Decentralized Lightweight Methods for Coordination in Peer-to-Peer Networks

Stefano Arteconi Ph.D. Thesis Proposal Bologna, 28/03/06

Outline

Problem

- Coordination and cooperation in Peer-to-Peer (P2P) networks
- Proposed Approach
 - □ Slacer algorithm
- Open Issues
 - Detecting cheating nodes
- Future Work
 - Distributed motif analysis

P2P Networks

- No distinction between client and server
 - Every node is able to ask for and to provide certain services
- Overlay (physic links assumed)
 Overlay links: logical labels
 Network topology easy to modify
- Open systems
 No centralized control
 Possibility of free-riding

Slacer: Introduction

- Evolutionary algorithm
- Inspired by computational sociology
 - □ Tag systems
- Tested with Prisoners' Dilemma
 - □ Simple 2-players game
 - Represents contradiction between selfish and global interest

Slacer: Outline

Nodes characterized by

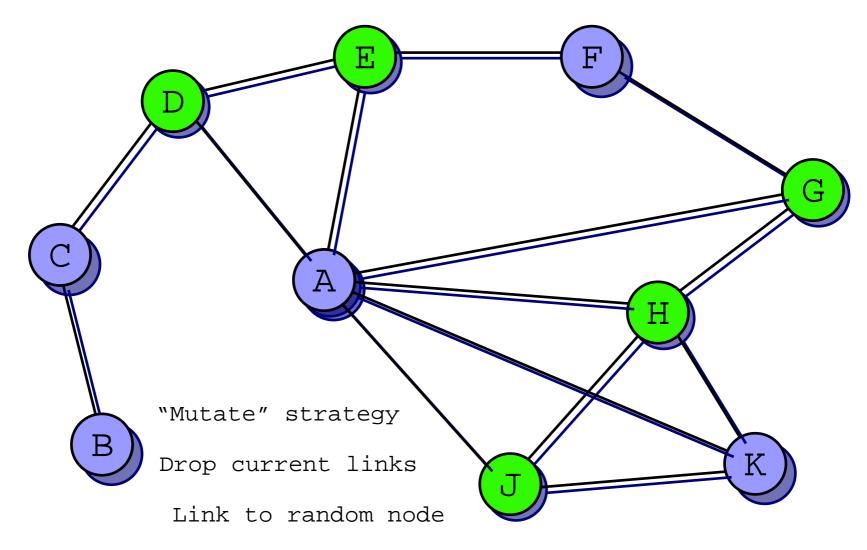
□ Strategy: application level behavior

- □ Utility: application level performance measure
- □ View: list of immediate neighbors
 - Analogous of tags in original tag systems
- Nodes selfishly try to increase their utility
 Better performing nodes are copied

Slacer: Pseudocode

Generic node *p* periodically executes the following:

- q = SelectPeer()
- **if** utility_{*q*} > utility_{*p*}


drop each current link with (high) probability W *link* to node *q* and copy its strategy and links *mutate* (with low probability) strategy and links

fi

SelectPeer() function based on a peer sampling service (*Newscast*) separated from *Slacer* topology

Slacer: Copy and Rewire H Η 3 Compare ities А Н "Copy" strategy "Rewire" K

Slacer: Mutation

Slacer: Performance

- Slacer produces cooperation in P2P networks
 - □ Totally decentralized algorithm
 - □ Based only on local interactions
- High cooperation achieved even when starting from total defection

