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AbstractÐSeveral new number representations based on a Residue Number System are presented which use the smallest prime

numbers as moduli and are suited for parallel computations on a reconfigurable mesh architecture. The bit model of linear

reconfigurable mesh with exclusive write and unit-time delay for broadcasting on a subbus is assumed. It is shown how to convert in

O�1� time any integer, ranging between 0 and nÿ 1, from any commonly used representation to any new representation proposed in

this paper (and vice versa) using an n�O log2 n
log logn

� �
reconfigurable mesh. In particular, some of the previously known conversion

techniques are improved. Moreover, as a byproduct, it is shown how to compute in O�1� time the Prefix Sums of n bits by a

reconfigurable mesh having the above mentioned size, thus improving previously known results. Applications to the Prefix Sums of

N h-bit integers and to Approximate String Matching with � mismatches are also considered. The Summation and the Prefix Sums can

be computed in O�1� time using O h logN � log2 N
log logN

� �
�Nh and O h2�log2 N

log�h�logN�
� �

�O�N�h� logN�� reconfigurable meshes, respectively.

Moreover, it is shown for the first time how to find in O�1� time all the occurrences of a pattern of length m in a text of length n, allowing

less than � mismatches, using a reconfigurable mesh of size O�m log j�j� �O n log j�j � log2 �
log log�

� �� �
, where the pattern and the text are

strings over a finite alphabet � and � < m � n.

Index TermsÐNumber representation, prefix sums, reconfigurable mesh, residue number system, string matching with k mismatches,

VLSI.

æ

1 INTRODUCTION

IN the last decade, reconfigurable meshes have been
extensively studied due to both their reconfiguration

capabilities, which permit a fast communication among
processors, and to technological developments, which
allowed some experimental and commercial reconfigurable
chips with thousands of processors to be built [1], [14].

In a reconfigurable mesh, each node can dynamically
connect and disconnect its adjacent edges in various
patterns. Specifically, each node of the mesh consists of a
processing unit, a small local memory, and a switch, while each
edge is viewed as a building block for a larger bus. Each
switch has some I/O ports and each port is directly
connected to at most one edge. While the edges outside
the switch are fixed, the internal connections between the
I/O ports of each switch can be locally configured by the
processor itself into any partition of the ports. In this way,
during the execution of an algorithm, the edges of the mesh
are dynamically partitioned into edge-disjoint subgraphs.
Every such subgraph forms a subbus and allows the
processors of the subbus to broadcast, at any given time, a
message to all the other processors sharing the same
subbus.

Several variants of the model described above have been
defined, depending on the kind of allowed partitions,
subbus arbitration, and local memory size. Two main
models are usually considered with respect to the allowed
partitions:

. General Reconfigurable Mesh. Any partition of the
ports is allowed. Thus, the possible configurations
are any mesh partition in edge-disjoint connected
subgraphs.

. Linear Reconfigurable Mesh. Only partitions made of
pairs and singletons are allowed. In this way, each
subbus is of the form of either a path or of a cycle.

Moreover, two main models are considered with respect
to the kind of subbus arbitration:

. Exclusive-Write. Only one processor is allowed to
broadcast on a subbus at any single step of
computation.

. Common-Write. More processors are allowed to
broadcast on the same subbus during the same step,
provided that all of them broadcast the same value
which in turn consists in a single bit only.

Finally, two models are also considered with respect to
both the size of each local memory and the width of the
busses: the bit model and the word model, where the above
parameters are either both constant or both logarithmic in
the size of the mesh, respectively. In this paper, we focus on
the Exclusive-Write, Linear Reconfigurable Mesh bit model,
that is clearly the weakest among the above mentioned
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models. Thus, the algorithms to be proposed in this paper
could also be executed on whichever of the other models
with no loss in performance.

Efficient parallel algorithms that use reconfigurable
networks have been devised for many problems, such as
sorting [6], [10], [13], [17], [21], matrix and integer multi-
plication [19], [9], bit and integer summation [11], [18],
string and pattern matching [5], [7], finding the connected
components of a graph [14], image processing [12], [14],
parallel data structures [2], and dynamic programming [3].
Most of such algorithms achieve an O�1� time complexity
by considering the so-called unit-time delay model, in which
it is assumed that each broadcast takes constant time to
reach all the processors in a subbus.

An aspect of paramount importance for designing
efficient parallel algorithms on reconfigurable meshes
consists of the methods used to represent numbers and to
do conversions between different number representations.
Indeed, although input and output data are usually
represented using the classical binary representation, unary
representations are extensively used for data processing
within the mesh in order to reach constant processing times.
Moreover, more sophisticated representations based on
Residue Number Systems (RNS) could also be used since
they are suited for exploiting the reconfiguration capabil-
ities of the mesh [19]. In an RNS, an integer is represented
by a tuple of elements, where each element is the remainder
of the division of the represented number by another
number called modulus and, thus, many operations can be
easily parallelized by performing them separately on each
remainder. By the Chinese Remainder Theorem, when the
moduli are pairwise relatively prime, the RNS representa-
tion of a number is unique. Using a reconfigurable mesh,
the moduli have to be carefully chosen in order to minimize
the sum of the moduli themselves and, thus, the size of the
RNS representation, while maximizing their product and,
thus, the greatest representable number. As suggested in
[15], the best choice consists of selecting the smallest prime
numbers as moduli.

In this paper, several new RNS number representations

are presented which indeed use the smallest prime numbers

as moduli. In particular, it is shown how to convert, in O�1�
time, any integer, ranging between zero and nÿ 1, from any

commonly used binary or unary representation to any new

binary or unary representation proposed in this paper (and

vice versa) using an n�O� log2 n
log logn� reconfigurable mesh. As

byproducts, some of the previously known conversion

techniques are improved and a new algorithm for comput-

ing in O�1� time the Prefix Sums of n bits is proposed. Given

n bits y0; . . . ; ynÿ1, the Prefix Sums problem consists

of computing z0; :::; znÿ1, where zi � y0 � � � � � yi, for

i � 0; :::; nÿ 1. The new algorithm for the Prefix Sums

works on a reconfigurable mesh having a 2n�O� log2 n
log logn�

size, and improves all the previously known algorithms

(indeed, an O�1� time algorithm on a reconfigurable mesh of

the same size was known until now only for the word

model [15], but not for the bit model).

Moreover, the RNS representations and conversion
techniques introduced in the present paper are applied to
compute the Summation and the Prefix Sums of a large
number of integers and to solve the Approximate String
Matching with � mismatches, where it is assumed that
the input and output data are represented by the usual
binary notation, while internal data conversions into (and
from) the RNS representation are made for achieving a
better performance. In particular, it is shown how to
compute in O�1� time the Summation and Prefix Sums of

N h-bit integers using O h logN � log2 N
log logN

� �
�Nh and

O h2�log2 N
log�h�logN�
� �

�O�N�h� logN�� reconfigurable meshes, re-

spectively, improving all previously known results for most

values of h. Indeed, the best algorithms for the Summation

on the bit model are those presented in [11] and [16], which

require O�1� time using meshes of size minfN; h log2 Ng �
Nh and

�����
N
p

log�O�1��N � �����
N
p

h, respectively. Therefore, our

algorithm is better than that of [11] when h � o� N
logN�, while

it has a worse product time � size than that of [16].

