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Efficient Binary Corona Training Protocols for
Heterogeneous Sensor and Actor Networks
F. Barsi, A.A. Bertossi, C. Lavault, A. Navarra, S. Olariu, M.C. Pinotti, and V. Ravelomanana

Abstract—Sensor networks are expected to evolve into long-
lived, autonomous networked systems whose main mission is to
provide in-situ users – calledactors – with real-time information
for specific goals supportive of their mission. The network is
populated with a heterogeneous set of tiny sensors. Thefree sen-
sors alternate between sleep and awake periods, under program
control in response to computational and communication needs.
The periodic sensors alternate between sleep periods and awake
periods of predefined lengths, established at the fabrication time.
The architectural model of an actor-centric network used in this
work comprises in addition to the tiny sensors a set of mobile
actors that organize and manage the sensors in their vicinity.
We take the view that the sensors deployed areanonymous and
unaware of their geographic location. Importantly, the sensors
are not, a priori, organized into a network. It is, indeed, the
interaction between the actors and the sensor population that
organizes the sensors in a disk around each actor into a short-
lived, mission-specific, network that exists for the purpose of
serving the actor and that will be disbanded when the interaction
terminates. The task of setting up this form of actor-centric
network involves a training stage where the sensors acquire
dynamic coordinates relative to the actor in their vicinity.
The main contribution of this work is to propose an energy-
efficient training protocol for actor-centric heterogeneous sensor
networks. Our protocol outperforms all known training prot ocols
in the number of sleep/awake transitions per sensor needed by the
training task. Specifically, in the presence ofk coronas, no sensor
will experience more than1+⌈log k⌉ sleep/awake transitions and
awake periods.

Index Terms—Autonomous wireless sensor networks, heteroge-
neous sensor and actor networks, free sensors, periodic sensors,
training protocols

I. I NTRODUCTION

We assume a large-scale, random deployment of micro-
sensors, each perhaps no larger than a dime, and possessing
only limited functionality. The sensors are organized, under
the control of an actor, into a short-lived, service-centric and
mission-driven network. This view is in sharp departure from
the common understanding that sensor networks are deployed
in support of a remote entity that is querying the network and
where the collected data is sent to a remote site for processing.
In an actor-centric network the concept of globality has
been redefined to mean small-scale spatial and temporal
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Fig. 1. (a)An actor-centric heterogeneous sensor network, where the triangle
in the middle represents the actor, circles represent free sensors, and squares
are periodic sensors.(b) The sensor network where training has imposed a
virtual coordinate system consisting of concentric coronas and equiangular
sectors.

globality, the only viable form of non-local interaction. No
global aggregation or fusion of sensory data is performed
because such operations do not scale well with the size of the
deployment area. Actor-centric sensor networks can detect
trends and unexpected, coherent, and emergent behaviors and
find immediate applications to homeland security [5], [8].

As a fundamental prerequisite for self-organization, sensors
need to acquire some form of location awareness, see [7],
[10]. Almost all applications benefit from sensed data be
supplemented with location information, but not all of them
require the exact geographic position. Moreover, exact fine-
grain location awareness usually assumes that the sensors
are GPS-equipped. Therefore, massively deployed wireless
sensors networks, which consist of very tiny sensors, can only
be endowed with coarse-grain location awareness. The task of
acquiring such a coarse-grain location, relative to a reference
point, is referred to astraining.

Recent papers have studied training protocols which impose
a coordinate system by a single, more powerful device, re-
ferred to asactor, deployed in the wireless sensor network,
see [1], [2], [8]. In support of its mission, the actor node
is provided with a steady power supply, and a special radio
interface for long distance communications. In particular, the
actor has a directional antenna and can modulate the power
transmitted so that its transmissions cover areas with different
radii and different angles. When the actor transmits, all the
awake sensors belonging to the area covered by the current
transmission passively receive the actor message. The potential
of such an actor to train the sensors has been explored in [1],
[2], [3], [9], [11], [12] where training protocols are presented
which divide the sensor network area, which consists in a
disk around the actor, into equiangular sectors and concentric
coronas, centered at the actor.

The training protocols reported thus far work onhomo-
geneoussensor networks, that is, networks whose sensors
are all identical in terms of computing and communication
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capabilities as well as of energy budget. In contrast, we
study actor-driven training protocols working in heterogeneous
sensor networks. The heterogeneous wireless sensor networks
assume sensors with different capabilities. Heterogeneity can
be introduced to increase the dynamic nature and the adap-
tation capacity of the network (i.e., sensors that in similar
conditions behave differently can be adopted to differentiate
the energy consumption and eventually prolong the overall
network lifetime) or can result from on-the-fly modifications
of existing networks (i.e., different sensors may be used in
different re-deployments). The heterogeneous wireless net-
works considered hereafter consist of a single actor, and tiny
massively deployed sensors which can differ in the way they
alternate betweensleepandawakeperiods. When a sensor is
awake, its CPU is active, along with its timer, and its radio is
on. Instead, when a sensor is sleeping, its CPU is not active,
its radio is off, and only its timer is on. Since the sensors
rely on integrated, small-scale, non-rechargeable batteries and
since a sensor drains much less energy in sleep mode than in
active mode [4], in order to save energy, the sensors should
spend most of their time in sleep mode, waking up for brief
time periods only.

In this work, two types of sensors are considered: thefree
sensors, which alternate between sleep and awake periods
whose frequency and length depend on the executed protocol,
and theperiodic sensors, which alternate between sleep and
awake periods according to a predefined plan that cannot be
altered by the protocol. Such devices can model the general
behavior of sensor nodes with harvesting capability which
collect energy during the sleep periods and perform their
duties during the awake periods. In Figure 1, free and periodic
sensors are depicted with circles and squares, respectively.

The main contribution of this work is to propose a new
actor-driven corona training protocol for heterogeneous wire-
less sensor networks. The behavior of the actor is based on
linear strength decrease transmissions alternating with full
strength transmissions. On the other hand, the sensors perform
a binary search among the actor transmissions to locate their
correct corona. Although the two types of sensors are drivenby
the same actor protocol, they locally act in a different way.The
sensors are anonymous and indistinguishable to the actor. Each
sensor starts the training task when it wakes up for the first
time, without any initial explicit synchronization. It is assumed
that, during the training task, both sensors and actor measure
the time in slots, which are equal in both lengths and phase.
However, every time a sensor receives a transmission from
the actor, it can re-phase its own slot. This makes the protocol
resilient to sensor clock drift without using any standard clock-
synchronization protocol.

The remainder of this work is organized as follows. Section
II gives a brief survey on related training protocols. Section III
first discusses the wireless sensor and actor network model and
introduces the task of training. In the same section, the actor
and the sensor behavior of the proposed protocol is described.
Section IV exhibits the worst-case performance analysis ofthe
protocol, in terms of the number of sleep/awake transitions
per sensor and thus in terms of energy consumed. Section V
presents an experimental evaluation of the performance, tested

on randomly generated instances, confirming the analytical
results, and showing a much better behavior in the average
case. The performance is then compared with that of all the
previous training algorithms known for the periodic sensors,
showing that the new protocol requires fewer sleep/awake
transitions, and hence consumes much less energy per sensor.
Finally, Section VI offers concluding remarks.

II. RELATED WORKS

In this section, previously known protocols for training
either only periodic or only free sensors are summarized.
The Flat corona training protocol and its variants,Flat+ and
TwoLevel, proposed in [1], [2], [12], deal with a homogeneous
network of periodic sensors. They are calledasynchronous
protocols because each periodic sensor learns the identityof
the corona to which it belongs, regardless of the moment when
it wakes up for the first time. On the other hand, the two
protocols proposed in [3] deal with a homogeneous network
of free sensors, and are fully synchronous.

