
Decentralized Lightweight Methods for

Coordination and Cooperation in Peer-to-Peer

Networks.∗

Stefano Arteconi

Universitá di Bologna
Dip. Scienze dell’Informazione

arteconi@cs.unibo.it

February 24, 2006

Abstract

Peer-to-Peer networks definition implicitly includes features like
decentralization and dynamicity that can be exploited to achieve inter-
esting emerging properties such as self-organization and self-configuration.

On the other hand cooperation between nodes is a necessary con-
dition for peer-to-peer system to work well, even though the lack of
central control often gives incentives for nodes to behave selfishly. Our
work explores novel methods that encourage nodes to act in a coop-
erative coordinated fashion even when there are incentives to behave
selfishly.

With respect to peer-to-peer characteristic, such method should
be based on local nodes’ interactions and knowledge and face possi-
ble large scale network dynamicity, which makes cooperation between
nodes a hard and stimulating challenge.

Our attempt to deal with such challenges draws inspiration from
different disciplines as sociology, biology and economics. So far in-
teresting result regarding obtained cooperation level, topology, and
system performance against cheating nodes have been obtained, but
there are still many issues to face.

∗Ph.D. Thesis Proposal.

1

1 INTRODUCTION 2

1 Introduction

Peer-to-Peer (P2P) network paradigm is a relatively recent approach to dis-
tributed systems and network computing. Its main innovation with respect
to the classic client-server one is given by the fact that no distinction is made
between client and server machines, in fact from the P2P point of view all the
nodes in the network are ideally both client and server at the same time. This
means that a P2P node does not only generate requests or provide certain
services, but it should be able both to ask for services and to provide them
at the same time. It is quite easy to see that the key point of such paradigm
is decentralization. There is no powerful trusted server to control the system
and to provide services to small clients, on the contrary, resources, as well as
services, are scattered throughout the network.

Another important feature of P2P systems is that they are usually defined
as overlay networks, meaning that no physical network infrastructure is taken
into account, on the contrary transport and network level ensuring connection
between nodes are assumed to exist (i.e. the Internet and TCP/IP protocol).
As a consequence to this the nodes of a P2P overlay are defined just as
processes running in a given machine, while links between nodes are just
logical labels (i.e. IP, port pair). In such setting rewiring of nodes, hence
network topology modification and management, are very easy to perform
since no physical channel modification is needed. A third important feature
of P2P systems is dynamicity, that is, many nodes continuously join and
leave the network.

Being P2P systems implicitly highly decentralized, dynamic, and based on
simple local nodes’ interactions, they can be related to the studying of com-
plex systems. This definition includes many systems, such as ant colonies,
immune system and friendship formation, drawn from very different disci-
plines. What links this very different settings together is the lack of cen-
tralized control and, on the contrary, the ability to set up large systems just
from local interactions and knowledge.

The passage from local to global is the key point in P2P systems (and
more generally in complex systems), when designing a system of this kind,
it is only possible to define local rules and behaviors to be followed by each
node, while the formation of a working system on a global scale is cannot
be directly designed or implemented, but should appear in the system as
an emergent behavior obtained only from simple local interactions between
simple agents having just a limited local knowledge of the system.

The passage from client-server to P2P paradigm has a lot of different (not
always positive) effects: on one hand the system implicitly become more
robust (no single point of failure) and scalable (no bottlenecks), moreover

2 PROBLEM DEFINITION 3

performances could be easily improved (higher use of leaf nodes resources),
but on the other hand decentralization also leads to a lack of system control,
hence to the possibility to free-ride, and the difficult to define and set up
global behaviors.

It turns out, finally, that when designing P2P systems not only system
performances optimization should be taken into account, but a way to en-
sure coordination between nodes and to avoid malicious behavior should be
designed as well, so to improve global system performance starting from a
local basis. Taking into account that everything has to be done locally, has
to be as simple as possible, and no global knowledge, coordination, or control
should ever be assumed, dealing with these tasks turns out to be very hard.

2 Problem Definition

Given the peculiar P2P systems features described above, the main prob-
lem that is going to be addressed consists in defining a general mechanism
to produce coordination and cooperation between nodes in a P2P network in
a totally decentralized lightweight fashion. Even though these problems are
quite easy to deal with in presence of centralized controlling entities, they
become hard tasks to solve under P2P systems implicit constraints.

Since the goal to achieve has been defined as cooperation (or in a broader
sense coordination) between nodes, a definition of such terms will be given
now.

2.1 Need for Cooperation in P2P Systems

The extreme decentralization typical of P2P networks, hence the total lack
of centralized and controlling entities, makes P2P systems open, in the sense
that there is no direct control neither on who joins the system, nor on nodes
behavior.

In practice nodes can freely join such systems and free-ride, that is they
can assume a behavior that could lead to system performance degradation
or could directly act against system protocol specification.

Basically what happens is that decentralization, and the subsequent abil-
ity to free-ride, lead to a struggle between selfishness and cooperation. In
fact what usually happens is that nodes benefit from having their requests
fulfilled, but on the other hand they pay a fee to provide services to other
nodes. In this basic abstract scenario each node is brought to behave self-
ishly, trying to maximize its benefit, while minimizing costs, hence denying
services to other nodes. It is quite easy to notice that if every node acted

2 PROBLEM DEFINITION 4

selfishly no service would ever be provided, therefore nodes cooperative be-
havior is a necessary condition from a global system performance point of
view. The contradiction between selfishness and cooperation typical of open
systems where basic entities are not supervised by any kind of central control
is known as the tragedy of the commons[14].

Turning to free-riding, an easy to understand example of free-riding in
P2P is given by leechers (users downloading files but not sharing anything) in
file-sharing systems, obviously a high number of leechers would prevent the
system from working. In such example coordination could consist in having
all the nodes sharing resources so that anybody could easily find and retrieve
the files he is interested in. The bast way to coordinate nodes behavior is
not trivial anyway: should any node give as much files (or bytes) as it get?
Should upload/download ratio be distributed according to nodes capability
(i.e. bandwidth)? What is the optimal topology?

