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Time Slot Assignment in SWTDMA Systems with 
Intersatellite Links 

ALAN  A. BERTOSSI,  GIANCARLO  BONGIOVANNI, AND MAURIZIO  A.  BONUCCELLI 

Abstract-In this paper  we study the  time slot assignment  problem  in 
clusters of SS/TDMA satellite systems interconnected through  intersatel- 
lite links,. We show that  the  problem of finding an  assignment  which 
minimizes.,-the total transmission time is NP-complete, Le., computa- 
tionally intractable, even for quite restricted  intersatellite  link  patterns 
and simplified system models. Successively, we focus our attention on 
clusters of two satellites, proposing a branch-and-bound optimal al- 
gorithm.  and two fast heuristic algorithms. We investigate the  perform- 
ance of the proposed heuristic algorithms both by a theoretical  worst case 
bound and  by simulation trials showing that  the  produced solutions are 
close to the optimal on the average. 

I. INTRODUCTION 

D EMANDS of  satellite  communications  services are 
rapidly growing, and the natural  resources they use, the 

RF spectrum  and the geosynchronous orbit,  are becoming 
highly crowded. 

A more efficient use of the electromagnetic  spectrum  can  be 
achieved  by  using  multibeam  antennae  and  satellite-switched 
time-division  multiple-access (SS/TDMA) techniques [ 11- 
[22]. In such  a case,  the satellite has a  number of spot  beam 
antennae  covering  several  geographical zones and a  solid-state 
RF switch on board to allow  interconnectivity  between  the 
various  uplink  and  downlink  beams. The  TDMA transmission 
is  made  up of frames, divided in subframe  intervals, or time 
slots. Each time  slot  represents  a  particular  switching  configu- 
ration, which allows to transmit  a  certain  amount  of  traffic 
between the connected  uplink and downlink  beams. 

In many practical  situations,  ground  stations  exchanging 
traffic are not always  visible by the  same satellite.  In  such  a 
case,  the  current practice  is either  to use  ground  communica- 
tion lines or to  reroute  the traffic  through an intermediate 
ground  station in the line of sight of two satellites, one visible 
by the  transmitter  and the  other visible by the  receiver.  In both 
cases,  extra  earth  resources  are used,  thus  reducing  the total 
efficiency  of the system. 

A  solution to this  problem which does not require  the 
introduction  of  additional  satellites  is  given by interconnecting 
the  two satellites  by an intersatellite link .(IsL,  for short) 
[22]-[27]. ISL’s have  the additional  advantage of allowing 
several  small  and less expensive  satellites to  join their 
coverage  and  capability so to have the communication  power 
of a much larger and more expensive  satellite.  In  the next 
decade, pairs  of  communication  satellites  interconnected via 
ISL’s will probably  become  operational [22]-[25], [27]. Large 
clusters of satellites  with  various ISL  patterm  to  form a  global 
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communication network are expected in a more distant future 

The combination of the  above techniques, i.e., SS/TDMA 
satellites interconnected  via  ISL’s, is very  promising. The 
performance  of  these  systems  depends on several  factors.  A 
very important one  is a proper assignment  of  traffic to  time 
slots so that transmission conflicts are avoided.  Specifically, 
no more  than one transmitter  can  send  traffic to the  same 
destination simultaneousiy  and no transmitter can send  traffic 
to more than one destination  simultaneously; moreover,  for 
every  two  satellites  interconnected ‘by  an  ISL,  no  more than 
one transmitter in the line  of  sight  of  each  satellite can send 
traffic  through the  ISL  to any destination in the line of sight  of 
the  other satellite at  the  same time. The objective is then of 
scheduling all the traffic  in time slots with the maximum 
transponder  utilization,  which  in turn can be  achieved by 
minimizing the overall duration  of  the  schedule. 

Inukai [22] investigated the  ISL time  slot  assignment 
problem for clusters  of two SSITDMA  satellites with onboard 
buffers. He showed  how to reduce  the  scheduling  problem for 
such a  system  configuration to  the widely studied  single- 
satellite  scheduling  problem [6]-[21]. In  fact,  the traffic 
transmitted over the ISL can  be  stored  by the receiver  satellite 
into  the ISL  buffer, and  sent to  the destination  zone  when no 
conflict may arise. 

In the present paper, we study the time  slot  assignment 
problem for unbuffered  satellites. In this case, all the traffic 
received by a  satellite  must immediately be  sent to ground 
zones  and over  the  ISL, according to the  configuration of the 
onboard RF switch.  Since the satellites  connected by ISL’s are 
physically separated,  the traffic  transmitted over the ISL 
reaches the destination  satellite after a  propagation  delay 6. In 
this way, if zone i sends  a  message to  zone j and the switch on 
the  transmitter  satellite  is  set to connect  zone i with ISL  at time 
t ,  the  switch on the  receiver  satellite must be set to connect ISL 
with zone j at time t + 6. The effects  of 6 on  the scheduling 
problem  depend on its  magnitude  in  comparison to  the 
duration of a  time  slot. 