In the Flat protocol, immediately after deployment, the
actor cyclically repeats a transmission cycle which involves
k broadcasts at successively decreasing transmission ranges,
wherek is the number of coronas. Each broadcast lasts for a
slot and transmits a beacon equal to the identity of the outmost
corona reached. On the other side, each sensor wakes up at
random within the0-th and the(k− 1)-th time slot and starts
listening to the actor ford time slots, that is, its awake period.
Then, the sensor goes back to sleep forL − d time slots,
that is, its sleep period. Such a behavior is repeated until the
sensor learns the identity of the corona to which belongs. Each
sensor, during the training task, uses ak-bit registerR to keep
track of the beacons, i.e. corona identities, transmitted by the
actor while the sensor is awake. In each time slot when the
sensor is awake, the entry ofR corresponding to the beacon
transmitted by the actor is set either to0 when the sensor hears
nothing or to1 when the the sensor hears the transmission.
A sensor which belongs to coronac continues until it verifies
the training condition, that is until there are two consecutive
entries ofR, sayc−1 andc such thatRc−1 = 0 andRc = 1.

The Flat+ improvement to the Flat protocol exploits the fact
that when a sensor hears a beaconc, it knows that it will also
hear all the beacons greater thanc, and thus it can immediately
set to1 the entries fromRc up to Rk−1. Similarly, when a
sensor sets an entryRc to 0, it knows that it cannot hear any
beacon smaller thanc, and thus it can immediately set to 0 the
entries fromRc−1 down toR0, too. In contrast to the previous
protocol, the sensor now fills entries ofR relative to beacons
not yet transmitted during its awake periods. Therefore, itcan
look ahead and skip its next awake period if the corresponding
entries ofR have already been filled. However, as proved in
[1], [2], its worst case performance remains the same as Flat.

A further improvement, called theTwo-Levelprotocol, fol-
lows a nesting approach in which thek coronas are viewed as
k1 macrocoronas ofk2 adjacent macrocoronas each. Precisely,
each sensor is first trained to learn the macrocorona it belongs
to and then to learn its microcorona inside its macrocorona.
Although Two-Level is the most efficient protocol known



3

so far, it cannot reduce the number of sensor sleep/awake
transitions below the square root of the number of transitions
needed by the Flat protocol [1]. However, the actor behaviour
of Two-Level is designed ad hoc for periodic sensors and
cannot handle the free ones.

In contrast, the two protocols presented in [3] assume that
all the sensors are free and synchronized to the master clock
running at the actor. Such two protocols can be thought as
visits of complete binary/d-ary trees, whose leaves represent
coronas, whose node preorder/BFS numbers are related to the
time slots, and whose node inorder/BFS numbers are related to
the actor transmission ranges, respectively. Exploiting the fully
synchronized model and performing a distributed phase where
the sensors that have already known their corona inform those
in their neighborhood, such protocols require a logarithmic
number (in the number of coronas) of sensor sleep/awake
transitions and achieve an optimal square root time (also inthe
number of coronas) for terminating the training task. However,
the need of a strong synchronization between the actor and the
sensors makes this protocol difficult to be extended to train
periodic sensors.

This paper presents an asynchronous protocol which not
only improves over all the previously presented asynchronous
protocols, by reducing the number of sleep/awake transitions
to a logarithmic number thus matching the fastest synchronous
protocol presented in [3], but also can simultaneously train
both free and periodic sensors.

III. T HE BINARY TRAINING PROTOCOL

In this section, the network model is described and the
details of the corona training protocol are presented, where
each individual sensor has to learn the identity of the corona
to which it belongs regardless of its type and of the moment
when it wakes up for the first time.

A. The Network Model

A heterogeneous wireless sensor network is assumed to con-
sist of a single fixed actor, provided with a steady power supply
and a special radio interface for long distance communications,
as well as a set of heterogeneous sensors, massively and
randomly deployed in the actor broadcast range as illustrated
in Figure 1(a).

Time is ruled into slots. The sensors and the actor rely
on equally long, in phase slots. If the slot measured at a
sensor drifts from that at the actor, the sensor can easily re-
phase its slot every time it wakes up, as it will be shown
in the protocol. The sensors operate subject to the following
fundamental constraints:

• Sensors areanonymous– to assume the simplest sensor
model, sensors do not need individually unique IDs;

• Each sensor has a modest non-renewable energy budget;
• Each sensor has no global information about the network

topology, but can receive transmissions from the actor;
• Each sensor isasynchronous– it wakes up for the first

time according to its internal clock and is not engaging in
an explicit synchronization protocol with either the actor
or the other sensors.

awake

d d
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Fig. 2. The irregular behaviour of a free sensor which alternates between
awake periods of fixed lengthd and sleep intervals of arbitrary lengths.
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Fig. 3. The sleep-awake cycle of a periodic sensor. The darkestd slots
represent a time interval in which the sensor was scheduled to be awake but
it decided to maintain its sleep mode.

Two types of sensors can be distinguished according to their
behavior:

• The free sensors alternate, according to internal compu-
tations, between sleep periods, whose lengths depend on
the executed protocol and can assume arbitrary values,
and awake periods of fixed lengthd.

• The periodic sensors alternate between sleep and awake
periods, both of fixed length. The sensor sleep-awake
cycle has a total length ofL time slots, out of which
the sensor is in awake mode ford ≤ L slots, periodic
sensors can also sleep for their entire cycle, skipping
awake periods, as depicted in Figure 3.

It is worth noting that the protocol to be discussed can
simultaneously handle sensors each having its own sleep and
awake parameters. Namely, the network may consist of free
sensors each having a different awake period lengthd, and of
periodic sensors each with distinct awake and sleep periodsof
lengthd andL−d, respectively. For the sake of simplicity, in
the rest of this paper, it is assumed that the free and periodic
sensors share the same awake period lengthd, that all the
periodic sensors share the same sleep period lengthL − d,
and that bothd andL are even.

As a result of corona training, the deployment area is
covered by k coronasC0, C1, . . . , Ck−1 determined by
k concentric circles, centered at the actor, whose radii are
r0 < r1 < · · · < rk−1, as shown in Figure 1(b).

B. The Actor Behavior

The pseudocode of the actor behaviour is given in Figure 4.
The actor repeats a cycle of2k time slots. At time slots2i
and2i+1, with 0 ≤ i ≤ k−1, the actor broadcasts acontrol-
broadcast, followed by adata-broadcast. Both broadcast the
beaconk − 1 − i, the former with a full power level able
to reach the sensors lying in all the coronas, and the latter
with a power level able to reach only those sensors up to
coronaCk−1−i, but not those beyond. The actor transmission
cycle, shown in Figure 5, is repeated for a timeτ sufficient
to accomplish the training protocol. An evaluation ofτ will
be given in Theorems IV.6 and IV.9 (for free and periodic
sensors, respectively).

The redundancy of information between a control-broadcast
and the subsequent data-broadcast allows the sensors and the
actor to perform a light synchronization at any time during
the training task. One reason for performing data-broadcasts
in descending order is that the outer coronas, which have
more sensors than the inner ones, are reached first. Moreover,
since for free sensors, as proved in Lemma IV.4, the inner
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Procedure Actor (k);
t := 0;
repeat
for i := 0 to k − 1 do

transmit beaconk − 1 − i up to coronaCk−1;
transmit beaconk − 1 − i up to coronaCk−1−i;

t := t + 2k;
until t ≤ τ

Fig. 4. The Binary protocol for the actor.

coronas complete their training earlier than the outer coronas,
a subnetwork connected to the actor grows and could start
operating before the whole training task terminates.