It could be very hard, if not impossible, to define an optimal (or at least
acceptable) solution to satisfy these requirements ”a priori” on a global scale.

2.2 Prisoners’ Dilemma

The simple file-sharing example above shows how hard the problem of coordi-
nation could be and how many different aspects it involves. A classic example
to describe the contradiction, typical of such kind of systems, between selfish
and cooperative behavior in a more general and formal way is the well-know
Prisoners’ Dilemma game (PD)[4]. In PD two players play one against the
other and could choose between two possible strategies: Cooperate (C) or
Defect (D), payoffs are then distributed to the players according to the pair
of played strategies as illustrated in table 1.

P1|
P2 C D

C R, R S, T
D T, S P, P

Table 1: Prisoners’ Dilemma payoff table.

For the dilemma to originate the two constraints expressed by equations
1 and 2 must hold:

T > R > P > S (1)

2R > T + S (2)

3 STATE OF THE ART 5

Under such constraints D (defective) strategy always ensures a payoff
equal or higher than the opponent’s one, moreover D is a dominant strategy
for both players, hence (D, D) is a Nash equilibria [24] for PD, that is, if PD
constraints hold, nodes are implicitly pushed to defection. In spite of this,
the highest possible total payoff is obtained when both the players choose
a cooperative strategy. To sum up, PD pushes single players to defection
but ensures better global performances to pairs of cooperative players, this
is exactly what happened in the previous file-sharing system example, and
what happens in general in many open systems.

How to deal with such problem is the main aim of the present work. Some
of the existing mechanisms to do this, and a novel one in development stage
will be presented in the following.

3 State of the Art

P2P system can be used with very different application domains, anyway
free-riding is a problem common to any kind of P2P system, and trying
to find a way to deal with this problem is a major issue within the P2P
community. Looking at the problem in an abstract way, with no distinction
between different applications, open systems are bound to suffer from the
contrast between the cooperation needed for the system to work and the
selfish behavior of users who wants to maximize their income from the system
without hardly paying anything (being it money, bandwidth, computational
resources, etc.) back.

In P2P such phenomenon is usually called free riding, many analysis
have been performed on existing P2P system to study its size and impact
[1][27]. For such systems to work under high free-riding rates, balancing
nodes providing many services (and paying high costs) are needed, hence the
effort needed to keep the system working is unevenly distributed between
peers and the actual P2P nature of the system is lost.

In addition to the problem of free-riding, P2P system should also be
able to deal with cheating nodes. In open systems usually identities are
very cheap, hence the most common (and feasible) attacks are based on
false identities. Two example are given by the so called sybil attack [8],
where basically a node uses many different identities at the same time, and
whitewashing [10], where a node continuously changes its identity.

Researchers have been proposing many different attempts to deal with
these problems and to prevent users from free-riding or misbehave and to
identify and isolate such users by avoiding interactions with them.

In [19] Eigentrust, a mechanism to evaluate and assign to each node a

3 STATE OF THE ART 6

trust value is defined, the basic idea is to aggregate a global trust values
for each node based on the result of past interactions, and to store them
in a distributed hash table (DHT) [25][28][26] so to make them easy to be
retrieved and updated by any node.

A different approach is proposed in Samsara [6], an extension to a P2P
distributed storage system, called Pastiche [7], that ensures that nodes con-
sume no more resources than they contribute. Samsara is not based on trust
values, the mechanism used to obtain this is based instead on reciprocity
between nodes (that is, if node A stores data on account of B, then B must
ensure to eventually store data in account of A), and probabilistic punish-
ment inflicted to nodes that do not respect such reciprocity.

Another proposed solution, very different from the two cited above is
given in [2]. Here methods drawn from ”classic” distributed systems such as
replicated state machines [5] are used to tolerate both byzantine (including
broken, misconfigured, or malicious nodes) and rational (selfish free-rider
nodes) behaviors. To obtain this, the strong requirement of a close system
is needed, that is there has to be a central authority deciding which nodes
may enter the system and which may not.

An alternative approach able to deal with free-riding nodes as well as
cheating and colluding ones is described in [9]. The main idea in this work is
given by the fact that in addition to a shared history maintained aggregating
all the nodes interaction in a DHT (somewhat similar to the Eigentrust
approach), to avoid colluders each node also evaluates a subjective trust
value for other nodes through a maxflow algorithm where the generic (i, j)
edge capacity c(i, j) represents the amount of services node i received from
node j. This approach seem to resolve all the problems in a clever simple way,
its main limit anyway consists in the fact that since all new nodes joining the
system are considered as a unique entity, whitewashers can potentially cause
the system to become too hard to join, in the sense that newcomers (even
non cheating and non selfish ones) will be initially punished as if they were
cheating nodes, hence they might be discouraged from joining the network.

Not all the existing techniques are based on reputation or detection tech-
niques explicitly hard-coded into the protocol. An alternative approach con-
sists in using social networks formed by users as a network topology to per-
form collaborative task and to choose trusted ”friend” nodes.

In [20] a collaborative spam-filtering technique based on email network
is described. Here the network topology is indirectly defined by users’ email
contacts. Basically one’s immediate neighbors in such network are the people
contained in his email contact list. Each user then defines some level of trust

4 APPROACH TO THE PROBLEM 7

on its neighbors and marks the received spam mails. Finally spam-filtering is
performed upon new mail arrival searching the network to check if received
messages have already been marked by some trusted node.

A similar approach, even if applied on a quite different scenario, is de-
scribed in [21]. Here a social network defined by instant messengers (such
as ICQ1, MSN Messenger2 and Skype3) contact lists is used to define alter-
native path routes for a DHT system. To send or forward a packet a node
can choose to use a ”friend” node defined by the social network rather than
directly following DHT specification and use an unknown (and possibly un-
trustworthy) node. This simple mechanism ensures higher reliability than a
simple DHT at the expenses of a less uniform traffic load distribution due to
the very different connectivity between nodes in the social network.