Throughout  this paper,  we study the simpler  scheduling 
problem  given by assuming 6 negligibly small with respect to 
time  slot  duration.  In  particular, we show that even  this 
simplified scheduling  problem is computationally  intractable 
and a  fortiori the general  problem with nonnegligible 6 is hard 
to be  solved.  A  formal  definition  of the problem we are 
dealing with is  given  in  Section 11. In Section I11 we study 
clusters  of an  arbitrary number of satellites and show  that the 
problem  is  NP-complete even  for quite  restricted  intersatellite 
link patterns. In  Section IV, we consider  the case of clusters 
comprising  exactly two satellites. We propose two fast 
suboptimal  heuristic  algorithms,  both  generating  very  close to 
optimal  schedules on the  average, along with a  time  consum- 
ing optimal  branch-and-bound  algorithm. 

Finally, we  assume in  this paper that  each  satellite in the 
cluster covers. the  same number N of zones and is  provided 
with at least N + k transponders if it  is  connected to k 
satellites  via  ISL’s.  Besides, we assume  that  all  uplink, 
downlink,  and ISL beams  have  equal  bandwidth,  and  that 
intersatellite  links  allow  transmission  of  traffic from  one 

[25]-[26]. 
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satellite to the other one  and  vice-versa. We  also assume that 
no zone  is  covered by more than one satellite. 

11. MATHEMATICAL FORMULATION 
An ISL traffic  matrix D for a cluster  of s satellites is an sN 

X sN matrix with nonnegative  integer entries. Entry dij in D 
represents the amount  of  traffic  that zone i must transmit to 
zone j. The  number of  zones  is sN. The zones are partitioned 
into s groups of N zones, one  for  each satellite in the  cluster. 
Without loss of generality, we assume  that  zone j is  visible by 
satellite h if and only if (h - l )N  + 1 5 i 5 hN, i.e., the 
zones visible by the same  satellite have consecutive  indexes. If 
zone i is visible by satellite h, zone j by satellite k(h # k), and 
the  two  satellites are not interconnected by an ISL, then djj  = 
4; = 0. We denote with D(h,  k)  the N X N submatrix ofD 
representing  the  traffic  between  zones  visible by satellite h and 
zones visible by satellite k. Of course, D(h,   h)  represents 
traffic between zones  visible by satellite h alone. When two 
satellites h and k are connected by an ISL, we call D(h,  k )  
intersatellite submatrix. We define  the  ith row sum ri of D to 
be the sum of all entries in  the  ith  row. Similarly, we define 
the j t h  column sum cj of D as the sum of all  entries in the j t h  
column. We shall use  the generic term line to refer  either to a 
row or to a  column. We  also indicate with T(h, k )  the  amount 
of traffic of the  intersatellite  submatrix D(h, k) ,  that is, the 
sum of  all  entries in D(h, k ) .  

A time  slot assignment (or transmission schedule) of an 
ISL traffic  matrix D is  a  decomposition of D into  switching 
matrices: D = SI + S, + . * * + S,. A switching matrix Si 
is  an SN X s N l S L  matrix with at most one nonzero entry in 
each line  and at most one  nonzero  entry  in  each intersatellite 
submatrix.  Each  switching  matrix  represents  the  traffic that 
can be transmitted  without  conflicts  and  switch  reconfigura- 
tions. The length of a  switching  matrix S; is  the magnitude Li 
of  the  largest entry  in Si, and represents  the number of 
consecutive time  slots needed to transmit Si. The length or 
transmission time of  a  schedule SI, S2, * . . , S,  is L = L I  + 
L2 + . . * + L,. A  schedule for D is optimal if its length is 
minimum. 

Lastly,  a  line  (or  intersatellite  submatrix)  of  a  switching 
matrix is called exposed if all  entries in that  line  (submatrix, 
respectively) are  zero, while  is called covered if there is one 
nonzero entry  in it. The main definitions  given in this  section 
are illustrated in  Fig. 1. 

111. COMPLEXITY OF THE PROBLEM 
We now prove that  -it  is  very unlikely that any  “efficient” 

algorithm (i.e.,  one running in a time bounded by a polyno- 
mial in the  size of the ISL traffic  matrix)  can be found for 
determining an optimal time slot  assignment when there is an 
arbitrary number of  satellites. Indeed, the  following  theorem 
shows that this  problem  is  NP-complete, i.e.,  as  “hard”  as a 
large  class  of  problems  that  includes  the  traveling  salesman 
problem  and  integer programming [28], [29]. This means that 
the  time  slot  assignment problem is intrinsically  intractable 
and can  thus be solved only by “inefficient” algorithms (i.e., 
those  running in a time which grows  as an  exponential  function 
in the  size  of the  ISL traffic  matrix). 