C. The Sensor Behavior

In order to describe the protocol for the sensors, it is
crucial to point out that the sensors are aware of the actor
behavior and of the number of coronask. Nonetheless, the
control-broadcast could be used to pass global information,
like k or the order (i.e., decreasing, increasing) in which the
data-broadcast transmissions are scheduled. Moreover, itis
worthy to recall that, during the training task, an awake sensor
belonging to a generic coronac always receives a control-
broadcast of any beacon, it cannot receive a data-broadcastof
any beacon smaller thanc, and receives the data-broadcast of
any beacon larger than or equal toc.

First the behavior of any sensor, independently of its type,is
sketched. To figure out its corona, a sensor uses two(⌊log k⌋+
1)-bit registers, namedmin andmax. At any instant, themin
(max) register keeps track of the largest (smallest) corona,
heard so far via a control-broadcast (data-broadcast), smaller
than (larger than or equal to) the corona to which the sensor
belongs. From now on, the interval[min + 1, . . . , max] is
called thecorona identity range, and its widthmax − min
is denoted byλ. From the above discussion, the following
training conditionis verified:

Lemma III.1. A sensor which belongs to coronac, with
c ≥ 0, is trained whenmax = c and min = c − 1, and
henceλ = 1.

Immediately after the deployment, each sensor wakes up
at random within the0-th and the2(k − 1)-th time slot and
starts listening to the actor ford time slots, withd ≥ 2.
During the awake period, the sensor properly sets themin
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Fig. 5. An actor transmission cycle of2k time slots withk = 16. The actor
alternates control-broadcasts at full power level (black)with data-broadcasts
at decreasing power levels (gray), transmitting corona identities in decreasing
order.

Procedure Binary-Training (k, d);
1 trained:= false; ν := t := 0; min := −1; max := k − 1;
2 while ¬ traineddo
3 for i := 0 to d − 1 do
4 if even(i) then
5 if received beaconc then
6 first := c;

else
7 first := k;

else
8 if ¬ received beaconc then
9 if min ≤ first then

10 min := first; update:=left;
11 control:= t + i − 1;

else
cases

12 c = first:
13 if max ≥ c then
14 max := c; update:=right;
15 control:= t + i − 1;
16 first6= k and c = (first−1) mod k:
17 if max ≥ first then
18 max := first; update:=right;
19 control:= t + i;
20 first = k:
21 if min ≤ (c + 1) mod k then
22 min := (c + 1) mod k;
23 update:=left;
24 control:= t + i;
25 t := t + d − 1;
26 if max−min = 1 then
27 mycorona:= max;
28 trained:= true;

else
29 guess:= ⌈min +max

2
⌉;

30 alarm-clock:= control + Wait();
31 sleepuntil alarm-clock rings;

Fig. 6. Training protocol for a generic sensor.

andmax registers according to the actor transmissions that it
can receive. Then, to find the corona to which it belongs, each
sensor alternates sleep and awake periods. Precisely, after the
first awake period, each sensor guesses to belong to corona
⌈min+max

2 ⌉ and goes to sleep until the actor transmits such
a corona. At its next awakening, if the sensor receives the
data-broadcast relative to the corona it guessed, its corona
identity range becomes[Cmin+1, . . . , C⌈min+ max

2
⌉], whereas

if the sensor does not receive it, the corona range becomes
[C⌈min+ max

2
⌉+1, . . . , Cmax]. Such a binary search continues

until the range boundaries differ by one, and thus the sensor
is trained.

The pseudocode for the sensor behavior is given in Figure 6.
A sensor listens for an awake period ofd consecutive time
slots. Since the sensor is asynchronous, it keeps track of two
slots, one even and one odd, to understand whether it woke
up at a data-broadcast or a control-broadcast. During the even
slots, it stores in variablefirst either the beacon received, if
any, ork (lines 4–7). During the odd slots, if the sensor does
not receive any beacon, it is sure that it woke up at a control-
broadcast. Thus, the actor is now data-broadcasting the beacon
first and the corona of the sensor must be larger thanfirst.
In variablecontrol, the sensor remembers the local time when
the control-broadcast was received (lines 8–11).

On the other hand, if during the odd slots the sensor receives
beaconc, three cases arise depending on what happened in
the previous slot, namely, a control-broadcast was received
(lines 13–15), a data-broadcast was received (lines 17–19),
or a data-broadcast was not received (lines 21–24). The first
case is detected because the sensor hears the same beaconc
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Function Wait: integer;
1 if update= right then

2 Wait := 2⌊max−min
2

⌋;
else

3 Wait := 2
“

k − ⌊max −min

2
⌋

”

;

Fig. 7. TheWait procedure invoked for the free sensors.

twice, which implies that the sensor belongs to a corona whose
identity is smaller than or equal toc. The second case happens
when the sensor hears two distinct beacons differing by1 mod
k, yielding that the sensor belongs to a corona smaller than
or equal tofirst. The third case occurs when the sensor hears
only the beaconc during the second slot, with the consequence
that the sensor belongs to a corona larger than(c+1) mod k.
At the end of the awake period, the sensor tests the training
condition (lines 26–28), and if it is not trained, by invoking the
Wait procedure, the sensor intends to wake up again when the
actor broadcasts the corona identity in the middle of the sensor
corona identity range (lines 29–31). The time complexity of
the Binary-Training protocol isO(d) plus the time required
for executing theWait procedure.

So far, the behavior of the sensors during the Binary-
Training process has been described independent of their
type. Indeed, only the procedureWait, which determines how
long a sensor has to sleep in order to receive theguess
corona, depends on the sensor type. Such a procedure mainly
influences the total time each sensor employs to be trained,
and thus the total timeτ of the training task.

In the following, theWait procedures, one for free and one
for periodic sensors, are devised and analyzed.

1) The Free Sensor Behavior:This subsection deals with
sensors that can freely choose their awakening time. So they
set the alarm clock when, according to their local time, the
actor transmits theguesscorona identity.

The Wait procedure is outlined in Figure 7. The sensor
sleeps for an interval which depends on theguesscorona and
the last modified boundary of the corona identity range.

Consider a sensor that finishes its current awake period and
invokes theWait procedure. Ifupdate=right, thenmax is the
beacon transmitted via a control-broadcast at time slotcontrol
(see Figure 6). Since theguesscorona is smaller thanmax,
guesswill be broadcast in the current actor cycle at time slot
control+2⌊max−min

2 ⌋. Whereas, ifupdate=left, thenmin has
been transmitted by the actor at the beginning of the current
awake period. Sinceguesscan only be larger thanmin, guess
will be transmitted during the next actor cycle, at slotcontrol+
2(k − ⌈max−min

2 ⌉). Clearly, the time complexity of theWait
procedure for the free sensors isO(1).

Note that the sensor, setting thecontrol variable, intends
to wake up in the next period when the actor is transmitting
the control-broadcast relative to theguesscorona. However,
the pseudo-code does not exploit this property. Indeed, the
protocol works properly even if the sensor wakes up again
when any data-broadcast or control-broadcast is transmitted.
Moreover, since the sensor updates themin andmax registers
listening to the effective actor transmission, the sensor does not
infer any information from its knowledge of the actor behavior,
contrary to the previously known protocols [1], [2], [3]. For

Function Wait: integer;
1 if update= right then
2 firstcorona:= |max+ d

2
|k;

else
3 firstcorona:= min;
4 γ := 1;
5 while guess6∈

ˆ

|firstcorona− γ L
2

− d
2

+ 1|k, |firstcorona− γ L
2
|k

˜

do
6 γ := γ + 1;
7 Wait := γL − d + 1;

Fig. 8. TheWait procedure invoked for the periodic sensors.

all these reasons, the new protocol is robust to possible clock
driftings.