However, in contrast to the algorithm proposed in the

present paper, the algorithm of [16] is not capable of

reading the input and furnishing the output from the

boundaries of the mesh in constant time since it requires


 min
�����
N
p

; h
���
N
p

log�O�1�� N

n o� �
time for I/O. As for the Prefix Sums,

no constant time algorithm was devised before for the bit

model, the only constant time being that proposed in [18],

which uses an N �N word model of reconfigurable mesh

and works only when h � O�logN�. Thus, the constant time

Prefix Sums algorithm proposed in the present paper not

only is the first such algorithm for the bit model, but also is

better than that of [18] since it requires a mesh of smaller

size and works for any h.
Finally, it is shown for the first time how to find in

O�1� time all the occurrences of a pattern of length m in
a text of length n, allowing less than � mismatches,
using a reconfigurable mesh of size O�m log j�j� �
O n log j�j � log2 �

log log�

� �� �
, where the pattern and the text

are strings over the finite alphabet � and � < m � n.
The rest of this paper is organized as follows: Section 2

formally defines the model of reconfigurable mesh used
throughout this paper, reviews some basic techniques used
for computing on reconfigurable meshes, and recalls some
notations used in Number Theory. Section 3 is the core of
this paper and deals with both old and new number
representations, as well as efficient conversion techniques
between any pair of representations.

In Section 3.1, the definitions of POS, 1UN, 2UN, and
BIN representations given in [10] are reviewed. The first
three are unary representations. Even if they need an
exponential amount of area to be stored, they are useful to
exploit the reconfiguration capabilities of reconfigurable
meshes. Moreover, a table look-up technique is introduced,
which is extensively used in the rest of this paper. Then, in
Section 3.2, the new RPOS, R1UN, R2UN, and RBIN
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representations are defined. All of them are RNS represen-
tations and the first three of them combine compactness and
suitability for reconfigurable computing. Moreover, thanks
to these new RNS representations, some of the conversion
techniques presented in [9] are improved.

In Section 3.3 the results shown by Frank [8] and
concerning disjoint paths on a knock-knee model of recti-
linear grid are considered. Due to the importance of unary
representations in the field of reconfigurable computing,
Frank's results are interpreted as techniques for computing
injective functions using the POS representation.

In Section 3.4, the techniques for all the possible
conversions between representations are shown. In parti-
cular, the BIN! RPOS! BIN conversion is of paramount
importance. Indeed, input and output are often required to
be represented in the usual BIN representation. Moreover,
the RPOS representation combines good compactness, the
ability to exploit the reconfiguring capabilities of the
architecture used (due to its unary nature), and adapted-
ness to some parallelization purposes (due to the remainder
number system). As a byproduct, an algorithm for the
prefix sums of N bits is given that outperforms all the
previously known algorithms.

In Section 4, the problem of adding a large number N of
h-bit integers is considered. By a standard parallelization
technique that can be used to approach a large class of
problems, very efficient algorithms are given for the
Summation and the Prefix Sums.

Finally, in Section 5, an algorithm for the well-known
problem of Approximate String Matching with � mis-
matches is presented. To our knowledge, this problem has
not been considered before on a reconfigurable mesh.
Together with the Summation algorithm and the two Prefix
Sums algorithms, the Approximate String Matching algo-
rithm represents a good applicative example of the RNS
representations and conversion techniques introduced in
this paper.

2 DEFINITIONS AND NOTATIONS

A Linear Reconfigurable Mesh of size r� c consists of a
classical r� c processor array with additional reconfigur-
able capabilities [1], [14], [20]. Specifically, there are r rows
and c columns of nodes, with edges connecting each node to
its four neighbors (or fewer, for borderline nodes). The node
in row i and column j is denoted with Pi;j. Each edge is a
building block for a larger bus, while each node has a
switch with four I/O ports (E, W, N, S), which can be
configured in 10 possible ways, as shown in Fig. 1. Each
node also has a processor capable of performing the basic
arithmetic and logic operations and a small local memory.

Processors operate in a single-instruction multiple-data
(SIMD) mode and only one processor can broadcast at
any time to a subbus shared by multiple processors.

The bit model is assumed, where each local memory has a
size of ��1� bits and each bus can carry ��1� bits of data.
Note that this implies that the processors do not know their
indices in the array. It is also assumed that switch
reconfiguration can be done in O�1� time by local decisions
taken by the processors themselves. It is worth noting that,
under the assumptions that processors, switches, and edges
occupy O�1� space, the reconfigurable mesh can be laid out
on a rectangle of O�rc� area in the VLSI grid model [14].

The literature on reconfigurable meshes has been
growing in the last decade, therefore, some main basic
techniques are well established today. In particular, it was
proven that a 1� n reconfigurable mesh (e.g., a row or a
column of an n� n reconfigurable mesh) can perform in
constant time an AND operation on n Boolean values stored
one per processor (see [14], for example). Clearly, the same
holds for OR, NAND, and NOR. Moreover, if all the switches
of an r� c reconfigurable mesh configure themselves to
EW , r row buses are built and these buses can be used to
broadcast the content of a column to all the other ones.
Similarly, c column buses can be built with the NS
configuration. All these simple techniques are assumed to
be known by the reader.

We end this section by recalling some useful notations.
An integer denoted by p is always a prime number, log
denotes the logarithm to the base 2, and we assume the
reader is familiar with the standard notation used in
Number Theory, which is now briefly recalled.

Let m be a positive integer greater than one. Given two
integers a1 and a2, the remainder of the division of a1 by m
is denoted by a1 mod m. Moreover, we say that a1 �
a2 mod m if there exists an integer q such that
a1 � qm� a2. ZZ=mZZ is the quotient set with respect to the
relation ª� mod m.º This set can be put in bijective relation
with f0; . . . ;mÿ 1g in a natural way and we will often refer
to these two sets as they were the same mathematical object.
�ZZ=mZZ�� is the set of elements z 2 ZZ=mZZ for which there
exists an element zÿ1 2 ZZ=mZZ such that zzÿ1 � 1 mod m.

If m is a prime number, then �ZZ=mZZ�� is equal to
ZZ=mZZ n f0g and there exists an element c 2 ZZ=mZZ such
that

ci mod m j i � 0; . . . ;mÿ 2
� 	 � �ZZ=mZZ��:

A number c with such a property is called a generator of
�ZZ=mZZ��.

3 DISCRETE ARITHMETIC ON RECONFIGURABLE

MESH

This section deals with known binary and unary
representations and new RNS representations, as well as
with efficient conversion techniques between pairs of
representations.

3.1 Number Representation

One of the key contributions of [10] consists of an organized
view of the various representations of integer numbers on
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reconfigurable models, which are now briefly recalled,
together with some algorithms for performing basic
arithmetic operations.

Definition 3.1 ([10]). Given an integer a 2 �0; nÿ 1�, we define
the following representations of a:
[POS:] n bits �b0; b1; . . . ; bnÿ1� are used, where ba � 1 and
bi � 0 for all i 6� a;
[1UN:] n bits �b0; b1; . . . ; bnÿ1� are used, where bi � 1 for all
i � a and bi � 0 for all i > a;
[2UN:] n bits �b0; b1; . . . ; bnÿ1� are used, where a bits are equal
to one and nÿ a bits are equal to zero (note that this
representation is not unique for a given a);

[BIN:] dlogne bits �b0; b1; . . . ; bdlogneÿ1� are used, where

a �Pdlogneÿ1
i�0 bi2

i.