Even if social networks usually have very interesting properties as illus-
trated in section 4.1, using pre-existing ones might not always be a good idea.
The point is that social networks formation is usually led by some specific
goal, hence the resulting topologies could be biased to work for some specific
tasks, but not for others. In example user A could enjoy having a chat with
user B, but B’s computer can be misconfigured as well, so a good link in a
social network obtained by email or an instant messenger contact list could
even be a bad link to perform other kinds of task as spam-filtering or message
routing.

4 Approach to the Problem

The presented problem do not seem to be a typical computer science one, in
fact it involves many other different research fields: entities interacting and
getting rewards/costs according to their behavior are studied in Game the-
ory, while different aspects of the way such entities should (or are bound to)
behave, as well as the way acquaintances between them are formed, are stud-
ied in economics and sociology. Moreover P2P networks are often inspired by
various disciplines as biology and physics, whose studied systems share many
common features and techniques notwithstanding the very different settings.

4.1 Sociological Inspiration

What we want to obtain here is the ability to define a network process for-
mation through which both network topology and nodes’ behavior evolve

1http://www.icq.com
2http://messenger.msn.com
3http://www.skype.com

4 APPROACH TO THE PROBLEM 8

according to the system performance improvement in spite of nodes’ selfish-
ness, in this way it is possible to bring coordination between nodes both from
an individual behavior and from a network topology point of view. Regard-
ing the present approach, we found many resemblance between the need for
coordination and joint cooperative problem solving in P2P networks, and the
way human friendship relations are formed.

A good source of inspiration to define such kind of network evolution could
be drawn from social networks formation, that is, the way human social
relationships are formed. Network of people acquaintances form a small-
world topology [31], in which highly connected clusters of mutual friends
are linked to other clusters by individuals that form social bridges or hubs.
The upshot of this, as has been dramatically demonstrated [29], is that it is
often possible to find a short chain of friends of friends for any pair of people
around the world. Such kind of friendship networks have several desirable
properties: they tend to be cooperative (we trust our friends), and they
support a number of social functions that we need to achieve in everyday life
(i.e. we can ask friends for favors or cooperatively solve a difficult problem
with work colleagues, we can turn to friends for good advice or discuss with
them confidential issues). Furthermore, they are constructed and maintained
in a completely distributed way: there is no central authority deciding who
should be your friend or who should not.

4.2 Tag Systems

To import social networks features into P2P systems the proposed approach
uses techniques drawn from computational sociology. It is a recently devel-
oped and rapidly spreading branch of sociology that uses computer simulation
to analyze social phenomena. It involves the understanding of social agents,
the interaction among these agents, and the effect of these interactions on
the social aggregate.

In particular the model we are going to use is called tag system [15]. Tags
are defined as markings or social cues that are attached to individuals and are
observable by others. Tags evolve like any other gene in the genetic pool. The
key point is that the tags have no direct behavioral implication for the agents
carrying them. Through indirect effects (such as biasing of interaction),
however, they can evolve from initially random values into complex ever
changing patterns that serve to structure interactions between individuals.
There exist in fact a lot of different models in which through tag systems
cooperative behavior between agents emerges even though the environment
pushes them to selfishness. The main aim here is to translate the concept of
tags from multi-agent systems into P2P computer networks, allowing nodes’

4 APPROACH TO THE PROBLEM 9

behavior and network topology to evolve.
The main proposed idea consists in embedding tag systems into P2P net-

works (opportunely modified, if necessary, to fulfill P2P system constraints
and requirements) so to make the nodes themselves able to evolve local behav-
iors and topology in order to achieve (emerge, from a complex system point
of view) coordination needed to obtain high global system performance level.

4.2.1 How does Tags Work?

Before going on to show the work that has been done from a P2P point of
view, let us give a brief general explanation of how tag systems work. Each
agent state in a tag system is characterized by 3 values:

• Strategy: The definition of the behavior of the agent in the system
(i.e. PD strategy to play).

• Tag: Tags can be defined in different ways (bitstrings, real values,
etc.), the important things about tags are:

– Tag should not affect agent’s behavior.

– Tag should evolve.

• Utility: A measure of the agent’s performance (i.e. PD payoff ob-
tained).

While nodes’ interactions are described through strategies, tags can be
used to guide the way opponent agents are chosen. In example agents could
be forced to interact only with others having their same tag or a tag similar
to their one. Finally the result of such interaction is described by utility
value.

Through tags evolution a mechanism of clustering formation between
agents is implicitly defined. To give a more detailed description, the actions
performed by a single agent (say i) in a tag system are:

• Periodically play with a node having same or similar tag.

• Update utilities accordingly.

• Periodically compare utility with a random agent (say j).

• The node with lower utility (say Ui < Uj).

– i copies j’s strategy.

– i copies j’s tag.

5 OBTAINED RESULTS 10

– i resets its utility.

– with low probability i mutates its tag and strategy (assigning them
random values).

Through this simple mechanism tags define groups of interacting agents,
and through strategies and tags evolutionary mechanism, an evolution in
agent groups and behaviors is defined as well. Basically what happens
through this mechanism is that poor performing agents copies the behav-
ior and start interacting with the same set of agents of the better performing
ones.

Turning back to the sociological metaphor tag systems simply describe the
way people try to improve their lifestyle (utility) by joining better performing
groups of people (identified by tags) and imitating their behavior (strategy).

Turning back further to P2P systems, tag systems seem to preserve P2P
main constraints, in fact system evolution is performed in a totally decen-
tralized and local fashion and agents interactions are very simple, in fact
behavior could even have a complex definition, but the basic step through
which it evolves (utility comparison, and copy of strategy and tag) is per-
formed without any need for agents’ rationality or specific computational
capabilities.

Now that tag systems have been briefly explained and similarities with
P2P networks have been pointed out we can finally turn to the result obtained
so far from tag system embedding in P2P.

5 Obtained Results

The effort to use tag model in P2P system led to the definition of an algo-
rithm, called SLAC[13], able to deal with the problem of free-riding and to
bring the network to high level of cooperation. Then starting from SLAC
some modification and analysis have been performed that lead to further al-
gorithm improvement [12] and to interesting results regarding the presence
of cheating nodes[3].