2) The Periodic Sensor Behavior:In this subsection, the
Wait procedure for the periodic sensors is devised. For the sake
of the analysis, each sensor is assumed to wake up for the first
time at a random instant2s, with 0 ≤ s ≤ k − 1. Recall that
a sensor running this protocol always alternatesd slots during
which it is awake andL − d slots in which it sleeps. In each
of thed slots where the sensor is awake, it updates its position
according to the sensed data. At each awakening, each sensor
hears groups ofd2 consecutive corona identities, broadcast by
the actor. Since two consecutive awake periods startL time
slots apart, the corresponding first beacons transmitted bythe
actor are|L2 |k apart. Hence, a periodic sensor which does not
skip any awake period hears thek coronas in a specific order
which depends on the parametersd, L, and on the time slots
at which the sensor wakes up for the first time. On the top of
such an order, the Binary-Training protocol imposes the binary
search scheme on the corona identity range by means of the
Wait procedure, which forces a sensor to skip awake periods
until that in whichguessis transmitted.

The Wait procedure is given in Figure 8. Consider a sensor
that finishes its current awake period at slott and invokes the
Wait procedure. At first, the sensor recomputes in variable
firstcorona the beacon which was transmitted by the actor
at the beginning of its current awake period. Indeed, if
update=right, thenmax has been updated at each time slot
and firstcorona is |max+ d

2 |k. Whereas ifupdate=left, then
min has been updated only at the first time slot of the awake
period, andfirstcoronais exactly the corona identity stored in
registermin (lines 2-3). Note that in the first awake period,
if two boundaries have been updated, registerupdatemust be
equal toright. Thus, in a lookup process, the sensor checks
during which subsequent awake period theguesscorona will
be transmitted (lines 5–6), and stores inγ the number of
awake periods to be skipped plus one. Indeed, since the corona
identities transmitted at the beginning of two consecutive
awake periods differ by|L2 |k, and d

2 beacons are transmitted
in each awake period, the sensor knows which beacons it can
receive in every awake period.

The time complexity of the Wait procedure, shown in
Figure 8, is O(γd). However, such a complexity can be
lowered by storing in each sensor a look-up table, as it will
be shown at the end of Subsection IV-B.
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IV. CORRECTNESS ANDPERFORMANCEANALYSIS

In this section, the correctness and the performance of the
Binary-Training protocol are discussed. The results proved in
the next lemmas hold for both free and periodic sensors.

Lemma IV.1. Each sensor requires at least2 consecutive time
slots to learn its relative position with respect to the beacon
transmitted in the last data-broadcast.

Proof: By contradiction, consider a sensor that listens
to the actor for just one slot. If the sensor receives beacon
c, it cannot distinguish whether it hears a control- or a data-
broadcast. On the other hand, if the sensor does not receive any
beacon, although it is aware that the actor transmits a data-
broadcast, it cannot update themin register because it does
not know the transmitted beacon. Therefore, in both cases the
sensor cannot update its corona identity range. Consider now
a sensor that has listened for two consecutive time slots. Since
i = 1, the sensor executes the code in lines 8–23, and hence
it sets eithermin or max learning its relative position with
respect to the last data-broadcast beacon. �

As a consequence of Lemma IV.1, it is necessary that the
lengthd of the awake period of both free and periodic sensors
be at least2 to allow all the sensors to be trained (such a
condition is also sufficient only for free sensors, as it willbe
shown later). Let us now concentrate on how the widthλ of
the corona identity range decreases for any sensor. Precisely,
in the first awake period of a sensor,λ reduces as follows:

Lemma IV.2. Consider a sensor belonging to coronac that
wakes up at time slots, 0 ≤ s ≤ 2k − 1, when the actor
transmits beaconKs, with 0 ≤ c, Ks ≤ k − 1. If the sensor
is untrained at the end of the first awake period, the width
λ = max − min of its corona identity range is:

λ =

{

min{k − Ks − 1, k − d
2} if c > Ks

Ks −
d
2 + 1 if c ≤ Ks

Proof: Consider the behavior of a sensor that at the end
of its first awake period is still untrained. Assume that the
sensor does not receive the data-broadcast transmitting beacon
Ks, that is, c > Ks. If Ks ≥ d

2 , then themin boundary of
its corona identity range is updated toKs. Since the actor
transmits at decreasing power levels, the nextd transmissions
will not update registermin. Hence, the corona identity range
becomes[Ks+1, . . . , k−1]. Whereas, ifKs < d

2 −1, also the
registermax is updated because the sensor is awake while the
actor transmits beaconk − 1. However, overalld2 coronas are
excluded, leading to a corona range of widthk − d

2 . Assume
now that the sensor receives the data-broadcast transmitting
beaconKs, that is, c ≤ Ks. Then, the sensor updates the
max boundary ford

2 times. Therefore, the new corona range
becomes[0, . . . , Ks−

d
2 ]. Note that ifKs < d

2 , the sensor will
be trained. �

The following two results hold for trainable sensors, that is,
for those sensors that after a finite time haveλ = 1.

Lemma IV.3. In each awake period but the first, every
trainable sensor, which belongs to coronac > 0, updates only
one boundary of its corona identity range unless it becomes

trained. Every sensor in corona0, always updates only one
boundary.

Proof: By contradiction consider a sensor in corona
c > 0 that updates both boundaries in the same awake period,
but remains untrained. Letmin and max be the values of
the boundaries at the beginning of the awake period. During
such an awake period, the sensor must have received the
control-broadcast for a corona larger thanmin down to the
data-broadcast for a corona smaller thanmax(passing through
the control-broadcasts for coronas0 and k − 1). However,
this takes more thand time slots since, already at the end of
the first awake period, at least(min + 1) + (k − max) ≥ d

2
coronas are excluded by the corona identity range.

If a sensor belongs to corona0, since whenever it wakes up
it receives the actor transmission, it setsmax in each awake
period. When it receives beacon0, it is trained becausemax−
min = 0 − (−1) = 1. �

As explained in Subsection III-C, in each awake period
but the first, the widthλ of the corona identity range is
reduced by applying a binary search scheme on the interval
[min, . . . , max] until λ = 1. This process requires a number
of sleep/awake transitions, whose worst value is denoted by
νmax, bounded as follows:

Lemma IV.4. A trainable sensor that belongs to coronac and
wakes up for the first time at time slots, 0 ≤ s ≤ 2k − 1,
while the actor transmits beaconKs, with 0 ≤ c, Ks ≤ k−1,
requires

νmax ≤

{

1 + ⌈log(min{k − Ks − 1, k − d
2})⌉ if c > Ks

1 + ⌈log(Ks −
d
2 + 1)⌉ if c ≤ Ks

transitions to be trained.

Proof: After the first awake period, the corona identity
range reduces by half at each awakening because the sensor
learns its relative position with respect to theguesscorona,
which is in the middle of the corona identity range. Therefore,
by Lemma IV.2, the result follows. �

It is worth noting that a free sensor is always trainable
provided thatd ≥ 2 because, being free to set its alarm-clock,
it is guaranteed to hear theguesscorona. In contrast, a periodic
sensor is constrained in its awakenings and thus it is trainable
only if some conditions on the parametersL, k and d are
verified, as it will be proved in Subsection IV-B.