In the remainder of this paper, we will often use the strict
correlation between the POS and 1UN representations.
Thus, it is useful to recall a simple result shown in [10].

Lemma 3.2. Given the POS (1UN) representation of an integer
a 2 �0; . . . ; nÿ 1�, a 1� n reconfigurable mesh can compute
its 1UN (POS) representation in O�1� time.

It is clear that the POS, 1UN, and 2UN representations
need an exponential amount of area to be stored, but they
are interesting since they allow efficient techniques to be
used which exploit the reconfiguration capabilities of the
mesh. The BIN representation does not seem to have the
same capabilities, but it is compact. Our effort is aimed at
defining a representation that combines the good qualities
of all BIN, POS, 1UN, and 2UN.

In [10], conversion techniques are shown between any
possible pair of representations, using the word model of
reconfigurable mesh. Moreover, [10] shows how to convert
the BIN representation of an integer into its 1UN repre-
sentation using the bit model. This result can be improved,
as will be shown in Corollary 3.4.

In the remainder of the paper, we will often use a simple
look-up table technique to compute functions on the POS
representation of integers. Therefore, it is useful to give a
lemma that shows how these functions are computed.

Lemma 3.3. Let f : �0; nÿ 1� ! �0;mÿ 1� be a fixed function.
Given the POS representation of a 2 �0; nÿ 1� in a row, a
dlogme � n reconfigurable mesh can compute in O�1� time
the BIN representation of f�a�. Moreover, given the BIN
representation of b 2 �0;mÿ 1� in a column, the POS
representations of the set fÿ1�b� can be computed in O�1�
time.

Proof. The BIN representation of f�j� can be stored in the
jth column of the mesh, for all 0 � j < n. By broadcasting
the POS representation of a to all the rows of the mesh,
f�a� can be selected and output, if needed. Indeed,
column a is the only column having the bit set to one in
the POS representation of a.

Now, suppose that the mesh stores the BIN repre-
sentation of b in a column. By broadcasting this value to
all the columns of the mesh, each column j can check
whether b is equal to f�j�. In this case, the column
outputs a 1 on the first row and the required set is
computed. Note that the set may be empty, if f is not

surjective, or contain more than one element, if f is not
injective. tu

The paper [16] gives constant time algorithms to perform
the POS ! BIN and the BIN ! POS conversions on a

dlogne � n and n� n bit model of reconfigurable mesh,

respectively. However, the BIN ! POS conversion can be
improved, as shown in the following simple corollary of

Lemma 3.3.

Corollary 3.4. Given the POS (1UN) representation of an

integer a 2 �0; nÿ 1� in a row, a can be converted into its BIN

representation in O�1� time on a dlogne � n reconfigurable

mesh and vice versa.

Proof. The proof follows by Lemma 3.3, letting m � n, and

f equal to the identity function (see Fig. 2). Note that the
identity function is obviously injective and surjective,

thus the set consists in a single element. If the 1UN

representation is used, Lemma 3.2 can be used to get the
POS representation. tu

The next two lemmas, 3.5 and 3.6, show simple ways to

perform arithmetic operations with the POS representations
of integers. The proof of Lemma 3.5 is only sketched since it

involves a simple application of well-known techniques.

Lemma 3.6 provides a multiplication algorithm between

integers in �0; pÿ 1�, exploiting the primality of p.

Lemma 3.5. Given the POS representation of two integers

a1; a2 2 �0; nÿ 1� in a row, the POS representation of

a1 � a2 mod n (1)
ÿ�a2� mod n (2)
a1 ÿ a2 mod n (3)

can be computed in O�1� time on a dlogne � n reconfigurable

mesh.

Proof. By Corollary 3.4, the BIN representations of a1 and a2

can be obtained. Then, (1), (2), and (3) can be computed

by standard techniques (see [4], for example). Note that
the modulo n operation reduces to adding or subtracting

n in this case. tu
Lemma 3.6. Given the POS representations of two integers

a1; a2 2 �0; pÿ 1� in a row, where p is a prime number and

a2 6� 0, the POS representation of

a1 � a2 mod p (4)
�a2�ÿ1 mod p (5)
a1=a2 mod p (6)

can be computed in O�1� time on a dlog pe � p reconfigurable

mesh.
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Proof. Proof of (4): Let c 2 �ZZ=pZZ�� be a generator of
�ZZ=pZZ�� and let f : �0; pÿ 1� ! �0; pÿ 2� be a function
such that

j � cf�j� mod p; for all 0 < j < p:

Note that elementary algebra assures that, for each prime
number p, there exists such an integer c and that f ,
restricted to the interval �1; pÿ 1�, is a bijective function.
(See Fig. 3.)

We can assume that a1; a2 > 0, indeed, the first row of
the reconfigurable mesh can check whether one of the
two integers is zero, in this case, the algorithm stops in
O�1� time giving zero as output.

By Lemma 3.3, letting m � n and, by Corollary 3.4, the
POS representations of d1 and d2 can be computed such
that cd1 � a1 mod p and cd2 � a2 mod p. Moreover,

a1 � a2 � cd1 � cd2 � cd1�d2 mod �pÿ1� mod p;

hence, a1 � a2 can be computed in the following manner.
By (1) of Lemma 3.5, d1 � d2 mod �pÿ 1� is computed
and, by Lemma 3.3 again, cd1�d2 mod �pÿ1� mod p is
obtained, that is, a1 � a2 mod p.

Proof of (5): As in the proof of (4), d2 can be found
such that cd2 � a2 mod p. By (2) of Lemma 3.5,
ÿd2 mod �pÿ 1� can be computed. Then, using the
technique shown above, cÿd2 mod �pÿ1� mod p, that is,
�a2�ÿ1 mod p can be obtained.

Proof of (6): Note that a1=a2 � a1 � �a2�ÿ1 mod p.
Hence, this result can be easily proven combining the
proofs of (4) and (5). tu

3.2 The Residue Number System Representations

In this section, the RPOS, R1UN, R2UN, and RBIN
representations are introduced which are the RNS counter-
part of the POS, 1UN, 2UN, and BIN representations
considered in Section 3.1. In particular, algorithms for
performing basic arithmetic operations using the RNS
representations are also illustrated.

Definition 3.7. Let �m1; . . . ;ms� be an ordered set of positive
integers all greater than one. Given an integer a, the RNS
representation of a is an s-tuple �a1; . . . ; as�, where ai is the
remainder of the division a=mi, for all i � 1; . . . ; s. The mis
are called moduli, while the ais are called remainders.

By the Chinese Remainder Theorem we know that if the
moduli are pairwise relatively prime, the RNS representa-
tion of two integers a; b 2 �0; . . . ;M ÿ 1�, where M is the
product of all the moduli, is identical if and only if a � b.

In the wide literature concerning Residue Number
Systems, the problem of which representation has to be
used for the remainders is often disregarded since the
binary representation is implicitly accepted. It is important
to note that, in this case, the choice of the moduli is not so
crucial from a memory-usage point of view. Indeed, if the
moduli are pairwise relatively prime, the area needed for
storing the binary representations of the remainders for the
largest integer a 2 �0; nÿ 1� is the same as the area needed
by the binary representation of a itself, within constant
factors. This can be immediately deduced from

log
Y
i

mi �
X
i

logmi: �7�

This is not the case for reconfigurable meshes, where the
unary representations are widely used. These remarks lead
to the definition of the following representations.