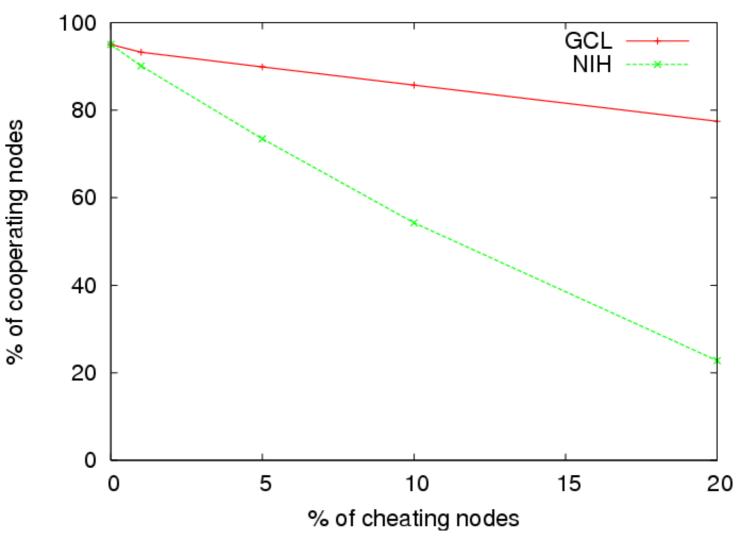
Cheating Nodes in Slacer

- Slacer is based on utility comparison and strategy copying
- Cheating nodes can easily report false state
 - □ Strategy
 - □ Utility
 - □View

Different Kinds of Cheater

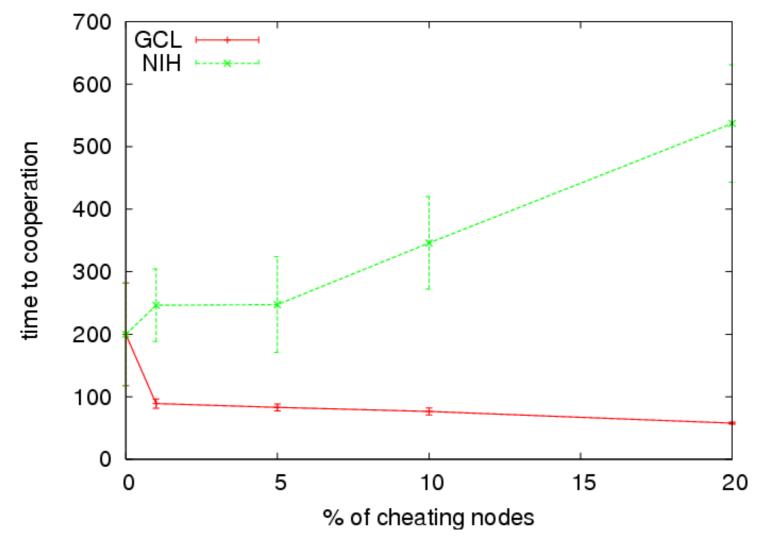
Greedy Cheating Liars (GCL)

□ Want to maximize their own outcome


- Gracefully degrade normal nodes' utility
- Make cooperation faster
- □ Slacer someway benefit from them!

Nihilists (NIH)

□ Want to destroy cooperation


□ Big quantity of them is able to achieve that

Results: Cooperation Level

Stefano Arteconi

Results: Time to Cooperation

Slacer: Conclusion

Slacer Algorithm

- □ Produces cooperation
- Lightweight
 - No nodes' history
 - No identities

Vulnerable to certain kinds of attack Nihilists nodes

Open Issues in Slacer

- Complex and meaningful test applications
 Coordination in PD is straightforward
 - Every node cooperates
 - Coordination could be hard in other scenarios
 - Broadcast
- Dealing with cheating nodes
 - □ Modify Slacer
 - Define some alternative technique to detect misbehaving nodes

Network Topology Anomalies

- Slacer nodes' behavior and performances are related to network topology
 - □ Report false view
 - Rewiring mechanism different from algorithm specification
 - Reject new links
 - Continuously move around the network

Network Topology Analysis

- To detect local topology anomalies classic measurement are not good
 - □ Clustering coefficient
 - □ Average path length
 - ...
- Local measurement techniques rather than global ones are needed