In order to analytically evaluate the performance of the
Binary-Training protocol, in addition toνmax, let ωmax be
the worst overall awake time per sensor, andτ be the total
time for training. Recalling that each awake period lasts for d
time slots, one hasωmax = νmaxd. Note thatτ measures the
time required to terminate the whole training task for the actor,
whereas each sensor counts int its local training time, that is,
how many slots elapse from the sensor first wake up until the
end of the awake period in which it is trained. Hence, a sensor
which is trained at local timet is trained at timet + s for the
actor, if s is the random time slot when it wakes up the first
time. Therefore,τ cannot be larger thantmax +2k−1, where
tmax is the worst training time among the training times of all
the sensors. The analysis of the total time required by Binary-
Training depends on theWait procedure, which determines
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how long a sensor has to sleep before receiving theguess
corona, and hence it is different for free and periodic sensors.

A. Free Sensors

In order to bound from above the total timeτ for the training
task, the following result is useful:

Lemma IV.5. The training task for a free sensor that belongs
to coronac cannot last more thanτc = 2k(1 + ⌈log2 c⌉) time
slots. Therefore,τ ≤ 2k(1 + ⌈log2 k⌉).

Proof: By applying the binary search scheme to the
corona identity range, a sensor that belongs to coronac must
exclude the coronas0, 1, . . . , c − 1 from its corona identity
range by updating the registermin. This can be done in at
most ⌈log2 c⌉ times. Since the sensor waits at most2k slots
between two consecutive updates ofmin, the result follows.�

A consequence of the above lemma is that the inner coronas
finish the training task earlier than the outer coronas. In this
way, the wireless sensor network is raised up from the centerto
the periphery. Hence, the performance of the Binary-Training
protocol for free sensors can be summarized as follows:

Theorem IV.6. All the free sensors are trainable ifd ≥ 2 and
each free sensor requires to be trainedνmax ≤ 1 + ⌈log2 k⌉,
ωmax = dνmax, and τ ≤ 2kνmax.

Proof: The proof follows from Lemmas IV.1, IV.4, and
IV.5. �

B. Periodic Sensors

To analyze the performance of the Binary-Training protocol
for periodic sensors, some properties on which beacons are
received by the sensor, and in which order, are discussed.
Denote with (a, b) the greatest common divisor betweena
and b (see [6]), and letL′ = L

2 , g = (L′, k), d′ = d
2 ,

L̂′ = L′

(L′,k) , and k̂ = k
(L′,k) . In order to derive the necessary

and sufficient condition to train all the periodic sensors, the
following observation is useful.

Lemma IV.7. For fixedL, d, and k, assume that, during the
first two slots, when the sensor wakes up for the first time,
the actor has transmitted the data-broadcastKs, with 0 ≤
Ks ≤ k − 1. Then the data-broadcast transmitted in the first
two slots of thei-th sensor awake period is|Ks − iL′|k =
∣

∣

∣
Ks − (L′, k)|iL̂′|

k̂

∣

∣

∣

k
, assuming that the sensor does not skip

any awake period. Overall onlŷk different data-broadcasts
can be transmitted by the actor in the first two slots of every
sensor awake period, independent of how many awake periods
the sensor performs. Sucĥk data-broadcasts differ each other
by a multiple of(L′, k).

Proof: Consider a sensor for which, during its first awake
period, the data-broadcastKs has been the first one transmitted
by the actor and which does not skip any awake period. The
i-th awake period,i ≥ 0, of such a sensor startsiL time
slots later while the actor is data-broadcasting, during the
first two slots of the sensor awake period,|Ks − iL′|k =

0 1 2 3 4 5 6
0 0 7 6 5 4 3 2
1 2 1 0 7 6 5 4
2 4 3 2 1 0 7 6
3 6 5 4 3 2 1 0

Fig. 9. TableA showing the coronas broadcast by the actor during the awake
periods of a sensor, assuming it does not skip any awake period and that it
woke up for the first time while the actor was transmittingKs = 0.

|Ks − |iL′|k|k. Observe thatL′ and k can be rewritten as
L′ = gL̂′ and k = gk̂. Since |iL′|k = g|iL̂′|

k̂
(see [6]),

|iL′|k is a multiple ofg and generates only thêk multiples
of g in [0, . . . , k − 1] while i varies in any interval of at
leastk̂ consecutive integer values. Therefore,|Ks − |iL′|k|k =
∣

∣

∣
Ks − g|iL̂′|

k̂

∣

∣

∣

k
. Moreover, in any two awake periods, say the

i-th and thej-th ones, such thati > j and i − j < k̂, the
two first data-broadcasts transmitted are distinct and differ
by a multiple of g. Whereas, the same first data-broadcasts
is transmitted in any two awake periodsi and j such that
i ≡ j mod k̂. �

For example, assumeL = 28, k = 8, and d = 14, and
consider a sensor that wakes up for the first time while the
actor broadcastsKs = 0. In Figure 9, a tableA is depicted
which shows in rowi the coronas heard at thei-th awake
period. According to Lemma IV.7,A hask̂ = 8

2 = 4 rows and
d′ = 7 columns. For instance, column0 shows thêk different
data-broadcasts{0, 2, 4, 6} which can be transmitted in the
first two slots of every sensor awake period and which differ by
g = (14, 8) = 2. Instead, row1 shows the7 coronas broadcast
during its second awake period, assuming that the sensor does
not skip it. Observe that the first corona transmitted in this
second awake period is|Ks − iL′|k = |0 − 1 · 14|8 = 2.
If the sensor does not skip any awake period, it wakes up
in the next two awake periods while the actor transmits 4
and 6, respectively, as depicted in column0. This behaviour
is periodic and in any subsequent awake period the sensor
will wake up while the actor broadcasts one corona among
{0, 2, 4, 6}.

As a consequence of Lemma IV.7, a sensor can hear, regard-
less of how long the training task lasts,k̂ distinct sequences
each ofd′ consecutive decreasing coronas. Ifd′ < (L′, k), the
sensor receiveŝk non-overlapping sequences of coronas, and
hence onlŷkd′ < k coronas. Ifd′ ≥ (L′, k), the sensor hears
at least once each of thek coronas.

Lemma IV.8. The training condition is satisfied for all the
periodic sensors if and only ifd′ ≥ (L′, k).

Proof: By Lemma IV.7, regardless of how long the
training task lasts, a sensor can learn its relative position
only respect tomin{k, d′k̂} different coronas even if it does
not skip any awake period. Therefore, ifd′ ≥ (L′, k), since
min{k, d′k̂} = k, for anyguesscorona of the Binary-Training
protocol there is at least one of the subsequentk̂ consecutive
awake periods in which the sensor can hearguess. Whereas, if
d′ < (L′, k), sincemin{k, d′k̂} = d′k̂ < k. there are coronas
which can never be heard by the sensor irrespective of the
training task duration. If one of such coronas is aguesscorona
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for a sensor, the protocol cannot terminate for such a sensor,
which thus remains untrained. �

Therefore, the performance of the Binary-Training protocol
for periodic sensors is given by the following result.

Theorem IV.9. For fixed L, d, and k, if d′ < (L′, k) then
there are sensors which cannot be trained by the Binary-
Training protocol; otherwise all the periodic sensors require
to be trainedνmax ≤ 1 + ⌈log2 k⌉, ωmax = dνmax, and
τ ≤ k̂Lνmax.