Definition 3.8. Let p1; . . . ; pk be the k smallest prime numbers.
We define the RPOS, R1UN, R2UN, and RBIN representa-
tions of an integer a as the RNS representation of a with
moduli p1; . . . ; pk, where the remainders are represented using
the POS, 1UN, 2UN, and BIN representations, respectively.

Similarly to Theorem 1 of [15], the size of the above
representations can be easily derived starting from the
Prime Number Theorem. In particular, assume that we
want to represent positive integers in �0; nÿ 1� and that M is
equal to the product of the moduli p1; . . . ; pk. Then, in order
to be able to uniquely represent all integers in �0; nÿ 1�, it is
easy to see that:

k � �
logn

log logn

� �
: �8�

Consequently,

logM � ��logn� �9�
and pk is asymptotically equal to logn, within constant
factors:

pk � ��logn�: �10�
In the case of RPOS, R1UN, and R2UN, the representa-

tion �r1; . . . ; rk� of an integer a 2 �0; nÿ 1� is such that each
remainder ri needs pi bits to be stored. Thus, the amount of
bits needed by these representations is

�
log2 n

log logn

� �
:

Therefore, these representations, where the remainders are
stored in unary format, turn out to be quite compact.

In the case of RBIN, each remainder ri needs dlog pie bits,
so the overall size taken by an integer in �0; nÿ 1� is

��logn�:
Note that the RBIN representation of an integer in �0;M ÿ 1�
needs as much area as the BIN representation of an integer
in �0; nÿ 1�, within constant factors.

Table 1 shows the growth of pk, log10 M, log2 M, andPk
i�1 pi as k increases. It can be clearly seen that the

compactness of RPOS, R1UN, R2UN, and RBIN is not only
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asymptotically good, as shown above, but also quite

satisfying for small numbers. This fact could be very

important for applicative purposes. For example, to have

the same power of representation of BIN with 32 bits, we

need to use RPOS with moduli p1; . . . ; p10, for a total amount

of 129 bits.
In the remainder of the paper, pi always denotes the ith

smallest prime number, k the minimum number of primes

needed to represent integers in �0; nÿ 1�, and M ÿ 1 the

biggest number representable with the RNS representation

using p1; . . . ; pk as moduli.
We can easily extend Lemmas 3.5 and 3.6 to the new

RPOS representation. Indeed, all the Residue Number

System representations are well-suited for parallelization

purposes since a wide range of operations can be done

separately on each remainder.

Proposition 3.9. Given the RPOS representation of two integers

a1; a2 2 �0; nÿ 1� in a row, the RPOS representation of

a1 � a2 mod M (11)
ÿ�a2� mod M (12)
a1 ÿ a2 mod M (13)
a1 � a2 mod M (14)

can be computed on an O�log logn� �O log2 n
log logn

� �
reconfigur-

able mesh in O�1� time.

Proof. Thanks to the well-known properties of the RNS

representations, all these operations can be done sepa-

rately on each remainder. We use a log pk �
Pk

i�1 pi
reconfigurable mesh, built by serially attaching k log pk �

pi submeshes Spi , for i � 1; . . . ; k (see Fig. 4). The
operations done within each submesh are identical to
those described in Lemma 3.5 and Lemma 3.6. tu

3.3 Functions on Unary Notation

Unary notation has been widely used in reconfigurable
meshes to obtain efficient constant-time algorithms.

We are interested in computing injective functions on

positive integers in their POS representation. Let A �
fa1; . . . ; ahg be a nonempty subset of �0; . . . ; nÿ 1� and f

an injective function from A to �0; . . . ; nÿ 1�. We can

compute f on an m� n reconfigurable mesh building jAj
distinct linear subbuses, where subbus i has one endpoint at

the N port of P0;ai and the other endpoint at the S port of

Pmÿ1;f�ai�. In this manner, if the n-bit POS representation of a

number x is given at the upper boundary of the mesh one

bit per processor, the POS representation of f�x�will appear

at the lower boundary in constant time. More formally, if

bnÿ1bnÿ2 � � � b0, the POS representation of x 2 A is given as

input by putting a bi-signal on the N port of P0;i for all i,

then, after a constant time, the signals cnÿ1cnÿ2 � � � c0 carried

by the S ports of the last row of processors will represent

the integer number f�x� in the POS notation.
The sufficient and necessary conditions needed to build

these subbuses on the m� n reconfigurable mesh can be
derived from a paper by Frank [8]. His work concerns the
disjoint paths problem on a rectilinear grid using a knock-
knee model. It is fairly easy to see that his solution is
directly portable to the linear reconfigurable mesh model
and, so, the problem of building the subbuses is solved as a
natural corollary of Frank's Theorem 1. It is worth noting
that Frank's solution is algorithmic, i.e., it provides a
procedure that effectively builds the paths and, hence, the
switch configurations for the mesh.

Consider a vertical cut of the reconfigurable mesh. Surely
the number of subbuses that must cross the cut is an
important parameter to determine the number of rows
needed for computing a function f .

Definition 3.10. The congestion of f is the following number:

c�f� � max
j
cj�f�;

where

cj�f� � #�fi 2 A j i � j and f�i� > jg[
[ fi 2 A j i > j and f�i� � jg�:

It is evident that the congestion of a function is a lower
bound on the number of rows of a reconfigurable mesh
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TABLE 1
Growth of Some Functions as k, the Number of Primes

Used in the RPOS Representation, Increases

M ÿ 1 is the largest integer representable, pk is the kth smallest prime,
log10 M, log2 M, and

P
p are the digits needed to represent M ÿ 1 in the

decimal, BIN, and RPOS representations.

Fig. 4. The log pk �
Pk

i�1 pi reconfigurable mesh used to perform the

arithmetic operations described in Proposition 3.9.



capable of building the disjoint paths as defined above.

However, it is quite surprising that, under proper hypoth-

eses, it is an upper bound, too.

Definition 3.11. We say that f satisfies the column criterion if

and only if the number of rows of the mesh is greater than or

equal to the congestion of f .

Definition 3.12. Pi;j is called a terminal vertex if and only if

either i � 0 and j 2 A or i � mÿ 1 and j 2 f�A�.

We restate Frank's Theorem 1 in terms of reconfigurable

subbuses.

Theorem 3.13 ([8]). If at least one among P0;0, P0;nÿ1, Pmÿ1;0,

and Pmÿ1;n is not a terminal vertex, the column criterion is

necessary and sufficient to build jAj subbuses such that

subbus i has one endpoint at the N port of P0;ai and the other

at the S port of Pmÿ1;f�ai�.

Several results present in the literature can be viewed as

simple corollaries of Theorem 3.13. Followed is an example,

where, for the sake of simplicity, n is supposed to be even.

This result is a slight improvement on Lemma 2 in [10],

where an bn2c � n reconfigurable mesh is used. Although

Corollary 3.14 improves only by a factor of two on Lemma 2

in [10], it represents a stronger result. Indeed, according to

the above discussion, bn4c is exactly the minimum number of

rows needed to build the subbus system to perform bx=2c in

one broadcasting step and it is remarkable that this derives

as a simple consequence of Theorem 3.13.

Corollary 3.14. Given in a row the n-bit POS representation of

an integer x, an bn4c � n reconfigurable mesh can compute

bx=2c and x mod 2 in constant time.