The phases of this work will now be examined step by step. So far SLAC
and SLACER have only been tested through simulations. All the results
presented in the following have been obtained using Peersim4 simulator[17].

4SLAC and SLACER peersim implementation can be found at: http://peersim.sf.net

5 OBTAINED RESULTS 11

5.1 SLAC Algorithm

In the passage from tags to P2P the relation between agents and nodes is
straightforward, while the passage from agent’s state to node’s state is not
immediate. In P2P networks nodes strategies and utilities should be defined
at application level, in example in a file-sharing scenario strategy could be
the download/upload limits ratio, while an utility measurement could consist
in the quantity of downloaded data or the actual download speed. About
tags, as said before they should be used to limit the interactions between
nodes, hence the way we translated the concept of tags into P2P is looking
at nodes’ view (the list of immediate neighbors) as a tag itself, and allowing
direct interactions only between immediate neighbors, hence copying other
nodes tag simply means rewiring one’s links to move from a zone of the
network to a different one.

After this conceptual shift from tag systems to P2P we can finally describe
the SLAC algorithm. The best way to do this is looking at the pseudo-code
in figure 1 and illustrating the main performed actions.

Each node periodically do

Compare utility with a randomly chosen node

if the other node has higher utility

Drop all the current links

Link to that node and copy its strategy and links

Reset utility

Mutate with low probability links, strategy

fi

od

Figure 1: SLAC algorithm pseudo-code.

The main evolutionary step performed are reproduction and mutation.
Reproduction (illustrated in figure 2) consists in comparing utility with a
random node (in our experiments random peer sampling is provided at lower
level by NEWSCAST algorithm [16]), and in the copying of higher utility
node by lower utility one. Even though what really happens is that a node
moves and changes strategy, this step can be seen as the lower utility node
dying out and the higher utility one reproducing.

Mutation is performed after reproduction by the losing nodes with low
probability. Tag mutation (illustrated in figure 3) consists in dropping all the
current links and linking to a randomly chosen node, while strategy mutation
should be defined at application level and in general it consists in randomly

5 OBTAINED RESULTS 12

Figure 2: SLAC reproduction step. Nodes’ color representing strategies.
In the given example node A compares utility with node I (on the left).
Supposing UA < UI node A copies node’s I tag (view) and strategy.

choosing a strategy out of all the possible ones.

Figure 3: SLAC tag mutation. In this example node A mutates its tag
(neighborhood). On the right mutation has been performed linking to a
randomly chosen node. Notice that tag mutation do not affect strategy.

It has been observed that these simple basic steps bring to the formation
of a highly cooperating network even when starting from full defection. To
show how this happens a simple PD game application testbed has been used.
PD has been chosen because as pointed out in section 2.2 it is very simple
and represents in an abstract way the contradiction between selfishness and
cooperation.

Before moving on to analyze result with PD let us sum up system archi-
tecture. 3 different layers have been defined: random peer sampling (used
for reproduction), SLAC itself, and an application layer (providing utility).
Such architecture and the interactions between different layers are shown in
figure 4.

5 OBTAINED RESULTS 13

Figure 4: SLAC 3-layers architecture.

In our PD implementation each node periodically chooses a random neigh-
bor and plays a single round with it. Nodes can only use pure strategies (al-
ways C or always D) and the utility measurement applied is just the average
payoff obtained from repeated game interactions.

Figure 5 illustrates the trend of cooperation level and clustering coefficient
of the network in a single simulation run.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500 600 700 800 900 1000

simulation cycle

clustering coefficient
quantity of cooperating nodes

Figure 5: SLAC single run cooperation and Clustering coefficient trend. The
behavior is basically the same in all performed simulations.

To have a stronger intuition of what is happening some network snapshot
are given in figure 6.

Now we can easily guess what kind of process is going on:

• Through random reproduction selfish clusters are formed (figure 6(a)).

5 OBTAINED RESULTS 14

(a) Defective clusters formation (b) Cooperation formation

(c) Cooperation spreading (d) Cooperative clusters forma-
tion

Figure 6: SLAC 500-node network snapshots. White nodes are cooperative,
gray ones are defective. Unfortunately the pictures are confused but can be
helpful to understand network topology evolution.

• Eventually two neighbor nodes mutate to cooperative strategy and get
higher utility than the rest of the network from their mutual interaction.

• Cooperation level rises fast through reproduction, bringing all the nodes
to a big cooperative cluster (lower clustering coefficient) (figure 6(b)).

• When high cooperation is reached some node turn to defective strate-
gies(figure 6(c)).

• Neighbors of defecting nodes have lower utility and move away.

• Cooperative clusters are formed and defective nodes are isolated (figure
6(d)).

5 OBTAINED RESULTS 15

• Both cooperation level and clustering coefficient remain stable.

In conclusion tags in P2P implemented by the SLAC algorithm seem to
produce an emergent group-like selection between clusters of nodes, bringing
nodes to cooperation in spite of an individual temptation to defect. More-
over once high cooperation is achieved it remains stable, in fact cooperating
nodes being suckered by selfish ones are able to move away through repro-
duction, isolating defecting nodes and forcing them to eventually turn back
to cooperation. Even if for the sake of simplicity all the example given here
are based on PD application SLAC has been tested with more sophisticated
application like a simple file-sharing model [13] and in different setting re-
quiring not only cooperation but a higher level of coordination in the form
of the grouping of nodes with different properties [11].

5.2 SLACER Algorithm

The passage from tags to P2P performed with SLAC led to cooperating
networks, but on the other hand it produced a highly disconnected topology.
Such kind of topology could not be acceptable in many application domains,
so a step further has been done trying to keep the network connected. To
achieve this a very simple modification to the original SLAC algorithm has
been done: when reproducing or mutating, nodes do not drop all of their
current links, but retain each of them with low probability.