Proof: The results forνmax and ωmax follow from
Lemma IV.4. With regard toτ , since the cycles of the actor
and of the sensors last2k and L slots, respectively, then the
actor and the sensors are simultaneously at the beginning of
their cycle everyl.c.m.{2k, L} = 2kL

(L,2k) = k̂L slots. In other
words, the cycle of the actor-sensor system, i.e., the minimum
time after which both the actor and a sensor are again in
the initial condition, is of̂kL slots. Since to hear eachguess
corona a sensor has to wait at most a cycle of the actor-sensor
system, and since at mostνmax guesses are performed, the
protocol takesτ ≤ k̂Lνmax time slots. �

However, taking into account the particular values thatd
can assume, better bounds on the performance parameters can
be derived.

Theorem IV.10. For fixedL, d, andk, one has:
1) if (L′, k) ≤ d′ < |L′|k, then νmax ≤ 1 + ⌈log k

d′
⌉,

ωmax = dνmax, and τ ≤ k
d′

Lνmax;
2) if |L′|k ≤ d′ < k, then νmax ≤ 1 + ⌈log k

d′
⌉, ωmax =

dνmax, and τ ≤ ⌈ k
d′
⌉Lνmax;

3) if d′ = k, thenνmax = 1 and ωmax = τ = d.

Proof: The result trivially follows whend′ = (L′, K)
because, by Lemma IV.7, thek coronas are partitioned into
k
d′

non-overlapping intervals over which a binary search is
performed to find whereguess is transmitted. Hence, the
binary search takesνmax = 1 + ⌈log k

d′
⌉ guesses. Since each

interval lastsd = 2d′ slots and since a sensor waits at most
k
d′

L slots to hear eachguesscorona, the results forωmax and
τ follow.

Whend′ = |L′|k, if the sensor is awake for two consecutive
awake periods, that is, for two awake periods starting at time
slot t andt+L, it would hearc−d′+1 as the last corona of the
fist period andc−d′ as the first corona of the second period, if
c is the corona heard at timet. Thus, thek coronas are covered
by ⌈ k

d′
⌉ intervals (out of which⌊ k

d′
⌋ are non-overlapping) and

a binary search is performed on such intervals to find where
guessis transmitted. Since each interval lastsd = 2d′ slots
and since a sensor waits at most⌈ k

d′
⌉L slots to hear theguess

corona, the bounds forωmax andτ hold.
Whend′ = k, thek coronas are covered in a single interval,

and each sensor is trained in the first awake period. Thus, the
bounds are trivially derived.

Observe that when(L′, k) < d′ < |L′|k or |L′|k < d′ < k,
the number of intervals which cover thek coronas cannot be
greater than that in the case ofd′ = (L′, k) and d′ = |L′|k,
respectively. Hence, the proof follows. �

With regard to the time complexity of theWait procedure
(Fig. 8), one can use a tableTKs

, whereKs is defined in

Lemma IV.7, to faster computeγ. TKs
consists ofk rows

and ⌈d′

g
⌉ columns. Givenh and j, with 0 ≤ h ≤ k − 1

and 0 ≤ j ≤ ⌈d′

g
⌉ − 1, a generic entryTKs

(h, j) contains
the awake period in which the sensor will hear the corona
identity h in a time slot included between the time slotsjg
and (j + 1)g − 1, where jg and (j + 1)g are the coronas
where two awake periods start. The valueTKs

(h, j) verifies
0 ≤ TKs

(h, j) ≤ k̂−1 and it is intended as a relative position
within the system actor-sensor cycle. In practice, rowh of TKs

contains all the awake periods in which the sensor can hear
coronah during the system actor-sensor cycle if the sensor
does not skip any awake period. It is worth noting that the
same corona can be heard by a sensor in more than one awake
period (unlessd′ = g, in which case there is only a single
column in TKs

). Indeed, since each awake period includes
d′ consecutive coronas and since distinct awake periods start
with coronas which are multiples ofg, coronah is heard by
a sensor in at most⌈d′

g
⌉ awake periods, namely, for all those

overlapping periods which includeh.
Referring to the example in Figure 9, Figure 10 shows the

content ofT0 for the same parameters, namely,L = 28, k = 8,
andd = 14. For instance, row5 of T0 containsT0(5, 0) = 3,
T0(5, 1) = 0, T0(5, 2) = 1, andT0(5, 3) = ∞, because corona
5 is transmitted during the3-rd awake period in one of the slots
0 and1, during the0-th awake period in one slot between2
and3, in the 1-th awake period in one slot between4 and5,
while it is never transmitted in slot6, as one can check in
Figure 9.

To better understand how to build tableTKs
, one could

imagine to first construct a tableAKs
by settingAKs

(u, v) =
|Ks − uL′ − v|k. SinceAKs

contains the coronas heard in
each awake period by a sensor that wakes up for the first time
in coronaKs, one can derive the entries ofTKs

performing a
kind of inverse computation. Precisely, ifAKs

(u, v) = h, with
0 ≤ u ≤ k̂− 1 and0 ≤ v ≤ d′ − 1, thenTKs

(h, ⌊ v
g
⌋) is set to

u. The unfilled entries in the last column ofTKs
, if any, are

set to∞. Clearly, this requiresO(kd′

g
) time andO(kd′

g
log k)

space for each sensor.
The above computation can be performed by each sensor

at the beginning of the protocol, as soon as it knows its
own Ks. Otherwise, such a computation can be done in a
preprocessing phase, that is, before the sensor deployment,
for a fixed value ofKs, like Ks = 0. In the latter case, when
Ks 6= 0, each entry ofTKs

can be derived by the sensor from
the precomputed tableT0 as: TKs

(h, j) = T0(|h − Ks|k, j).
In other words,TKs

corresponds to a row cyclic shift ofT0.
Finally, the numberγ required in theWait procedure of

Figure 8 is obtained inO(d′

g
) time by computing

γ = min
0≤j≤⌈ d′

g
⌉−1

{γj : γj > 0}

where

γj = |TKs
(guess, j) − TKs

(firstcorona, 0)|
k̂
.

In fact, one computes the minimum numberγj of the
awake periods between each occurrence of theguesscorona,
TKs

(guess, j), in the system actor-sensor cycle and the current
awake period, given byTKs

(firstcorona, 0).
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0 1 2 3
0 0 1 2 3
1 1 2 3 ∞
2 1 2 3 0
3 2 3 0 ∞
4 2 3 0 1
5 3 0 1 ∞
6 3 0 1 2
7 0 1 2 ∞

Fig. 10. The tableT0 indicating the awake periods in which each corona is
heard by a periodic sensor whenL = 28, k = 8, andd = 14.

For example, consider a sensor withKs = 0, which has
guess = 5 and firstcorona = 2. SinceT0(2, 0) = 1, one
has γ0 = |T0(5, 0) − 1|4 = 2, γ1 = |T0(5, 1) − 1|4 = 3,
γ2 = |T0(5, 2) − 1|4 = 0, andγ3 = |∞ − 1|4 = ∞. Hence,
γ = min{2, 3,∞} = 2, and the sensor has to wait2L−d+1 =
56 − 14 + 1 = 43 slots.

C. Energy Consumption

In this subsection, the energy drained by the Binary-Training
protocol is evaluated under a realistic estimate of the power
consumed by the sensors in their different operative modes.