Proof. The proof can be derived from Theorem 3.13 by

letting A � f0; 2; 4; . . . ; nÿ 2g and f�x� � x
2 . f is clearly

injective and Pmÿ1;nÿ1 is not a terminal vertex, so proving

that the congestion of f is less than or equal to bn4c is

sufficient to obtain the thesis by Theorem 3.13 (see Fig. 5

as an example).

cj�f� � #�fi 2 A j i � j and f�i� > jg[
[ fi 2 A j i > j and f�i� � jg� �

� fi 2 A j i > j and f�i� � jg �

� min
j

2

� �
;
nÿ j

2

� �� �
� n

4

j k
:

Without loss of generality, we can suppose that x is
stored in the first row of the mesh. Hence, P0;x stores 1,
while P0;i stores 0, for all i 6� x. During the first step of
the computation, P0;x transmits a signal to P0;xÿ1 (if this
processor exists). Then, both the processors P0;x and
P0;xÿ1 broadcast a 1-signal on their N port. Obviously,
one and only one of the two integers x and xÿ 1 is even
and, consequently, only Pmÿ1;bx=2c receives a 1-signal.
Hence, the last row of the mesh receives the POS
representation of bx=2c. Note that if x � 0, the algorithm
still works, even if P0;xÿ1 does not exist.
x mod 2 can be easily computed by transmitting a

signal from the N port of P0;x and performing a NOR

operation on the signals received by the last row of the
mesh. tu

It is useful to state another simple corollary of
Theorem 3.13. It assures that n rows and n� 1 columns
are enough to build the subbuses according to any injective
function f .

Corollary 3.15. Let f : �0; nÿ 1� ! �0; nÿ 1� be an injective
function. It is possible to build n subbuses on an n� �n� 1�
reconfigurable mesh such that subbus i has one endpoint at the
N port of P0;i and the other endpoint at the S port of Pnÿ1;f�i�.

Proof. Noting that the congestion of f is less than or equal
to n and that P0;n is not a terminal vertex, we can get the
thesis by Theorem 3.13. tu

3.4 Conversions and Prefix Sums of N Bits

This section illustrates the techniques for all the possible
conversions between pairs of representations. In particular,
the BIN ! RPOS ! BIN conversions are the most
important since the BIN representation is usually employed
for input and output data, while the RPOS representation
introduced in Section 3.2 is well suited for efficient parallel
processing on a reconfigurable mesh. The BIN ! RPOS
conversion follows by Lemma 3.23 and Proposition 3.24,
while the RPOS ! BIN conversion derives from Corollary
3.16 and Proposition 3.26. As a byproduct of the conversion
techniques, an efficient algorithm for computing the Prefix
Sums of N bits is given by Theorem 3.19 and Corollary 3.20.

Corollary 3.16. Given an integer a 2 �0; nÿ 1� in its RPOS
representation in a column, its RBIN representation can be
computed in O�1� time on an O� log2 n

log logn� �O�logn� reconfi-
gurable mesh and vice versa.

Proof. The conversion algorithm is the same as in
Corollary 3.4 applied in parallel on each remainder of
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Fig. 5. Example of subbus system on a 4� 16 reconfigurable mesh such that the port N of P0;2x is connected to the port S of P3;x, for 0 � x < 8.



the RPOS representation. To perform this operation an
O� log2 n

log logn� �O�log logn� reconfigurable mesh is sufficient,
but if we want to compact the RBIN representation of a
using a single row, we need a larger mesh. This task can
be easily executed by standard data moving techniques.tu

Proposition 3.17. Given the POS representation of an integer
a 2 �0; nÿ 1� in a row, a can be converted into its RBIN
representation in O�1� time on an O�logn� � n reconfigurable
mesh and vice versa.

Proof. The O�logn� � n reconfigurable mesh is arranged in
k horizontal slices Si, 1 � i � k. Each Si is composed of
dlog pie rows. By using column subbuses, the POS
representation of a can be broadcast to all the rows of
the mesh.

Let fi : �0; nÿ 1� ! �0; pi ÿ 1� be such that fi�a� � a
mod pi. By Lemma 3.3, letting m � pi, each submesh Si
can compute the BIN representation of the remainder of
a modulo pi. Thus, the RBIN representation of a can be
stored in a column.

Now, suppose that the RBIN representation of a is
stored in a column. By Lemma 3.3, each Si can compute
the set Ai of integers j 2 �0; nÿ 1� such that a � j mod pi.
By the Chinese Remainder Theorem, only a 2 �0; nÿ 1� is
in the set Ai, for all 1 � i � k. Thus, a can be found in
constant time by performing in parallel an AND opera-
tion along each column of the mesh. tu

Corollary 3.18. Given the POS representation of an integer a 2
�0; nÿ 1� in a row, a can be converted into its RPOS
representation in O�1� time on a logn� n reconfigurable
mesh and vice versa.

Proof. The proof follows by Proposition 3.17 and
Corollary 3.16. tu

One of the most common operations for applicative
purposes is the sum of N bits. This problem has already
been solved using a reconfigurable model, see Corollary 1
in [14], where an N �N reconfigurable mesh is used to
compute all the prefix sums of N bits in O�1� time. An
improvement on this result was given in [15], where an

N � log2 N
log logN common-write word model reconfigurable

mesh is used. By following the same approach of [14] and

[15], the same result can be obtained on an exclusive write

bit model reconfigurable mesh of the same size, within

constant factors, as a simple application of the RNS number
representations defined in this paper.

Theorem 3.19. Given N bits, the prefix sums of these bits can be

computed in O�1� time on a 2N �O� log2 N
log logN� reconfigurable

mesh.

Proof. Clearly, the sum of N bits is an integer in �0; . . . ; N�.
Thus, we will use the smallest RPOS representation
capable to represent N .

Let fi : �0; . . . ; pi� ! �0; . . . ; pi�, i � 1; . . . ; k, be k func-
tions defined as follows:

fi�x� � �x� 1� mod pi;

for each i, fi is injective and its congestion is two. Thus,

according to Theorem 3.13, using a 2� �pi � 1� reconfi-

gurable mesh Spi it is possible to build pi subbuses such

that subbus x has one endpoint at the N port of P0;x and

the other endpoint at the S port of P1;fi�x�. Serially

attaching the k reconfigurable meshes Sp1
; Sp2

; . . .Spk (as

shown in Fig. 6), we get a 2�O� log2 N
log logN� mesh S capable

of summing one to the RPOS representation of an integer

given on the upper boundary. A larger 2N �O� log2 N
log logN�

reconfigurable mesh H (that solves the problem) can be

obtained stacking together N identical copies of the

submesh S (see Fig. 7). Each of these N submeshes gets

as input a bit bi from the left. This bit has to be broadcast

to all the PEs of the submesh S. According to the value of

the bit, S either configures its switches to perform a +1

operation, if the bit is 1, or builds column subbuses to

perform a +0 operation, if the bit is 0. Putting on the

upper boundary of H the RPOS representation of zero,

we get, in O�1� time, the RPOS representation of all the

prefix sums of the n bits from the lower boundary of the

ith copy of S, 1 � i � N . Thus, the overall sum of the

n bits is gotten from the lower boundary of H itself. To

get the POS representation of this value, we can use

Corollary 3.18 on H by swapping columns and rows. In

an analogous way we can get its BIN representation

using Proposition 3.4. tu
The above results can be used to derive a simple

summation algorithm, useful to perform some conversions
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Fig. 6. A subbus system capable of adding 1 to the RPOS representation
of an integer given on the first row. In this example, k is equal to two, the
RPOS representation of two is given on the first row, and the RPOS
representation of three is obtained on the last row.