This simple step produces a topology similar to the one in figure 6(d)
with the addition of occasional edges linking different clusters (an example
of topological differences between SLAC and SLACER is given in figure 7).
Basically what we get is a Watt-Strogatz like network [31] where the analo-
gous of the β parameter [31] is the probability of dropping links when repro-
ducing. It is easy to see that drop probability equal to 1 is but SLAC, while
the lower the drop probability the less small-worldish and more random-like
the resulting network turns out to be. Since high clustering is the key point
in cooperation formation and in similarities between the concepts of tag and
view, our aim was to keep drop probability as high as possible while trying
to keep the network connected.

From different experimental settings observation we found that drop prob-
ability value equal to 0.9 lead to network connection and to a small-world
like topology as expected, this fact is indirectly proved by relatively high
and stable clustering coefficient and low and logarithmically growing average
path length as shown in figure 8.

To measure the relationships between network topology and cooperation

5 OBTAINED RESULTS 16

(a) SLAC topology - disconnected
clusters

(b) SLACER topology - watts-
strogatz like

Figure 7: SLAC vs. SLACER: topological differences.

two new measurements have been introduced: Largest Cooperative Compo-
nent (LCC) and Connected Cooperative Path (CCP).

LCC measures the proportion of the largest cluster composed only by
cooperating nodes with respect to the network size. CCP measures the pro-
portion of pair of cooperating nodes linked by cooperative paths (or either
directly linked) with respect to all the possible pairs of nodes in the net-
work. Value 1 means that each pair of nodes is linked either directly or by a
path entirely composed of cooperative nodes. Lower values could be due to
occasional network disconnection or to defective nodes occupying strategic
position able to block cooperative paths.

Once high cooperation is reached CCP and LCC always have very high
values independently from network size, as illustrated in figure 9.

To draw conclusions about SLACER, starting from SLAC and applying a
simple modification we obtained a connected topology with interesting prop-
erties such as small-world likeliness and high and scalable LCC and CCP. In
addition, through drop probability parameter it is possible to tune the net-
work topology (disconnected clusters, small-world, random) and cooperation
level according to the application task to be performed.

5.3 Greedy Cheating Liar Nodes

A step further in SLAC and SLACER development consisted in testing sys-
tem performance in presence of cheating nodes. Cheating behavior should

5 OBTAINED RESULTS 17

 4

 4.5

 5

 5.5

 6

 6.5

 1000 10000 100000
 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

A
P

L

C
C

network size

APL
CC

Figure 8: SLACER topology: Clustering coefficient and Average Path Length
values for different network sizes. Constant and high clustering vs. logarith-
mically growing and low average path length give confidence on the small-
world likeliness of the network.

not be confused with free-riding. What is meant with free-riding is that
nodes selfishly try to maximize their own income not cooperating with other
nodes, while for cheating we mean that protocol specification are deliberately
violated.

One main assumption made so far is that nodes report honestly their state
during reproduction. What would happen if, on the contrary, nodes were able
to cheat, reporting false strategy, utility, or neighborhood? To answer this
question two different families of cheating nodes have been defined:

• Network exploiters: Greedy Cheating Liars (GCL): GCL nodes’
aim is to get the maximum possible outcome from the network by
selfishly exploiting their neighbors.

• Network destroyers: Nihilists (NIH): NIH nodes’ aim is to destroy
the network opposing cooperation formation, spread and maintenance
with no care about their own performance.

Taking into account GCL node we try to model the behavior of a rational
user who wants to get the maximum possible outcome from the system. In
general the best way to do this is to act selfishly while being surrounded
by cooperating nodes. Using PD as the application layer it translates into

5 OBTAINED RESULTS 18

 0.98

 0.985

 0.99

 0.995

 1

 1000 10000 100000

network size

LCC
CCP

Figure 9: CCP and LCC in SLACER network. Neither of them is influenced
by network size, suggesting good SLACER scalability.

always playing D while being surrounded by nodes who are playing C. This
kind of circumstances can be easily produced through false state reports.

A GCL node first should always defect, then to force its neighbors to
cooperate, it should always report high utility (so to bring other nodes into
its neighborhood) and cooperative strategy (so to turn new neighbors to
cooperation). Moreover it could also pass a single link to itself so to avoid
links between its neighbor and create a local star topology.

Looking at NIH nodes the analysis is similar to GCL ones. To get nodes
into its neighborhood a NIH node should always declare high utility (as in the
GCL case), it should also declare defective strategy so to turn new neighbors
to defection, and defect itself since its only goal is to spread defection. To
try spreading defection faster a NIH node could also pass random links in
spite of its real neighborhood.

To sum up the two proposed cheating behavior:

• GCL

– Utility: Always declare high utility.

– Strategy: Always declare C while always playing D.

– Links: Pass a single link to itself.

• NIH

5 OBTAINED RESULTS 19

– Utility: Always declare high utility.

– Strategy: Always declare and play D.

– Links: Pass links to a set of random nodes.

We experimented with different quantities of cheating nodes in a 4000node
network and we get very different results from the two kind of cheating
behavior, here no results related to false links report are given, they can be
found in [3].

Analyzing results in presence of nodes lying about utility and strategy,
NIH nodes seem to achieve their goal leading the network to low cooperation
level, long time to get it, and very low average nodes’ utility as illustrated in
figures 10(b) and 11(b).

Turning to GCL nodes, on the contrary, we get very interesting and sur-
prising results: the system seems to someway benefit from the presence of
GCL nodes! What happens with GCL nodes is that even if they are able
to exploit others, global performance degradation is very graceful, that is
GCL nodes exploitation is evenly distributed throughout the network and
the utility achieved by non cheating nodes is not much lower than the op-
timal case given by a fully cooperating network (figure 11(a)). Looking at
cooperation level and at time needed for cooperation to spread starting from
a fully defective network (figure 10(a)), GCL nodes have positive effects.
Cooperation level reaches very high level (basically all non cheating nodes
cooperate) while the time needed to reach such high levels of cooperation is
about the half than in the case with no cheating nodes.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20

%
 o

f c
oo

pe
ra

tin
g

no
de

s

% of cheating nodes

GCL
NIH

(a) Cooperation level

 0

 100

 200

 300

 400

 500

 600

 700

 0 5 10 15 20

tim
e

to
 c

oo
pe

ra
tio

n

% of cheating nodes

GCL
NIH

(b) Time to cooperation

Figure 10: Cooperation formation properties in presence of cheating nodes.