Motif Analysis

Motif Analysis

Analysis of the occurrencies of small subnetworks in the whole network

Used in biology

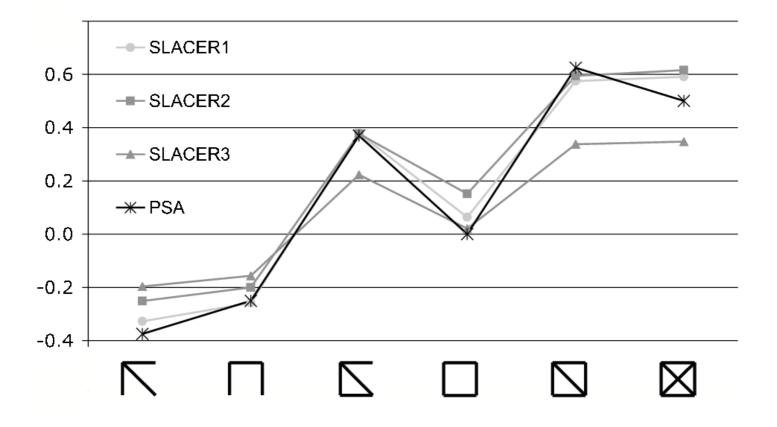
Small local configurations can lead to different functions and stability

Slacer

Small local misbehavings could be detected

Network Motifs Measurement

- Small motifs (at most 4 nodes) examined
- Motifs' occurencies are counted
- Such counts are compared with those of a set of random networks


□ Same degree distribution

A subgraph ratio profile (SRP) is evaluated
 Motifs' frequency with respect to random networks average

Motifs in Slacer Topology

- Motif analysis performed on Slacer at different stages of cooperation formation
- Different SRP obtained
 - □ Before cooperation formation
 - During cooperation emergence
 - □ At cooperation stability

Slacer topology SRP

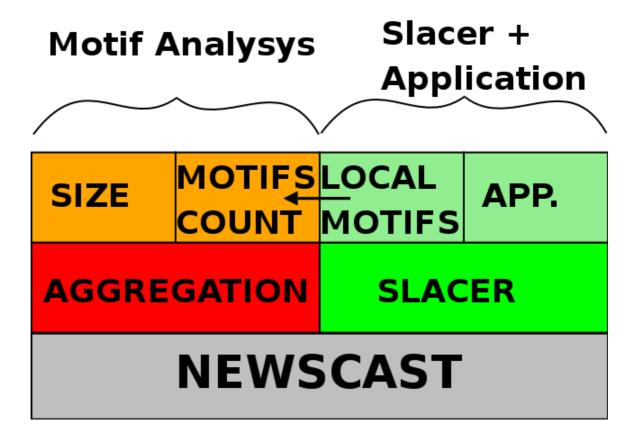
Motif Analysis as a Misbehavior Detection Tool

- Motif analysis seems a good candidate technique to detect network anomalies
- Not feasible in P2P environment
 - Global network knowledge needed
 - □ Heavy computation
 - □ Not possible to perform analysis "on the fly"

Distributing Motif Analysis

- Requirements to perform motif analysis in a P2P network
 - Decentralization
 - Set of local knowledges
 - Load distribution
 - Computation load to be distributed among peers

Local Motif Analysis


- Each node only cares about the motifs it is part of
 - Exchange view with limited number of nodes
 - Only immediate neighbors are needed for 4-nodes undirected motifs
 - □ Analysis performed through view comparisons
 - Check for neighbors to be linked to each other
 - Check for neighbors to share common links

. . .

Distributed Motif Analysis Architecture

- Local motif count
 - Performed by each node through views exchange
- Global motif count
 - Obtained aggregating single nodes' local analysis
 - All the nodes become aware of the network SRP

Distributed Motif Analysis Architecture (cont'd)

Stuff Done...

- Coordination in open P2P system
- Slacer algorithm
 - □ Cooperation in PD obtained
- Cheating nodes
 - Slacer is able to deal with some kinds of cheaters (GCL)
 - High quantity of cheaters could destroy Slacer (NIH)

Stuff To Do...

More complex and realistic applications
 Broadcast

□...

Motif Analysis

Detect cheating through motif analysis
 Need to be distributed

THANK YOU!!!