Fig. 7. A scheme of reconfigurable mesh capable of summing N bits in

O�1� time.



between pairs of representations. The proof follows a

technique used earlier in [11].

Corollary 3.20. Given N bits, the sum of these bits can be

computed in O�1� time on an N �O� log2 N
log logN� reconfigurable

mesh.

Proof. The reconfigurable mesh H shown in the proof of the

previous theorem can be modified by halving the

number of rows. The resulting N �O� log2 N
log logN� mesh H 0

can iterate twice the algorithm of H on a couple of bits bi
and bi�1 per submesh S got as input from the left. H 0

sums the bits in even position during the first step,

broadcasts the partial sum from the last row to the first

one, and configures itself to sum the bits in odd position

during the second step. In this way, H 0 is capable of

summing N bits in O�1� time, as claimed.
As in the proof of Theorem 3.19, we can easily get the

POS and BIN representations of the computed sum. tu

The above Summation algorithm is used for performing

some conversions between pair of representations, as

shown in the following two corollaries.

Corollary 3.21. Given the 2UN representation of an integer a 2
�0; nÿ 1� in a column, a can be converted into its POS

representation in O�1� time on an n�O� log2 n
log logn� reconfigur-

able mesh.

Proof. The conversion simply consists of adding the n bits

of the 2UN representation on an n�O� log2 n
log logn� reconfi-

gurable mesh, as shown in Corollary 3.20, letting

N � n. tu
Corollary 3.22. Given the R2UN representation of an integer

a 2 �0; nÿ 1� in a column, its RPOS representation can be

computed in O�1� time on an O� log2 n
log logn� �O� log2 logn

log log logn�
reconfigurable mesh.

Proof. Consider k submeshes Mi, 1 � i � k, obtained with

the rows of the mesh storing the ith remainder of a. The

size of Mi is pi �O� log2 logn
log log logn�.

By letting N � pi in Corollary 3.20, each Mi can
convert in parallel the remainder it stores into its POS
representation by adding the bits of the 2UN representa-
tion. In this way, the RPOS representation of a is
computed in O�1� time, as required. tu

Before showing how to perform the BIN ! RBIN and

BIN ! RPOS conversions, the following preliminary

lemma is needed.

Lemma 3.23. Given the BIN representation of an integer a 2
�0; nÿ 1� in a row, the BIN (POS) representation of a mod pi
can be computed in O�1� time on an O�logn� �O�logn�
reconfigurable mesh.

Proof. Let h � dlogne and let �a0; a1; . . . ; ahÿ1� be the

BIN representation of a. We can partition the h bits of

the representation of a into groups of w �
maxfdlog logne; dlog pieg bits each. Thus, letting a� � 0,

for all � � h,

a �
Xhÿ1

s�0

as2
s

 !
�

�
Xdh=weÿ1

j�0

2jw
Xwÿ1

s�0

ajw�s2s
 !

mod pi:

Let

bj �
Xwÿ1

s�0

ajw�s2s; 0 � j < dh=we;

then,

a �
Xdh=weÿ1

j�0

bj2
jw mod pi

ÿ � !
mod pi:

Suppose that the reconfigurable mesh is arranged in

dh=we vertical slices Sj, 0 � j < dh=we, such that Sj has

the BIN representation of bj in a row. By Corollary 3.4,

each Sj can get the POS representation of bj in a column.
Let fj : �0; 2w ÿ 1� ! �0; dlog pie ÿ 1� be a bijective

function such that fj�x� � x2jw mod pi. By Lemma 3.3,
each Sj can compute fj�bj� and store it in a row.
Therefore,

a mod pi �
Xdh=weÿ1

j�0

fj�bj�
 !

mod pi

and it is possible to use Lemma 2 of [9] since dh=we is

O� logn
log logn� and each fs�bs�, 0 � s < dh=we, consists of

log pi � O�log logn� bits. Thus, by Lemma 2 of [9], an

O� logn
log logn� �O�logn� reconfigurable mesh is sufficient to

perform this sum. It is important to note that Lemma 2

needs the inputs in a particular permutation of the bits.

So, the O�logn� bits of the numbers to be added must be

routed to the correct places. This is surely possible on our

reconfigurable mesh by well-known routing techniques

since it has O�logn� rows and O�logn� columns.
Finally, the POS representation of the remainder,

which needs O�logn� bits to be stored, can be obtained
by Corollary 3.4. tu
It is worth noting that either Theorem 1 of [9] could be

used to improve the previous lemma or the lemma itself can

be directly derived from Theorem 1 of [11]. However, such

strong results are not needed in the remainder of this paper.

Moreover, the algorithm of Lemma 3.23 seems to be more

suited for applicative purposes since it requires less

broadcasting operations. The following proposition gives

an algorithm for performing the BIN ! RBIN and BIN !
RPOS conversions.

Proposition 3.24. Given the BIN representation of an integer

a 2 �0; nÿ 1� in a row, the RBIN (RPOS) representation of a

can be computed in O�1� time on an O log2 n
log logn

� �
�O�logn�

reconfigurable mesh.

Proof. We use a reconfigurable mesh obtained by stacking

together k O�logn� �O�logn� submeshes. The ith sub-

mesh, 1 � i � k, is charged of computing the ith
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remainder of the RBIN (RPOS) representation of a by

Lemma 3.23. Since k � O logn
log logn

� �
, the size of the mesh is

as stated. tu
In order to show the RBIN ! BIN and RPOS ! BIN

conversions in the next Proposition 3.26 and Corollary 3.27,

respectively, the following preliminary result will be useful.

Lemma 3.25. Let f : �0;mÿ 1� ! �0; 1� be a function. Given the

BIN representation of a 2 �0;mÿ 1� in a row, an

O�m= logm� � dlogme reconfigurable mesh can compute

f�a� in constant time.

Proof. Suppose that processor Pi;j stores a bit equal to

f�j2iblogblogmcc�.
We can arrange the reconfigurable mesh into two

submeshes S1 and S2 serially attached. S1 has
O�m= logm� rows and dlogme ÿ blogblogmcc columns,
S2 has O�m= logm� rows and blogblogmcc columns.
Thus, both S1 and S2 can separately compute the POS
representation of the bits of a stored in their row (note
that blogmc � O�m= logm� rows are needed to perform
this operation). The POS representation stored in S2,
consisting of at most blogmc bits, can be broadcast to all
the rows of the mesh. Similarly, the POS representation
stored in S1, consisting of O�m= logm� bits, can be
broadcast to all the columns. In this way, the only
processor Pi;j which stores the one of both representa-
tions is such that a � j2iblogblogmcc. Thus, it can output the
value f�j2iblogblogmcc� � f�a�. tu

Proposition 3.26. Given the RBIN representation of an integer

a 2 �0; nÿ 1� in a row, its BIN representation can be

computed in O�1� time on an O� log2 n
log logn� �O�logn� reconfi-

gurable mesh.

Proof. Let �r1; . . . ; rk� be the RBIN representation of a. It is

well-known that the BIN representation of a can be

computed in the following manner. Let

Mi �M
pi
; 1 � i � k;

and define Ti to be the inverse of Mi modulo pi, that is

TiMi � 1 mod pi; 1 � i � k:
Then,

a �
Xk
i�1

riTiMi mod M: �15�

The BIN representation of TiMi uses O�logn� bits.
We use a reconfigurable mesh arranged in k sub-

meshes Si, i � 1; . . . ; k, serially attached. Each submesh
Si has O� log2 n

log logn� rows and O�log pi� columns in such a
way that submesh Si stores the ith remainder of a in a
row. Moreover, each Si is arranged in O�logn�
submeshes Bij, j � 0; . . . ; dlogMe ÿ 1, each of size
O� logn

log logn� �O�log pi� (See Fig. 8).