Theorem I :  The  time slot  assignment  problem for ISL 
traffic  matrices  is  NP-complete. 

Proof: See  the  Appendix. n 
The above  result  is rather  strong, since it holds for quite 

restricted  intersatellite  link  patterns  and for trivial forms of 
traffic  matrices where  one may  expect  the  problem to be much 
simpler.  Indeed,  the  following  corollary  directly  derives from 
the proof of the  theorem. 

Corollary: The time  slot  assignment  problem  is  NP- 
complete  even i f  

1) each  satellite covers exactly 6 zones  and  is  connected via 
ISL’s to exactly 3 other satellites; 

D 

s3 

2) each ISL allows  transmission in only one direction; 
3) the ISL traffic  matrix is restricted to matrices for which 

the minimum number of switchings  is 3; 
4) the entries in the ISL traffic  matrix are restricted to 0 or 

1 .  a 
The practical  effect  of Theorem 1 is that one  is  forced to 

abandon the search for efficient  algorithms that find optimal 
solutions. Therefore,  one can devise  either  efficient al- 
gorithms that provide solutions which are not necessarily 
always optimal but usually fairly  close, or computationally 
inefficient  algorithms (e.g., of  the  branch-and-bound  type 
[29]) which provide optimal  solutions. This strategy will be 
followed in the next section for  the relevant  subcase of clusters 
consisting of two satellites.  Notice that Theorem 1 holds when 
there is an arbitrary number of satellites but is no more valid 
when this  number is equal to two.  Unfortunately, we were not 
able to  come up with an  NP-completeness proof for this  case, 
although we deem that  the two satellites  cluster  problem  is 
likely NP-complete. 

IV. CLUSTERS OF TWO SATELLITES 
In  this  section, we consider  clusters  consisting  of  two 

satellites connected by one  ISL. Each  satellite covers N zones 
and has N + 1 transponders. 

Firstly, we derive a lower  bound S on the  duration  of any 
schedule for the  intersatellite  matrix D. 

Theorem 2: Any schedule for D has  length not smaller than 
S where 

S=max { T U ,  21, T(2, I ) ,  max {ri}, max { c j } } .  
I s i s 2 N  l a j r 2 N  

Proof: All entries in the  same line  and in the same 
intersatellite  submatrix must be transmitted sequentially to 
avoid conflicts. Hence, a lower bound  is  given by the 
maximum  between  the  maximum  traffic in intersatellite 
submatrices  of D, and the  maximum  line sum of D. a 

The above lower bound  is not always  achievable in an 
optimal  schedule.  As an example, any optimal  schedule ‘for the 
matrix D shown  in  Fig. 1 has length 9, while S is  equal to 6. 

A .  Suboptimal  Algorithms 
We now present two fast  suboptimal  algorithms based upon 

the  optimal  algorithm for single-satellite systems  proposed in 
[lo] (for short, we shall henceforth refer  to that algorithm as 
BCW). 
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The  first heuristic, which we call modified-BCW (MBCW, 
for  short), is  designed to introduce as few changes as possible 
to algorithm  BCW. Firstly, algorithm BCW is used to generate 
switching matrices with no line  conflicts. Thus, only conflicts 
in scheduling  intersatellite  submatrices may ,arise. Succes- 
sively,  conflicting  intersatellite  traffic  is  eliminated from all 
generated  switching  matrices, and then scheduled in  a strictly 
sequential way. 
Algorithm  MBCW 

Step 1) Application  of algorithm BCW. 
Generate  a  schedule for D by algorithm BCW (this 
algorithm will add  some “dummy” traffic to D 
[lOl). 

Step 2) Elimination of conflicting intersatellite traffic. 
Let D’ be  a 2 N  X 2 N  ISL traffic  matrix initially set 
to  zero.  For each  generated  switching  matrix S; do 
the following.  Subtract from  Sithe dummy  traffic, if 
any. If k > 1 entries of D(1,2)  are scheduled in Si, 
drop  from Si k - 1 of them.  The dropped  traffic  is 
added to D‘. Do  the  same  for  D(2, 1). 

Step 3)  Sequentially scheduling of conflicting intersa- 

Generate an optimal  schedule for D’ by allocating 
the traffic  in D’(1, 2)  and D’(2, 1)  sequentially. 

tellite traffic. 

Step 1) can be carried out  in  O(N4.’)  time [lo]. Step 2) 
requires O(N2) time for  each of the O(N2) switching matrices 
generated by algorithm  BCW [lo]. Finally, Step 3)  takes 
O(N2) time. Hence,  the overall  running  time of algorithm 
MBCW  is O(N4.’ + N2N2 + N2) = O(N4.’). 