GCL nodes effects can be interpreted as the offering of a service (fast and
high cooperation) requiring some sort of payment (high utility for cheating

6 OPEN ISSUES 20

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16 18 20

av
er

ag
e

pa
yo

ff

% of cheating nodes

GCL nodes
Other nodes

(a) GCL nodes

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16 18 20

av
er

ag
e

pa
yo

ff

% of cheating nodes

NIH nodes
Other nodes

(b) NIH nodes

Figure 11: Utilities comparisons between cheating and non cheating nodes.

nodes and graceful degradation of non cheating nodes performance). This
results suggest a provoking idea: maybe, rather than trying to detect and
stop cheating nodes, a way to deal with and to get some form of benefit from
them should be found!

Even though we believe this result to be very interesting, we certainly
know that it needs further investigation and analysis. In particular SLAC
system and its way of dealing with cheating nodes is based on the implicit
assumption that cheating behavior would not spread neither in the system
the way free-riding could do, nor outside the system, i.e. through hacked
clients. This assumption can be argued and involves many different issues not
necessarily directly related to SLAC and SLACER algorithms specification.
This problem will be discussed deeper in section 6.

6 Open Issues

Our goal is to produce coordination between nodes in a lightweight fashion,
hence no reputation system has been introduced to avoid system overhead.
To make things work with such premises some implicit assumptions has been
made anyway. Such assumptions will now be made explicit and discussed.

6.1 Distinction between Free-Riding and Cheating

In the presented work a main distinction has been made between free-riding
and cheating behavior. By free-riding we mean behaving in a selfish way
to increase one’s own income with no care about possible system level per-
formance degradation. Free-riding then implies the following of protocol

6 OPEN ISSUES 21

specification but the possibility to act selfishly.
For cheating, on the other hand, we mean any kind of behavior that

do not respect protocol specification, as in the case of nodes reporting false
states during reproduction.

One main distinction between this two different behaviors is in the way
they spread throughout the system. Free-riding behavior can spread in our
system through reproduction, like in the case when high utility defective
nodes bring other nodes to defection. As for cheating behavior, we assume
that it does not spread, like in the GCL case, where non cheating nodes just
copied declared strategy, but not the ability to lie about their own state.

6.2 In-Protocol vs. Out-Protocol

The reason why we assumed that cheating behavior would not spread requires
to abstract from the system itself and to look at possible users’ behavior. We
refer to everything regarding protocol specification and the way the system
works as In-Protocol, and to everything regarding ”the real world” and the
way users behave and interact as Out-Protocol.

This classification reflects in some sense the free-riding vs. cheating one.
Using a file sharing system example we can see at leeching as an example
of free-riding behavior: not to sharing files do not need to subvert protocol
specification, and result in a lowered cost (in term of outgoing traffic) for
the user, but it could degrade system performance. In the same setting, an
example of cheating could be represented by the use of an hacked client to
improve performances, hence to exhibit a behavior different from protocol’s
specification.

We have shown that in SLAC and SLACER even if free-riding can poten-
tially spread throughout the system this does not happen, on the contrary
the combination of selfish (but non cheating) nodes’ interaction bring the
system to high cooperation level.

If cheating behavior were free to propagate as free-riding is, SLAC and
SLACER would not work. In fact our main assumption requires that in
every case the majority of nodes follows the protocol’s rules. In SLAC and
SLACER there is no mechanism to prevent cheating behavior from spread
as it happens for free-riding, so if cheating nodes were able to spread their
behavior, everyone in the network would have eventually ended up cheating!

Our assumption about non spreading cheating behaviors is drawn from
the fact that for cheating to spread Off-Protocol capabilities (like hacking a
client) and communication (like spread the client) are required, moreover we
observe that spreading an hacked client, hence spreading cheating behavior
in the system, would reduce cheaters’ (and hacker’s) benefit itself, hence a

7 EXPECTED RESULTS 22

rational hacker who could be able to subvert the protocol is disincentivized
from spreading its knowledge about cheating behavior.

An example of this fact can be done looking at figure 11(a): in this case
few GCL nodes get high utility, but if more than 20% of the nodes cheat what
happens is that even if cheaters continue to have better utility than other
nodes, their utility is anyway lower than if there were no cheating nodes at
all!

We are aware that such assumptions are quite strong and can be argued.
In fact further development of the presented work will consist in trying not to
depend on them. This can be obtained modifying the presented algorithms
adding mechanisms to locally discover cheating nodes and avoid interactions
with them, the way such mechanisms should be designed, and if to use novel
specific approaches or already existent ones (like shared history) is the main
scope of future investigation.

7 Expected Results

We are currently working to find a way to deal with the problem discussed
above and to make the system able to detect anomalies. The method we
plan to develop is based on network topology analysis and draws inspiration
from the study of complex networks from a biological point of view.

7.1 Motif Analysis

Networks are often characterized using average global measures, such as aver-
age path length and clustering coefficient. Although valuable, such measures
rarely give a picture of the detailed structure of the networks. This means
that networks with different topologies can have identical global average mea-
surements, therefore, in order to further understand and classify natural and
artificial networks new methods have been proposed.

Recently more sophisticated topological techniques than the classical global
measurements have been defined to study complex networks’ (both natural
and artificial) properties. Among these approaches the analysis of small local
pattern (called motif analysis [23]) turned out to be a potentially powerful
tool when applied to the algorithms presented above.

Motif analysis is performed by breaking the network down into all possible
n node subgraph patterns and counting their occurrence in the whole network
comparing those counts against randomly generated networks with the same
characteristics (number of nodes, and in and out degree links). From such
data it is possible to extract information about peculiar local patterns ap-

7 EXPECTED RESULTS 23

pearing much more often (or seldom) than in the random case. Then n node
subgraph patterns significantly more prevalent than in random networks are
considered mofits of the network. Equally important to define network struc-
ture, although less discussed in the literature, n node subgraph patterns that
are underrepresented in the network have been termed anti-motifs [22].