The algorithm acts as follows: During the first step,
each Si broadcasts the ith remainder to all the Bij

submeshes, j � 0; . . . ; dlogMe ÿ 1. Then, by Lemma 3.25,
each Bij, for all i � 1; . . . ; k and j � 0; . . . ; dlogMe ÿ 1,
computes in constant time the value fij�rj�, where fij :
�0; pi ÿ 1� ! �0; 1� and fij�r� is equal to the jth bit of the
binary representation of rMiTi.

Now, all the jth bits of the binary representation of the
addenda of (15) are stored in a horizontal slice,
consisting of all the Bij, i � 1; . . . ; k, of the reconfigurable
mesh. Thus, it is possible to compute the binary
representation of

s �
Xk
i�1

riTiMi �16�

by Lemma 2 of [9]. Note that s � kM since s is the sum

of k numbers each smaller than M. Therefore, the

modulo M operation can be easily performed using a

look-up table of size k� dlogMe, storing iM,

i � 1; . . . ; k. The largest d such that dM is smaller than
or equal to s can be easily found and then a is obtained

by performing sÿ dM. tu
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Fig. 8. Structure of the reconfigurable mesh used in the proof of Proposition 3.26.



Corollary 3.27. Given the RPOS representation of an integer

a 2 �0; nÿ 1� in a column, its BIN representation can be

computed in O�1� time on an O� log2 n
log logn� �O�logn� reconfi-

gurable mesh.

Proof. The proof follows by Corollary 3.16 and Proposi-
tion 3.26. tu

All the results shown in this paper about conversions
between pairs of representations can be summarized in the
following main result. Corollary 3.28 outperforms Lemma 1
of [10], which uses an N �N word model of reconfigurable
mesh and is limited to the representations defined in
Section 3.1.

Corollary 3.28. Given an n�O log2 n
log logn

� �
reconfigurable mesh,

an integer a 2 �0; nÿ 1� can be converted in constant time

from any representation defined in this paper to any other

representation.

4 ADDING N h-BITS NUMBERS

This section presents new algorithms for computing the
Summation and the Prefix Sums of N h-bit numbers.
Given N integers y0; . . . ; yNÿ1, the Prefix Sums problem
consists of computing the integers z0; . . . ; zNÿ1 such that
zi � y0 � � � � � yi, i � 0; . . . ; N ÿ 1. When i is fixed to N ÿ 1
only, the Summation problem results. The next theorem,
4.1, shows how to compute the Summation in O�1� time
using an O h logN � log2 N

log logN

� �
�Nh reconfigurable mesh.

Theorem 4.1. Given the BIN representations of N h-bit
numbers, 1 � h � N , such that the jth bit of the ith number
is stored in P0;i�jN , for all 0 � i < N and 0 � j < h, these

numbers can be added in O�1� time on a reconfigurable mesh of

size O h logN � log2 N
log logN

� �
�Nh.

Proof. The reconfigurable mesh is arranged in h submeshes

Sj, 0 � j < h, each of size O h logN � log2 N
log logN

� �
�N ,

serially attached. Each Sj stores the jth bits of the N

numbers in its first row. The algorithm acts as follows:

By Corollary 3.20, each submesh Si computes sj, the
number of bits set to one stored in its first row. The
values sj, 0 � j < h, are such that

Xhÿ1

w�0

sw2w

is the overall sum that must be computed. To perform
this sum, Lemma 2 of [9] can be used. Indeed, the h�
h�h� logN� reconfigurable mesh needed can be easily
embedded in the mesh used in this proof. It is important
to note that a proper permutation of the bits must be
arranged. However, this permutation can be easily
performed by standard techniques since the overall
amount of data to be routed is h logN , that is, less than
or equal to the number of rows of the mesh. tu
It is worth noting that Corollary 3.20 can be obtained

from Theorem 4.1 by letting h � 1.
We now turn our attention to the design of an efficient

algorithm for the Prefix Sums problem. The properties of

RNS representations allow good parallelizations of many
algorithms to be obtained as follows: First, convert the input
given in BIN representation into an RNS representation
(RPOS, for example), then perform the operations of the
algorithm in parallel on each remainder, and finally,
convert again the output into its BIN representation.
Section 3 provided all the techniques needed to use such
a kind of parallelization. This is the underlying idea of the

algorithm to be presented in Theorem 4.3 for computing the

Prefix Sums on an O h2�log2 N
log�h�logN�
� �

�O�N�h� logN�� recon-

figurable mesh.

Lemma 4.2. Given the POS representations of N numbers in
�0; . . . ; xÿ 1�, the prefix sums modulo x of these numbers can
be computed in O�1� time on an �1� x� � 2Nx reconfigurable
mesh.

Proof. The ith number is input one bit per processor to
P0;2ix; P0;2�ix�1�; . . . ; P0;2�ix�xÿ1�. The first row of the mesh
can convert the N numbers in parallel to their 1UN
representation, as stated in Lemma 3.2 (with minor
changes due to the fact that the PEs in odd position must
be ignored). Consider a reconfigurable mesh arranged
into Nx submeshes Bi serially attached, 0 � i < Nx, each
of �1� x� rows and two columns. More precisely, Bi

consists of the columns 2i and 2i� 1 of the mesh. Then,
we can execute a two-step algorithm. During the first
step, the bits in even position are added. Each Bi

broadcasts the bit in even position that it stores to all the
PEs of the submesh. Then, it configures its switches in
such a way that the W port of the jth processor in the first
column is connected to the E port of the ��j� 1� mod x�th
processor in the second column, for 0 � j < x. Using a
well-known technique, if P0;0 sends a 1-signal along its
W port, the POS representation of the sum of the bits up
to the 2ith column will appear on the right boundary of
each Bi. Therefore, for all 0 � j < N , the sum of the first j
numbers is obtained in O�1� time on the left boundary of
B2jx, as required. tu

Theorem 4.3. Given the BIN representation of N h-bit numbers

in a row, the prefix sums of these numbers can be computed in

O�1� time on an O h2�log2 N
log�h�logN�
� �

�O�N�h� logN�� reconfi-

gurable mesh.

Proof. Consider a reconfigurable mesh as shown in Fig. 9
Each of the Si, 0 � i < N , is capable of getting in input,
on the first row, an integer yi in its BIN representation.
Each yi is an h-bit number, but the first row of each Si can
easily expand it with zeros to have an �h� logN�-bit
number. By Proposition 3.24, the yis can be converted in

parallel to their RPOS representations using an

O� h2�log2 N
log�h�logN�� �O�h� logN� reconfigurable mesh. Thus,

the size of each Si is O� h2�log2 N
log�h�logN�� �O�h� logN�.