Theorem 3: Algorithm  MBCW  generates  schedules not 
longer  than 2 S  and  this bound is  asymptotically  achievable. 

Proof: The schedule  generated by algorithm MBCW can 
be  divided  into two parts: the first  part  consisting  of the 
schedule before  Step 3), and the second  part  being  the 
schedule for D’ . The first part does not require more  than S 
time  units,  since  algorithm  BCW  generate  schedules  whose 
length is equal to max { r n a x 1 ~ ; ~ 2 ~  { r i } ,  maxlsjs2N { c , } }  [lo]. 
Moreover,  an optimal  schedule for D’ does not require  more 
than S time  units too, since D’ contains only some  intersatel- 
lite  traffic  of D and can thus  be  scheduled  in at most max 
{ T(1, 2), T(2, l ) }  time  units. Therefore,  the overall  schedule 
length for D is not greater than 2s. 

This  bound is asymptotically  achievable.  As an example, 
consider  a 2 N  X 2 N  ISL traffic  matrix D having nonzero 
entries  only in the main  and  secondary  diagonals as follows: d;; 
= S ( N  - 1)/Nand d;,zN-i+ = S/N, i = 1, 2, . . e ,  2N.  We 
have that T ( l ,  2) = T(2, 1) = S and  all  line  sums are equal to 
S .  Algorithm  BCW may generate  a two switching matrices 
schedule, in which SI contains all the d;;’s entries and SZ all the 
remaining entries.  Step 2)  of the MBCW  algorithm  leaves only 
two nonzero entries in S2, putting the  others in D‘. This  last 
matrix  is then scheduled  in S ( N  - 1)/N time  units.  Hence the 
length of the schedule  generated by algorithm MBCW is S + 
S ( N  - 1)/N = (2 - l / N ) S  which  approaches 2 s  as N 
grows. n 

A more careful  allocation of the intersatellite  traffic can lead 
to schedules shoqer than  those  produced by algorithm 
MBCW. In  particular, the matrix D introduced in the proof of 
Theorem 3 can  be  scheduled in S time  units by forming  each 
switching  matrix as follows.  First  choose two intersatellite 
entries,  one of D(1, 2) and one of D(2,  l) ,  and  then 2 N  - 2 
nonconflicting entries of D(1, 1) and D(2, 2).  

This idea  is used in the second  suboptimal  algorithm we 
propose, which we call GREEDY. At  any  given  time,  a pair of 
intersatellite entries  is selected, which yields  a switching 
matrix with maximum  number of covered  lines. The resulting 
switching matrix  is  subtracted from  the traffic  matrix D, and 
the  process  is  repeated until no traffic  is left in D( 1, 2) and 
D(2, 1). The traffic left over, if any, is then allocated by 

algorithm BCW. In the following, Qi and S; are 2 N  x 2 N  
matrices. 
Algorithm GREEDY 

Step 1) Initialization. 

Step  2) Finding nonconflicting entries covering the 
maximum number of lines. 

2.1 : Repeat  Substeps 2.2  to  2.5 for each  distinct pair 
of  nonzero  intersatellite entries,  one in D(1, 2) 
and the other in D(2,  1). If no such pair exists, 
repeat  Substeps 2.2  to  2.5  for each  single 
nonzero  entry  in  either (D(1, 2) or D(2,l). 

2.2: Put  the  selected  intersatellite  entries (or entry) 

2.3: Make .a copy of D(1, 1)  and D(2, 2) and 
remove from these  copies the  rows and columns 
of the selected  intersatellite entries (entry). 

2.4:  Perform algorithm ‘ ‘max-min matching” [lo], 
[30] on  the so reduced  copies  of D(1, 1) and 
D(2, 2) ,  thus  finding  a maximal set  of  noncon- 
flicting entries, in which the size of the smallest 
entry  is  maximized,  and  put  them  in Qi. 

2.5: If Q; covers  more lines  than Si, then set Si + Q i  
and Qi + 0. 

Set i + 1, S; + 0 and Q; 0. 

in Q;. 

Step  3) Forming a switching matrix. 
Form switching  matrix Si by truncating  its  entries to 
the value  of its smallest  nonzero entry. Set D + D - 
Si. If D contains at least one nonzero  intersatellite 
entry, then  set i + i + 1 ,  Si + 0, Qi + 0, and go  to 
Step  2). 

Schedule  the  traffic left in D by algorithm BCW. 
Step 4) Scheduling the remaining traffic. 