Obviously, for large subgraph sizes the number of possible motifs becomes
large but for smaller sizes (3 and 4 nodes) it is possible to efficiently search
for all occurrences even in large networks.

7.1.1 Subgraph Ratio Profile (RSP)

The P2P networks produced by SLAC and SLACER are undirected in the
sense that all links are bidirectional. So for the purposes of analysis we search
for all undirected four node subgraphs (tetrads). Figure 12 shows the six
possible undirected tetrads. In order to analyze the P2P networks we used a
subgraph ratio profile (SRP) method [22]. This approach is particularly useful
for analysis of the P2P networks since traditional motif analysis methods
using z-scores are not network size invariant for non-directed tetrads and
this makes comparison with networks of different sizes difficult.

Figure 12: Undirected 4-node motifs.

For a given network N the SRP is a normalized vector of ∆i values:

SRPi =
∆i

√
∑

i ∆
2

i

(3)

The vector elements, one for each of the six tetrads, are calculated based
on the abundance of each tetrad i relative to randomly generated networks,
To avoid large values as an artefact of very small occurrences of tetrads
in both the real and random networks a constant small value ǫ (=4 in the
present measurements) is added to the the denominator:

7 EXPECTED RESULTS 24

∆i =
Nreali− < Nrandi >

Nreali+ < Nrandi > +ǫ
(4)

A given SRP can be graphed producing a curve which characterizes the
tetrad motifs and anti-motifs visually as in figures 13 and 14.

7.2 SLAC and SLACER Networks Motifs

Motif analysis has been defined and is used in biology to study complex
networks related to biological systems, such as protein structures and food-
webs, were local structure can be interpreted to have very precise meanings
and functions. Even though this is not the case in SLAC and SLACER,
where it is difficult to argue specific reasons for the formation of specific
local patterns, motif analysis, especially the aggregation on a global scale of
motifs occurrences turns out to have potential interesting applications.

SLAC and SLACER motif analysis results [30] are illustrated in figures
13 and 14 respectively, these figures represent the SRP for both SLAC and
SLACER networks at different stages of their evolution. In each case three
time ordered network snapshots are shown.

Figure 13: SLAC network RSP at different cooperation evolution stages.

It is interesting to notice that the curves in figures 13 and 14 follow
a similar time evolution for both SLAC and SLACER: immediately before
cooperation (snapshot 1) the curve already has a very similar shape to the
final curve, during the outbreak of cooperation (snapshot 2) the curve tends
to move upward slightly (less anti-motifs 1 and 2, but more motifs 3 to 6),
then, after stable cooperation is attained (snapshot 3) the curve tends to

7 EXPECTED RESULTS 25

Figure 14: SLACER network RSP at different cooperation evolution stages.

flatten (with all points moving towards the x-axis). Motifs 1 and 2 are under
represented (anti-motifs) and motifs 3 to 6 are over represented (motifs) but
with a large dip for motif 4 - almost close to zero (identical to the random
occurrence) when cooperation has stabilized (snapshot 3). Moreover the
SRP curves shown in figures 13 and 14 can be directly compared to protein
structure (PSA), taken from [23].

Another interesting result is that the different snapshots show significant
differences in the SRP, such that for a given network’s SRP it might be
possible to predict if it was in a stable cooperative mode or not, just taking
into account topological properties and ignoring nodes’ state. This could
possibly be very useful, since it indicates a way to detect if the network is
working cooperatively or which stage in the evolution to cooperation it has
reached, as well as detecting unexpected undesired behaviors, based purely
on structural characteristics.

7.3 Distributing Motif Analysis

As argued before, motif analysis can be used as a tool for detecting global net-
work state from local characteristics. The main problem with this approach
is that so far motif analysis techniques and algorithm are not designed to be
distributed: network analysis is usually performed on a single local machine
requiring a graph representation of the whole network in input. This is obvi-
ously unsuitable in P2P environment, where everything should be performed
locally in a decentralized fashion and with no global knowledge.

What we want to obtain is a decentralized technique for motif analysis

8 CONCLUSIONS 26

that can be directly applied and used in P2P networks. The schema we
want to follow to achieve this is to implement a mechanism through which
nodes will be able to detect the local motifs they are part of (i.e. through
views exchange). Once local motifs are evaluated they should be aggregated
so to make the whole network aware of the current motifs quantities and
distributions.

The fact that aggregation mechanisms for P2P networks have already
been successfully defined [18] improves our confidence in the feasibility of a
distributed motif analysis algorithm for P2P networks.

8 Conclusions

The lack of central control makes cooperation between nodes in a P2P net-
works a fundamental and hard to achieve task. Moreover P2P systems im-
plicitly define many restrictions as the impossibility to manage the system
from a global point of view and the necessity to manage everything on a local
interactions basis.

An approach to produce cooperation and coordination between P2P nodes
in order to achieve high global performances has been proposed. We draw
inspiration mainly from computational sociology and the way social networks
form and evolve. From this source of inspiration we inherited important novel
features with respect to previously proposed approaches. In our model there
is no need for global information (as global shared history) or for a structured
network (as DHT), moreover our model is able to build an artificial social
network whose topology can be successfully used to produce and maintain
cooperation, with no need to import any other kind of social network into
the system.

Even though the presented approach seems to be promising it is still in
need for many further improvement. The main improvement to be done is
about system reliability against cheating (other than free-riding) nodes. A
first step in this direction can be done looking at motif analysis tool and
trying to design a distributed motif analysis technique.

Further improvements could involve the definition of more realistic appli-
cations to test SLACER and the utilization of effective network environments
once a satisfying simulative prototype will have been finally designed.

References

[1] Adar, E., and Huberman, B. Free riding on gnutella, 2000.

REFERENCES 27

[2] Aiyer, A. S., Alvisi, L., Clement, A., Dahlin, M., Martin,

J.-P., and Porth, C. Bar fault tolerance for cooperative services. In
Proceedings of the 20th ACM Symposium on Operating System Princi-
ples (SOSP) (October 2005).