Consider a partition of the mesh into k ªhorizontalº
slices Bj, 1 � i � k. Each Bj consists of the rows which
contain all the jth remainders of the division of
y0; . . . ; yNÿ1 by pj.
Bj has O�h� logN� rows and O�N�h� logN�� col-

umns. Thus, the algorithm of Lemma 4.2 can be
performed to get, in each Bj, the prefix sums modulo
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pj of the jth remainders of the RPOS representation of
y0; . . . ; yNÿ1. At this point, each Si has the RPOS
representation of the sum of y0; . . . ; yi, 0 � i < N , and,
by Corollary 3.27, can get the BIN representation of such
a sum. tu

To our knowledge, no constant time algorithm was

devised before for computing the Prefix Sums on the bit

model, the only constant time being that proposed in [18],

which uses an N �N word model of reconfigurable mesh

and works only when h � O�logN�. Thus, the constant time

Prefix Sums algorithm proposed in Theorem 4.3 is the first

such algorithm for the bit model.

5 APPROXIMATE STRING MATCHING

This section presents another application of the paralleliza-

tion techniques introduced in Section 3. Besides the

Summation and Prefix Sums problems considered in

Section 4, the parallelization techniques based on RNS

representations are applied, in this section, to the Approx-

imate String Matching problem with � mismatches. String

Matching is one of the most important computational

problems, both from a theoretical and an applicative

viewpoint. Given a ªpatternº and a ªtext,º which are

strings over a finite alphabet, one wants to find all the

occurrences of the pattern within the text. Formally, let � be

a finite alphabet and let � � �0�1 � � ��mÿ1 and T �
�0�1 � � � �nÿ1 denote the pattern and the text, respectively,

where m � n.

Definition 5.1. The String Matching problem consists of

finding all the occurrences of � in T. Formally, we are

interested in computing the function

� : �m � �n ! f0; 1gnÿm�1;

where

���;T� � b0b1 � � � bnÿm;
and, for 0 � i � nÿm,

bi � 1 if �0 � �i and . . . and �mÿ1 � �i�mÿ1,
0 otherwise.

n
Several variants of the exact String Matching problem

defined above have been devised. Some of them turn out to

be useful in biological applications, where solving pattern
matching problems with very long texts is needed. In these
cases, allowing a limited number of mismatches is often
very important to find approximate occurrences of the
pattern in the text.

Definition 5.2. Let � be a positive integer less than m. The

Approximate String Matching with � Mismatches

problem consists of finding all the occurrences of � in T,

allowing a number of mismatches less than �. Thus, a function

 : �m � �n � �1; . . . ;m� ! f0; 1gnÿm�1

has to be computed, where

 ��;T; �� � c0c1 � � � cnÿm;
and, for 0 � i � nÿm,

ci � 1 if #fj 2 �0;mÿ 1� j �j 6� �i�jg < �,
0 otherwise.

�
Letting � � 1 in Definition 5.2 clearly leads to the exact

String Matching problem stated in Definition 5.1.
The exact String Matching problem has been considered

and solved in O�1� time using a reconfigurable mesh of size

mdlog j�je � ndlog j�je [7]. To our knowledge, the Approx-

imate String Matching with � mismatches problem has not

been considered before using the reconfigurable mesh. The

solution to be proposed here is a good example of nontrivial

application of the techniques presented in Section 3.

Theorem 5.3. Let � and � be given on the first column and T

on the first row, of a reconfigurable mesh of size

O�m log j�j� �O n log j�j � log2 �
log log�

� �� �
. Then,  ��;T; ��

can be computed in constant time.

Proof. The reconfigurable mesh used to compute  is
arranged as shown in Fig. 11. Each Bij,
0 � i < m, and 0 � j < n, has maxf2; dlog j�jeg rows

and max O log2 �
log log�

� �
; dlog j�je

n o
columns (see Fig. 10).

Thus, it is capable of storing a character of � in a column

and both a character and the RPOS representation of an

integer belonging to �0; �� in a row. For each j, a submesh

Sj, obtained combining Bij for all 0 � i < m, is defined.

Without loss of generality, the integer � can be supposed

to be input in its POS representation (this is possible
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Fig. 9. Scheme of the O h2�log2 N
log�h�logN�
� �

�O�N�h� logN�� reconfigurable mesh used in the proof of Theorem 4.3. Each Si is similar to the mesh

described in Proposition 3.24 and has O h2�log2 N
log�h�logN�
� �

rows and O�h� logN� columns.



since � < m). Indeed, Corollary 3.28 can be used to get

the POS representation of � in constant time from

whatever representation defined in Section 3.
With a broadcast operation, using row buses, the POS

representation of � can be stored on the first column of
each Sj. Then, each submesh Sj performs the algorithm
of Corollary 3.18 to get the RPOS representation of � in
its first row. This value can be broadcast in constant time
to the first row of each Bij within Sj. Another broadcast
operation, using row buses, is needed to let each Bij store
�i on its first column. Then, each Bij configures its
switches as shown in Fig. 10. In this way, subbuses along
the antidiagonals of the reconfigurable mesh are built
which can be used in parallel by each B0j, for all
0 � j < n. Indeed, B0j can broadcast the character �j it
stores to the first dlog j�je processors of the submeshes
Bh;jÿh, for all 1 � h < m such that jÿ h � 0. After these
steps, each submesh Bij stores pi in the first column and
� and �i�j on the first row of processors. With standard
techniques, it is now easy to get Bij to store either a one,
if �i 6� �i�j, or a zero, otherwise.

Thus, each submesh Sj has all the information needed
to compute cj. Sj can perform in parallel, for all
0 � j < n, the algorithm described in Theorem 3.19 to
get in each Bij, 0 � i < m, the number of mismatches
detected comparing the first i characters of the string �

with the substring of T starting from position j. This
value is in RPOS representation and it can be easily
compared with � to check whether they are equal. If the

answer is ªyesº and, thus, the number of errors is equal
to �, Bij stores 1, otherwise it stores 0. Finally, we can
easily get cj as the NOR of the m Boolean values
computed in Sj.

All the steps described can clearly be performed in
constant time on the reconfigurable mesh, so the whole
algorithm requires constant time, too. tu

6 CONCLUSIONS

In this paper, several new number representations, based

on a Residue Number System with the smallest prime

numbers as moduli, were presented. Some of these

representations, such as RPOS, turned out to be suitable

for parallel computations on reconfigurable mesh

architectures.
After developing all the techniques to convert numbers

between all the representations commonly used on reconfi-

gurable meshes, including the most important BIN !
RPOS! BIN and BIN! RBIN! BIN, some applications

are shown.
As a first application, an O�1� time algorithm is shown

for the Prefix Sums of N h-bit numbers on an

O h2�log2 N
log�h�logN�
� �

�O�N�h� logN�� reconfigurable mesh. This

is the most efficient algorithm for reconfigurable meshes on

the bit model. In addition to computing the Prefix Sums,

this algorithm is also capable of reading the input and

furnishing the output in constant time from the boundaries

of the mesh. As a further application, the Approximate

String Matching problem with � mismatches was consid-

ered on reconfigurable meshes for the first time, and solved

in O�1� time using an O�m log j�j� �O n log j�j � log2 �
log log�

� �� �
reconfigurable mesh. The first results obtained in this paper

with the new RNS representations on reconfigurable

meshes are very promising. Therefore, it could be likely

that further new and efficient algorithms for solving many

other computational problems on reconfigurable meshes

could be devised by using the techniques introduced in this

paper.
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Fig. 10. Structure of each single Bij submesh, 0 � i < m and 0 � j < n. In this example, j�j is 4 and � is 29.

Fig. 11. Scheme of the reconfigurable mesh used in the proof of

Theorem 5.3.
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