O(N4) interations of Step 2) are needed to find a  switching 
matrix. Each iteration  requires O(N2.5) time  because  of the 
max-min matching  algorithm [lo], [30]. The number  of 
switching matrices  generated  is O(N2), since at least one 
nonzero  entry is entirely  scheduled in each  switching  matrix. 
Finally,  algorithm BCW invoked  in Step 4) has an O ( N 4 9  
running  time [lo]. Thus, the overall  time  complexity of 
algorithm GREEDY is O(N4N2.sN2 + N4.9 = O(N*,s). 

Theorem 4: Algorithm GREEDY generates  schedules not 
longer  than 2 s  and this  bound  is  asymptotically  achievable. 

Proof: Algorithm GREEDY allocates all the  intersatel- 
lite  traffic during the  first max { T(1, 2), T(2,  1)} I S time 
units.  After  this  time it behaves as algorithm BCW, thus 
requiring at most  max { maxlrisW { r ; } ,  maxirjsZN { c j } }  5 S 
additional time  units [lo]. Therefore,  the overall  schedule 
length for D cannot  exceed 2s.  

This bound is asymptotically achievable.  As an example, 
consider the 12 X . 12 traffic  matrix of Fig.  2.  The schedule 
generated by algorithm GREEDY may have  a length of 1OA 
= (5/3)S while there are optimal  schedules  with  length 6A = 

S .  The  above example can be  easily  generalized to 2N X 2N 
matrices, with arbitrary N, by replacing the 5A entry with an 
(N - l)A entry  and the 6A entry with an NA  entry.  It is  easy 
to see  that for such matrices  any  optimal  schedule  has  length 
NA = S while the GREEDY algorithm may generate 
schedules 2(N - l ) A  = 2S(N - l ) / N  long.  Thus,  the bound 
2 s  is  asymptotically  approached as N grows. n 
B. Optimal  Algorithm 

We now present an optimal  algorithm of the branch-and- 
bound  type [29] which can  be set up using the  lower bound of 
Theorem  2  and the foregoing  suboptimal  algorithms. The 
algorithm  produces  optimal  schedules by an implicit enumera- 
tion. Such enumeration may generate an exponential  number 
of switching  matrices,  thus  requiring  impractical  running 
time, specially for  large traffic  matrices. However, when the 
traffic  matrix is not large or has  a  particular  distribution  of  its 
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[ ! ! ! ! ! ! ! ! ! ! ! I  A 5A 
A A A A A  

A A A A A  

A A A A A  

A A A A A  

D 
Q A 2A 3A 4A 5A 6A 7A 8A 9A 1QA 

SCHEDULE  GREEDY: l e n g t h  1QA - 7 s  5 

Q A 2.4 3A 4A 5A 6A 

OPTIMAL SCHEDULE: l e n g t h  6A = S 

Fig. 2. Example to illustrate a bad schedule produced by the GREEDY 
algorithm. 

nonzero  entries,  the  algorithm may generate  optimal  schedules 
in a  reasonable  time. 

The  computation  carried  out by the  algorithm is based  upon 
the  construction  of  a tree. Each node in the  tree  corresponds 
to the matrix of the  remaining  traffic to be allocated. The 
transition between  a  node  and one of  its sons represents  the 
construction  of  a  switching  matrix.  Each  node  has  two 
parameters: SL, which is the  length of the  schedule up to that 
node,  and  LOWERBOUND,  which  denotes  the  lower  bound, 
computed as in Theorem 2, of  the  traffic  matrix  associated  to 
that node. At each  step,  the most  promising node in the 
frontier  of  the  tree, i s . ,  that having  smallest SL + LOWER- 
BOUND sum, is expanded by generating all possible maxi- 
mal switching  matrices  of  its  associated  traffic  matrix.  A 
maximal  switching  matrix is a  switching  matrix  whose  set of 
nonzero  entries is not properly  contained  within  a set of 
nonzero  entries  of  any  other  switching  matrix.  A  detailed 
description  of  the  variables  employed in the  algorithm  follows. 

LB denotes  the  lower  bound of the initial traffic  matrix 
D, as  computed in Theorem  2. 

UB is the  upper  bound, that is, the  current  smallest 
schedule length. It can be initialized either  to 2 s  or to  the 

smallest  schedule  length  generated by algorithms MBCW and 
GREEDY. Of course, if UB = LB then  the  algorithm is not 
invoked; 

BEST&OLUTION contains  the  current  shortest  schedule. 
0 ACTIVESET is the set of all generated  but not yet 

0 SL(D’) is the  length  of  the  schedule  that, starting from 

LOWERBOUND(D’) is the  lower  bound  on  the  schedule 

LENGTH(S’)  is  the length of the  switching  matrix s’. 

expanded  nodes in the tree. 

D, leads to the  intermediate  ISL  traffic  matrix D’. 

length  for D ’ , as given by Theorem  2. 

Algorithm OPTIMAL 
Step 1) Initialization. 