During the training task, when a sensor is awake, its
CPU is active and its radio is listening or receiving. Instead,
when a sensor is sleeping, its CPU is not active, its timer
is on, and its radio is off. Leteawake and esleep be the
energy consumed during a time slot by a sensor when it is
listening/receiving or sleeping, respectively. Since theradio
startup and shutdown require a non negligible overhead, let
etrans denote the energy consumed for a sleep/awake transition
followed by an awake/sleep transition. Thus, denoted withν
andω, respectively, the number of wake/sleep transitions and
the overall awake time, the total energyE depleted by a sensor
is:

E = νetrans + ωeawake + (τ − ω)esleep (1)

An upper bound on the energy drained by the training
protocol for a free sensor is obtained from Equation 1 by
substituting the worst case bounds forν, ω, and τ given in
Theorem IV.6, thus having:

E < (1 + ⌈log k⌉) (etrans + deawake + 2kesleep)

Similarly, the energy spent by the protocol for periodic
sensors is derived from Equation 1 by using the upper bounds
provided in Theorem IV.10, observing thatd′ ≥ (L′, k):

E <

(

1 + log

⌈

k
(

L
2 , k

)

⌉)(

etrans + deawake +
kL

(L
2 , k)

esleep

)

In order to evaluate the energy drained in a realistic setting,
Table I reports the power consumed by a sensor in different
operational modes. The data refer to the TinyNode 584,
produced by Shockfish S.A., and are the customary values for
the smallest sensors one can buy [4]. The sensors have as a
power source two customary 1.2 Volt batteries, with a capacity
of 1900 mAh each, and hence they have an energy supply of
4.56 Joule. As one can check in the table, listening is nearlyas
expensive as receiving. The radio startup and shutdown require

TABLE I
ESTIMATE OF SENSOR POWER CONSUMPTION IN DIFFERENT

OPERATIONAL MODES AT2.5 VOLT.

Sensor Mode Current Draw Power Consume
CPU inactive, timer on, radio off 6 µA 0.015mW

CPU switch on, radio startup 3 mA < 30 mW

CPU switch off, radio shutdown 3 mA < 30 mW

CPU active, radio listening or RX 12 mA 32 mW

a power consumption, which cannot be higher than that in
the active mode, and they take a non negligible amount of
time (about 1 ms each). The above constraint influences the
behavior of the protocol because it gives a lower bound on the
the length of the sensor sleep period, which must be sufficient
to allow both radio startup and shutdown, and thus cannot be
shorter than2 ms. Hence, a time slot of2 ms is enough. Note
that such a slot duration is enough to accommodate within it
the O(d′

g
) computation time required in the worst case by a

periodic sensor. In summary, from the data of Table I, one has
thatetrans = 30∗1+30∗1 = 60 µJ,esleep = 0.015∗2 = 0.030
µJ, andeawake = 32 ∗ 2 = 64 µJ .

It is easy to see that since the actual value ofesleep is
negligible with respect toetrans and eawake, which in turn
are comparable, the periodic sensors, which require a smaller
νmax, consume slightly less energy than the free ones, which
in turn are trained faster.

V. EXPERIMENTAL TESTS

In this section, the worst and average performance of
the Binary-Training protocol are experimentally tested and
compared with the asynchronous corona training protocols
previously presented in [1], [2]. Since in the heterogeneous
networks, the free sensors do not influence the performance
of the periodic ones, and vice versa, the Binary-Training
protocol has been tested training either only free or only
periodic sensors. In this way, the comparison with the previous
protocols, which deal only with homogeneous networks, is
more evident. In particular, in this section, the protocol for
free or for periodic sensors is calledBinFreeandBinPeriodic,
respectively. In the simulation, there areN = 10000 sensors
uniformly and randomly distributed within a circle of radius
ρ = k, centered at the actor and inscribed in a square.

Consider first some experiments comparing the performance
of the BinFree protocol versus the BinPeriodic one. In the
simulations reported in Figures 11-15, the numberk of coronas
is fixed to 64, the lengthL of the sensor sleep-awake cycle
is 216. Since the BinPeriodic protocol trains all the sensors
only if d

2 ≥ (L
2 , k) = (108, 64) = 4, the sensor awake period

d varies between2(L
2 , k) = 8 and2k = 128 with a step of8.

The results are averaged over3 independent experiments.
Figure 11 shows the number of transitions for the different

values of d. According to Theorems IV.4 and IV.9, when
d = 2(L′, k) = 8, BinFree and BinPeriodic haveνmax =
1 + ⌈log(k − d

2 )⌉ = 7 and νmax = 1 + ⌈log( k
d
2

)⌉ = 5,

respectively. Similarly, whend = 2|L′|k = 88, BinFree and
BinPeriodic requireνmax = 6 and νmax = 2, respectively.
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Fig. 11. Number of transitions whenk = 64, L = 216, and8 ≤ d ≤ 128.
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Clearly, increasingd, the gain of BinPeriodic over BinFree
increases. With regard to the average performance, although
one notes thatνavg considerably improves overνmax for both
protocols, the improvement is higher for BinFree.

Figure 12 presentsωmax = νmaxd andωavg = νavgd, which
measure, respectively, the worst and average overall awake
time spent by each sensor to be trained. Clearly, BinFree
exhibits awake times longer than those of BinPeriodic sinceit
requires a larger number of transitions. Although the number
of transitions decreases asd increases, Figure 12 illustrates that
the average overall awake time is almost constantly slightly
increasing for both protocols, except whend approaches2k,
when all protocols takeω = 2k. It is worthy to note that Bin-
Free can train all the sensors even whend = 2, and in that case
it achieves the absolute minimum forωmax = 2νmax = 14.

Figure 13 exhibits the total timeτ required to accomplish
the BinFree protocol for all the sensors in coronac = 2i, with
0 ≤ i ≤ 6, when k = 64, and eitherd = 32 or d = 40.
The graphic confirms the results for the total timeτc given in
Lemma IV.5, that isτ ≤ 2k(1 + ⌈log2 c⌉). Figure 14 shows
the total timeτ required by the two protocols to train all
the sensors in the network. BinPeriodic requires a total time
extremely larger than that of BinFree whend = 2(L

2 , k) = 8.
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In fact, for such a value ofd, to receive the guessed corona,
a free sensor has to wait at most2k slots for each transition,
whereas a periodic sensor has to wait at mostkL

(L′,k) slots, that
is a cycle of the actor-sensor system. The total time of the
BinPeriodic protocol neatly decreases whend increases until
it becomes comparable with that of BinFree ford ≥ k

2 . Indeed,
whend is sufficiently large the coronas transmitted in different
awake periods overlap. Hence, the same corona identity can be
received by the periodic sensor during several awake periods
of the same actor-sensor cycle, and in general, the sensor waits
much less than kL

(L′,k) slots to receive the guessed corona. Note
that the total time also decreases because, whend increases,
the number of transitions required to train a sensor decreases.

Figure 15 shows the energy consumed by a sensor in
the worst and average cases, denoted byEmax and Eavg,
respectively, for both the BinPeriodic and BinFree protocols,
where the time slot length is set to2 ms. It is worth noting
that the graphic of the energy has the same profile as that of
the overall awake time. In fact, since the actual value ofesleep

is negligible with respect toetrans and eawake, which in turn
are comparable, the energy grows proportionally toν(d + 1).
Therefore, although BinPeriodic has a higherτ than BinFree
when 8 ≤ d ≤ 48, the former always consumes less energy
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Fig. 16. Number of transitions whenk = 575, L = 54, and 1 ≤ d ≤ 54.

than the latter. In the worst case, the energy depleted by the
Binary-Training protocol is 38 mJ. Since the energy supplied
by a sensor is about4.56 J, the whole training task consumes
at most8/1000 of the entire energy budget.

