	8-6-4	24	
8	8-6-4	24	