LB + LOWERBOUND@); 
UB + smallest  schedule  length  among  those  gener- 

BESTSOLUTION + schedule  with  length UB; 
ated by algorithms  MBCW  and  GREEDY; 

Do + D; ACTIVESET + {Do);  SL(D0) + 0. 
Step 2) Selecting the most  promising  node. 

If ACTIVESET is empty,  then  go  to  Step 5);  else, if 
ACTIVESET is not  empty, select matrix D; in 
ACTIVESET  with  smallest SL(D;) + LOWER- 
BOUND(Di),  and  remove it from  ACTIVESET. 

Generate all maximal  switching  matrices Sij of 0; and 
set Djj + Di - Sj j ;  in addition, set SL(D;j) +- 

Step  4) Examinating the sons of the expanded node. 

Step 3) Expanding the selected node. 

SL (0;) + LENGTH(S;,) . 
4.1: Repeat  Substeps 4.2 to 4.4 for  each new matrix 

Dj j .  When  done go  to  Step 2) 

then  discard D;,. 
4.3: If UB > SL(Dij) + LOWERBOUND(Djj)  and 

Djj contains  some  nonzero  entry in it, then insert 
Dij in ACTIVESET if  it is different from each 
matrix already in ACTIVESET,  and  discard it 
otherwise. 

4.4: If Djj  contains  only  zero  entries,  then set UB + 

SL(Djj) and  BESTSOLUTION + backtrack  from 
Dij until Do is  reached;  besides, if UB = LB go 
to  Step 5). 

4.2: If UB 5 SL(Dii) + LOWERBOUND(D;i) 

Step 5)  Termination. 
The optimal  schedule  has  been  found,  BESTSOLU- 
TION  contains  it,  and UB is its length. 

An example  of  the  OPTIMAL  algorithm is provided in Fig. 
3. 

C. Simulation Results 
We  have  previously  shown that algorithms  MBCW  and 

GREEDY  can  produce  schedules  as  much  as  nearly  100 
percent  longer  than  the  optimal  one. In practical situations, 
however,  traffic  matrices  yielding  such bad schedules may  be 
uncommon  and  a  performance  evaluation  of  the  two  subopti- 
mal algorithms  based  only  on  a theoretical worst  case  bound 
can be misleading. Therefore, we set up  simulation  experi- 
ments for obtaining  average  schedule  lengths,  and  thus 
estimate  the  actual  performance of the  proposed  heuristic. 

The  algorithms  were  implemented in Pascal  and  run  on 
randomly  generated  traffic  matrices.  We  considered 6 X 6 
and 8 X 8 ISL  matrices.  For  each of the  two  matrix 
dimensions,  we  divided  the  simulation  in  subparts,  depending 
on  the  value P of the  largest  entry.  We  chose  three  values of 
P ,  namely, 20, 50, and 100. We  generated  100  matrices  for 
each of the six subparts.  The  matrices  were  randomly 
generated as  follows.  Nearly  1/4 of the  entries in submatrices 
D(1, 1) and D(2, 2) were  zero, and  the  other  entries  were 
drawn  from  a  uniform distribution between 0 and P.  The 
intersatellite submatrices  contained  nearly  1/3 or 1/4 of the 
total traffic,  depending  on  the  dimension  of  the  matrix.  Such 
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Fig. 3.  Example of the OPTIMAL algorithm. The optimal schedule can be 
obtained by backtracking from Dh+, .  Each switching matrix is given by the 
difference between father node and son node. 

distribution  of  nonzero  entries  gives  traffic  matrices  with 
maximum  line  sum  close to the  ISL  submatrices  sums,  on  the 
average.  It  is  easy to realize  that  this  tends to be  the  most 
unfavorable case, as the examples in Theorems 2 and 3 show. 
The  nonzero  entries in D(1, 2)  and D(2, 1) were  drawn  from 
the  same  uniform  distribution of the  entries in D(1, 1) and 
D(2, 2). For comparison  purpose,  the  OPTIMAL  algorithm 
was also  run on the  same  matrices.  Tables I and I1 report  the 
average  schedule  length for  each  algorithm  and  the  average 
lower  bound as computed in Theorem 2. Table I11 reports  the 
percentage of the  average  surplus  duration of schedules 
generated by the  two  heuristic  algorithms,  over  the  optimal 
schedule  duration.  Notice  that  on  the  average  algorithm 
GREEDY was  almost  always  within 1 percent of the  optimal, 
while algorithm  MBCW  produced  schedules  not  longer  than 8 
percent of the  optimal.  From  our  experimental  trials,  we 
observed  that  algorithm  MBCW  generated  good  schedules 
only  when  the  intersatellite  submatrices were very  sparse.  As 
soon as  the  intersatellite  submatrices  became denser,  al- 
gorithm GREEDY always  generated shotter schedules  than 
MBCW. In  addition,  we  observed  that  either  algorithm 
GREEDY or MBCW  produced  optimal  schedules in nearly 90 
percent of the  cases. 