In conclusion, a heterogeneous wireless sensor network
should use smaller values ofd for the free sensors and
larger values ofd for the periodic sensors. In this way, the
BinFree protocol optimizes the overall awake time and the
energy consumed, without substantially penalizing the number
of transitions, whereas the BinPeriodic protocol optimizes
the number of sleep/awake transitions slightly increasingthe
overall awake time and the energy consumption.

Consider now some experiments where the new Binary-
Training protocol is compared with the Flat, Flat+, and
TwoLevel protocols, proposed in [1], [2], for homogeneous
networks of periodic sensors. In the simulations reported in
Figures 16-20, the numberk of coronas is fixed to575, the
lengthL of the sensor sleep-awake cycle is54 and the sensor
awake periodd varies between1 and54 with a step of4. The
numbers of macro-coronas and micro-coronas for TwoLevel
are, respectively,k1 = 25 and k2 = 23, which indeed give
k = k1 ∗ k2 = 575. Note thatd is bounded by the lengthL of
the sensor cycle, while ford = 1, only the previously known
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algorithms are defined. In fact, according to Lemma IV.1,
Binary-Training requires at least2 consecutive slots to learn
something.

The experiments show how both BinFree and BinPeriodic
outperform Flat and Flat+ with respect toνmax and νavg

(Figure 16), and toωmax andωavg (Figure 17). In particular,
for νavg, although the corona identity range is guaranteed to
decrease at each awakening applying both Flat+ and Binary-
Training, its range decreases faster using Binary-Training,
which guarantees to halve the corona range at each awak-
ening of the sensor. With regard to TwoLevel, its number of
transitions is smaller than that of Binary-Training only when
d is approximately the same as the number of macro- and
micro-coronas. Indeed, whend = 23, TwoLevel can train
the sensors in just 3 transitions, whereas Binary-Trainingstill
uses a logarithmic number of transitions. Clearly, a similar
observation holds for the overall sensor awake time.

Concerningτ , Figure 18 shows that the new protocol for
periodic sensors is worse than the previous ones whend is very
small, confirming that periodic sensors benefit of a moderately
long awake period. One can note that, according to Theorems
IV.6 and IV.10, BinFree and BinPeriodic have a total time
bounded by their number of transitions multiplied by twice
the number of coronas and by the Flat total time, respectively.
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As shown in Figure 19, BinFree has about a double total time
with respect to all the protocols (but BinPeriodic) because
BinFree uses both data- and control-broadcasts, and hence
in d time slots it hearsd

2 coronas, while the others hear
d coronas. However, the worse time of BinFree is widely
counterbalanced by its much lower number of transitions
which lead to a moderate energy consumption (see Figure 20).
Indeed, BinPeriodic depletes the minimum amount of energy,
in both the worst and average cases, with respect to all
protocols but TwoLevel. Although TwoLevel has the minimum
energy consumption in the average case, it requires a specific
actor behavior [1] different from that used by all the other
protocols.

The comparison between Flat and Binary-Training for pe-
riodic sensors reveals the bicriteria optimization behinda
training task: one can either minimize the energy consumption
or speed up the training task. Moreover, it is worth noting
that in both Flat and Flat+, when the actor transmission is not
received, the sensors update the corona identity range deriving
from their local time the beacon transmitted by the actor.
This makes the Flat and Flat+ protocols very sensitive to slot
drifting.

Finally, the above experiments show that Binary-Training

for free sensors offers, especially for small values ofd, the
best compromise for both optimization criteria. Hence, the
heterogeneous network takes advantage of the free sensors
to become quickly operative, and of the periodic sensors to
increase its longevity.

VI. CONCLUDING REMARKS

We have proposed training protocols for heterogeneous
wireless sensor networks. Heterogeneity comes from the in-
tegration offree and periodic sensors that can independently
operate in order to locate themselves with respect to a common
powerful device called actor. The actor beacons the network
with useful information for localization purposes. The free
sensors irregularly alternate between sleep and awake periods,
whose frequency and length depend on the protocol compu-
tation. Whereas, the periodic sensors alternate between sleep
periods and awake periods of predefined lengths, established
at the manufacturing time. The analytical and experimental
studies have shown that the new protocol outperforms the ones
presented in [1], [2], [12] in terms of number of sleep/awake
transitions, overall awake time and energy consumption. More-
over, the new protocol is resilient to slot drifting and, to the
best of our knowledge, it is the first actor-driven protocol
able to train at the same time different types of sensors. The
experimental results have also suggested practical choices for
the lengthd of the awake periods: smaller values ofd for
the free sensors and larger values ofd for the periodic ones.
As a future work, we also intend to compare the Binary-
Training protocol with variants of the synchronous training
algorithms, proposed in [3], properly modified so as to tolerate
slot drifting.

ACKNOWLEDGMENT

The authors thank D. Borgia for writing the C++ code used
in the simulations. Prof. Olariu is funded by the US National
Science Foundation under grant CNS-0721563.

REFERENCES

[1] F. Barsi, F. Betti Sorbelli, R. Ciotti, M.C. Pinotti, A.A. Bertossi, and
S.Olariu, Asynchronous training in SANET, in1st ACM Workshop on
Sensor Actor Networks, Montreal, Canada, September 2007.

[2] F. Barsi, A.A. Bertossi, F. Betti Sorbelli, R. Ciotti, S.Olariu, and M.C.
Pinotti, Asynchronous training in wireless sensor networks, in Proc. 3rd
AlgoSensors, Lecture Notes in Computer Science 4837, 46–57, 2008.

[3] A. A. Bertossi, S. Olariu, and M.C. Pinotti, Efficient corona training
protocols for sensor networks,Theoretical Computer Science, 402 (1):2–
15, 2008.

[4] N. Burri, P. von Rickenbach, and R. Wattenhofer, Dozer: Ultra-low
power data gathering in sensor networks, inProc. IPSN’07, Cambridge,
MA, April 2007.

[5] I. Chatzigiannakis, A. Kinalis, and S. Nikoletseas, An adaptive power
conservation scheme for heterogeneous wireless sensor networks with
node redeployment,IEEE Computer, 37(8):41–49, 2004.

[6] H. Griffin, Elementary Theory of Numbers, McGraw Hill, New York,
1954.

[7] A. Navarra and A. Tofani, Distributed localization strategies for sensor
networks, inProc. 4th IEEE MASS, Pisa, Italy, October 2007.

[8] S. Olariu, M. Eltoweissy, and M. Younis, ANSWER: autonomous net-
works sensor systems,Journal of Parallel and Distributed Computing,
67, 114–126, 2007.

[9] S. Olariu, A. Waada, L. Wilson, and M. Eltoweissy, Wireless sensor
networks leveraging the virtual infrastructure,IEEE Network, 18(4):51–
56, 2004.



13

[10] A. Savvides, L. Girod, M. Srivastava, and D. Estrin, Localization in
sensor networks, inWireless Sensor Networks, C.S. Raghavendra, K.M.
Sivalingam, and T. Znati, Eds., Kluwer Academic, 2004.

[11] A. Waada, S. Olariu, L. Wilson, M. Eltoweissy, and K. Jones, Training a
wireless sensor network,Mobile Networks and Applications, 10(1):151–
168, 2005.

[12] Q. Xu, R. Ishak, S. Olariu, and S. Salleh, On asynchronous training
in sensor networks, inProc. 3rd Intl. Conf. on Advances in Mobile
Multimedia, K. Lumpur, Malaysia, September 2005.