[3] Arteconi, S., and Hales, D. Greedy cheating liars and the fools
who believe them. Tech. Rep. UBLCS-2005-21, University of Bologna,
Dept. of Computer Science, Bologna, Italy, Dec. 2005. Also available at:
http://www.cs.unibo.it/pub/TR/UBLCS/2005/2005-21.pdf.

[4] Axelrod, R. The Evolution of Cooperation. Basic Books, New York,
1984.

[5] Castro, M., and Liskov, B. Practical byzantine fault tolerance.
In OSDI: Symposium on Operating Systems Design and Implementation
(1999), USENIX Association, Co-sponsored by IEEE TCOS and ACM
SIGOPS.

[6] Cox, L., and Noble, B. Samsara: Honor among thieves in peer-to-
peer storage, 2003.

[7] Cox, L. P., Murray, C. D., and Noble, B. D. Pastiche: making
backup cheap and easy. SIGOPS Oper. Syst. Rev. 36, SI (2002), 285–
298.

[8] Douceur, J. The sybil attack, 2002.

[9] Feldman, M., Lai, K., Stoica, I., and Chuang, J. Robust in-
centive techniques for peer-to-peer networks. In EC ’04: Proceedings of
the 5th ACM conference on Electronic commerce (New York, NY, USA,
2004), ACM Press, pp. 102–111.

[10] Friedman, E., and Resnick, P. The social cost of cheap
pseudonyms, 1998.

[11] Hales, D. Choose your tribe! - evolution at the next level in a peer-to-
peer network. Tech. Rep. UBLCS-2005-13, University of Bologna, Dept.
of Computer Science, May 2005. Also available at: http://www.cs.

unibo.it/pub/TR/UBLCS/2005/2005-13.pdf.

[12] Hales, D., and Arteconi, S. Slacer: A self-organizing protocol for
coordination in p2p networks. IEEE Intelligent Systems (To appear).

REFERENCES 28

[13] Hales, D., and Edmonds, B. Applying a socially-inspired technique
(tags) to improve cooperation in p2p networks. IEEE Transactions in
Systems, Man and Cybernetics - Part A: Systems and Humans 35(3)
(2005), 385–395.

[14] Hardin, G. The tragedy of the commons. Science 162, 3859 (December
1968), 1243–1248.

[15] Holland, J. The effect of lables (tags) on social interactions., 1993.

[16] Jelasity, M., Kowalczyk, W., and van Steen, M. Newscast com-
puting. Tech. Rep. IR-CS-006, Vrije Universiteit Amsterdam, Depart-
ment of Computer Science, Amsterdam, The Netherlands, Nov. 2003.

[17] Jelasity, M., Montresor, A., and Babaoglu, O. A modu-
lar paradigm for building self-organizing peer-to-peer applications. In
Engineering Self-Organising Systems (2004), G. Di Marzo Serugendo,
A. Karageorgos, O. F. Rana, and F. Zambonelli, Eds., no. 2977 in Lec-
ture Notes in Artificial Intelligence, Springer, pp. 265–282.

[18] Jelasity, M., Montresor, A., and Babaoglu, O. Gossip-based
aggregation in large dynamic networks. ACM Trans. Comput. Syst. 23,
1 (2005), 219–252.

[19] Kamvar, S. D., Schlosser, M. T., and Garcia-Molina, H. The
EigenTrust Algorithm for Reputation Management in P2P Networks. In
12th International World Wide Web Conference (Budapest, Hungary,
20-24 May 2003).

[20] Kong, J. S., Boykin, O. P., Rezaei, B. A., Sarshar, N., and

Roychowdhury, V. P. Let your cyberalter ego share information and
manage spam, May 2005.

[21] Marti, S., Ganesan, P., and Garcia-Molina, H. Dht routing
using social links. In IPTPS (2004), pp. 100–111.

[22] Milo, R., Itzkovitz, S., Kashtan, N., Levitt, R., Shen-Orr,

S., Ayzenshtat, I., Sheffer, M., and Alon, U. Superfamilies of
evolved and designed networks. Science 303, 5663 (March 2004), 1538–
1542.

[23] Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N.,

Chklovskii, D., and Alon, U. Network motifs: simple building
blocks of complex networks. Science 298, 5594 (October 2002), 824–
827.

REFERENCES 29

[24] Nash, J. Equilibrium points in n-person games. Proceedings of the
National Academy of Sciences of the United States of America 36 (1950),
48–49.

[25] Ratnasamy, S., Francis, P., Handley, M., Karp, R., and

Schenker, S. A scalable content-addressable network. In SIG-
COMM ’01: Proceedings of the 2001 conference on Applications, tech-
nologies, architectures, and protocols for computer communications (Oc-
tober 2001), vol. 31, ACM Press, pp. 161–172.

[26] Rowstron, A., and Druschel, P. Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer systems. In
IFIP/ACM International Conference on Distributed Systems Platforms
(Middleware) (Nov. 2001), pp. 329–350.

[27] Saroiu, S., Gummadi, P., and Gribble, S. A measurement study
of peer-to-peer file sharing systems, 2002.

[28] Stoica, I., Morris, R., Karger, D., Kaashoek, F. F., and

Balakrishnan, H. Chord: A scalable peer-to-peer lookup service
for internet applications. SIGCOMM Comput. Commun. Rev. 31, 4
(October 2001), 149–160.

[29] Travers, J., and Milgram, S. An experimental study of the small
world problem. Sociometry 32, 4 (1969), 425–443.

[30] Valverde, S., Sole, R. V., Hales, D., Babaoglu, O., Arteconi,

S., and Canright, G. Application of motif analysis to artificial evolv-
ing networks. d 5.4.1, Dec 2005. DELIS project deliverable. Also avail-
able at: http://cfpm.org/∼david/delis/2005/d5.4.1/D5.4.1.pdf.
Delis project homepage: http://delis.upb.de/.

[31] Watts, D. J., and Strogatz, S. H. Collective dynamics of ’small-
world’ networks. Nature 393, 6684 (June 1998), 440–442.