V. CONCLUSIONS 
In  this  paper, we have  investigated  the  problem of schedul- 

ing  traffic  for  clusters  of  satellites  interconnected via intersa- 
tellite  links. We proved  that  the  problem of finding  an  optimal 
schedule  is  computationally  intractable  for  clusters  including 
an  arbitrary  number of satellites,  even  for  quite  restricted 
intersatellite  link  patterns  and  simplified  system  models. We 
provided two fast  suboptimal  algorithms  producing  very  close 
to optimal  average  schedules  and  a  time  consuming  optimal 
algorithm  for  clusters  including  exactly  two  satellites. The 
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TABLE I 
6 X 6 ISL MATRIX-AVERAGE DURATION OF THE SCHEDULE 

GENERATED BY THE ALGORITHM 

ALGORITHM  P=20 P = M  P=100 

MBCW  60.44 
GREEDY  58.04 

148.27  295.96 
142.42 

OPTIMAL  57.45 
284.12 

141.10 
LOWER  BOUND 

280.46 
57.34  140.87  279.90 

TABLE I1 
8 x 8 ISL MATRIX-AVERAGE DURATION OF THE SCHEDULE 

GENERATED BY THE ALGORITHM 

ALGORITHM  P=20 P=50 P.100 

GREEDY 
MBCW  78.33  184.92  381.00 

OPTIMAL 
73.10  176.58  375.70 
72.67  174.02 

LOWER BOUND 
355.67 

72.45  173.96  354.60 

TABLE 111 
PERCENTAGE OF AVERAGE SURPLUS DURATION OF THE SCHEDULE 

GENERATED BY THE ALGORITHM 

ALGORITHM  MATRIX  DIMENSION  P=20 P-50 P-100 

MBCW 

MBCW 
GREEDY 

GREEDY 

6x6 
6x6 

5.20 X 5.02 X 5.53 X 
1.03 X 0.88 X 1.30 X 

0x8 7.79 X 5.70 Y 7.12 X 
8 x 8  0.59 % 1.01 X 0.59 X 

results  were  given  assuming  that  the  propagation  delay 
between  the  satellites in the  cluster  was  negligibly  small  with 
respect to  time  slot  duration.  When  this  is not the  case,  our 
proof of intractability  clearly  continues to  hold, but the 
proposed  algorithms  are  no  more  correct.  However,  we 
believe  that  the two satellite  cluster  problem  with  nonnegligi- 
ble  propagation  delay can  be effectively  handled by properly 
modifying  the  algorithms  given  here. This task  is  left as a 
direction  for further’research. 

APPENDIX 
In  order  to  prove  NP-completeness for a given  problem P, 

one  has to find an  already  known  NP-complete  problem Q 
which is “close” to P and to use  certain  transformation 
techniques to  reduce  in  polynomial  time Q to P so that  solving 
‘Q will solve P as well.  In  this  way,  one  establishes  that P is at 
least as  “hard”  as Q. This implies  that P is  computationally 
intractable,  since Q was  already  known to  be  computationally 
intractable [28], [29], 

We  prove that  the  time  slot  assignment  problem  for  ISL 
traffic  matrices  is  NP-complete by giving  a  polynomial  time 
transformation  from  the  known  NP-complete edge  coloring 
problem for cubic  graphs 1311. 

Given: An  undirected  graph G( V ,  E )  such  that  each  vertex 
has  degree 3. 

Question: Is G 3-colorable,  that  is,  does  there  exist a 
function f : E .  -P { 1, 2,  3) such  that f (e)  # f ( c )  whenever 
edges e and c share  a  common  vertex? 

Since  this  transformation  is  relatively  laborious,  we  divide it 
into  three  steps.  We  firstly  transform  the  graph G( V,  E )  into  a 
new graph H(U, F )  in such  a  way  that G is 3-colorable if and 
only if H is  3-colorable. We then  construct  from H a  bipartite 
graph B( W ,  L )  which is 3-colorable  without  violating  certain 
partition  constraints  on its edges if and  only if H is 3- 
colorable.  We finally define  from B an ISL traffic  matrix D 
which  can  be  scheduled  into 3 time  slots if and  only if B is 3- 
colorable  (and  hence if and  only of G is  3-colorable). 

Step I :  Construction of H(U, F) 
We transform  the  graph G( V, E )  into  the  graph H (  U, F )  

by substituting  each  vertex ui E V ,  i = 1 ,  . . . , n ,  with a 
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A 
G H 

Fig. 4. Example of construction of H .  

vertex substitute graph VSG.  VSG is  a  complete  bipartite 
graph of five  vertices  such  that  vertices 1, 2 ,  and 3 (which we 
call outlet) are  joined by an edge  to  the remaining two vertices 
(which we call core). 

We then construct  a  sequence  of graphs G = Go, GI, . . , 
G, = H a s  follows. To construct Gi,  select  vertex ui from Gi-1 
and  replace it with a  copy of VSG, say VSG(i).  Let the 
neighbors  of ui in G j - l  be ulr u2 and u3. Replace each  edge 
{ uj,  u i }  by an edge  joining uj to outlet j of VSG(i).  An 
example of the  above  transformation  is  outlined in Fig. 4. 

Observe that each VSG is  3-colorable, not 2-colorable,  and 
that in any  3-coloring each outlet has  its  two  edges joining  it to 
the core vertices  colored with a  different pair of colors.  This 
forces  all  the three  edges  joining in H the outlets  of  each VSG 
to outlets  of other vertex  substitute graphs  to  be colored with 3 
different colors.  Thus any  3-coloring  of H can be transformed 
into  a  3-coloring  of G by coloring each  edge of G with the 
same color of the corresponding edge of H .  Conversely, any 
3-coloring of G can be transformed  into  a 3-coloring of H by 
coloring  each edge of H joining  two outlets with the same 
color  of  the corresponding  edge of G ,  and by coloring  the 
edges joining  each outlet in each VSG to  the  core vertices with 
the  remaining two  colors. 

Step 2: Constpuction of the Bipartite  Graph B(W, L) 
We construct from N the  graph B( W ,  t) for the  following 

variant of the  edge  coloring problem. 
Given: A bipartite  graph B( W ,  L )  such that each  vertex in 

W has degree 3 or less,  and  a  partition  of  the edge  set L into 
disjoint  subsets L 1 ,  . . * , Lj.  

Question: Is B 3-colorable,  that is, does there exist  a 
function g:L --* { 1,2,  3) such that g ( b )  # g(rn)  whenever  the 
edges b and rn share a  common  vertex and/or belong to a 
common  set Li in the partition? 

Initially, let B = H .  For  each  edge e joining  two outlets, 
say outlet k of VSG(i) and  outlet h of VSG( j ) ,  with i < j ,  
delete e from B, introduce  a new vertex, and add  a new edge 
joining the new vertex with outlet h of V S G ( j ) .  Moreover, 
define  a  set L(i,  k ,  j ,   h )  in the  partition by including tht? new 
edge  and  the two  edges  joining outlet k of VSG(i) to the core 
vertices. An example of the  whole  transformation  is  shown in 
Fig. 5 where a set  in  the partition  having  3  edges  is  represented 
by a circle enclosing one endpoint  of  the  edges  (obviously,  the 
partition is completed by other  sets  each containing  exactly 
one of  the  remaining edges). 

It is easy to check that the  resulting  graph B is  bipartite and 
that it  can be colored with 3 colors without violating the edge 
partition constraints if and only if H is  3-colorable. 

Step 3: Construction of the ISL Traffic  Matrix  D 
We finally construct from B the  ISL traffic  matrix D as 

follows.  Let M be a 6 X 6 matrix with mij = 1, if 1 I i 5 3 

B 
Fig. 5. Example of construction of B.  

W 

Fig. 6. Representation of the intersatellite traffic in D from Satellite j to 
satellite i(i < j ) .  

1 2 3 4 

1 

2 

3 

4 

D 
Fig. 7, Example of traffic matrix D obtained from the bipartite graph B. 

Numbers  outside D indicate satellites. 

and 2 I j 5 3, and r n i j  = 0, otherwise.  Define  the n6 X n6 
ISL traffic  matrix D in which each D ( i ,   i ) ,  i = 1, . * e ,  n ,  is 
equal to M (and thus  represents  a  satellite  covering 6 zones). 
Consider  each L(i,  k ,  j ,  h )  in the  edge partition of B. Swap 
row k of D ( i ,   i )  and  row h + 3  of D ( j ,  i ) .  Moreover, set  the 
entry in row h and  column k + 3 of D (   j ,   i )  to 1. An example 
is  shown in Fig. 6. In  this way, D has  as many 1 entries as 
there are  edges  in B. The 1 entries  in  each row (or column) 
represent  the edges incident  into  the same outlet  (core, 
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respectively)  vertex. Each intersatellite submatrix  represent a 
set of 3 edges in the partition of B.  Moreover,  no additional 
conflict has been introduced. . A  complete example of the 
construction is exhibited in Fig. 7 .  

One can readily check that D can be scheduled in 3 time 
slots if and only if B is 3-colorable without violating the edge 
partition constrains, which  in turn is possible if and only if G 
is 3-colorable. It is easy to see that all the constructions so far 
are possible in polynomial time. Moreover, checking whether 
D can be transmitted  in 3 time slots is clearly in NP. This 
completes our proof of NP-completeness. n 
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