
Book Title
Book Editors
IOS Press, 2003

1

Tag-Based Cooperation in Peer-to-Peer
Networks with Newscast1

Andrea Marcozzia, David Halesa, Gian Paolo Jesia, Stefano Arteconia,
Ozalp Babaoglua

a University of Bologna Dept. of Computer Science
Via Mura Anteo Zamboni, 7

40127 Bologna, Italy
{marcozzi, hales, jesi, arteconi, babaoglu}@cs.unibo.it

Abstract. Recent work has proposed how socially inspired mechanisms,based
on “tags” and developed within social science simulations,might be applied in
peer-to-peer overlay networks to maintain high cooperation between peers even
when they act selfishly. The proposed mechanism involves a dynamic re-wiring al-
gorithm called “SLAC”. The algorithm assumes a random sampling service over
the entire population of nodes but does not implement this itself. In this paper
we re-implement SLAC on an open source peer-to-peer simulation testbed called
“PEERSIM”. For the random sampling service we utilize an existing protocol
called “NEWSCAST”. We present the results of some experiments we performed
in which peers play the Prisoner’s Dilemma game with their neighbours. Our re-
sults demonstrate that SLAC augmented with NEWSCAST produces high levels
of cooperation. This increases our confidence that previousresults from SLAC are
generally applicable and valid and also that SLAC could haveapplications in real
implemented systems. Finally we discuss the open issues that need to be addressed
for SLAC to progress to a valuable deployable protocol.

Keywords. peer-to-peer, cooperation, social networks, adaptivity,tags

1. Introduction

In recent works a novel socially inspired algorithm based onthe "tag" idea [7] has been
applied to the problem of sustaining cooperation in peer-to-peer networks composed of
nodes behaving selfishly [4].

In the earlier tag models, individual agents interact randomly (in the form of mean-
field interaction) under the constraint that they are more likely to interact with agents
sharing an identical or similar tag.

In the context of the social scientific interpretation tags represent arbitrary surface
markings attached to agents that can be observed and copied by other agents. They have
no direct behavioural significance [7]. In human society tags can be viewed as fashions:

1Based on the Laurea thesis of Andrea Marcozzi, March 2005. Partially supported by the EU within the
6th Framework Programme under contract 001907 “Dynamically Evolving, Large Scale Information Systems”
(DELIS).

styles of dress, colors of hat, brand logos or cosmetic makeup. The key property of
tags s that although they are distinctive and immediately observable they can be quickly
changed and copied.

A number of simulation models have demonstrated that over a broad range of pa-
rameter values high levels of cooperation and altruism emerge when agents bias their
interaction towards others sharing the same tag [5,11]. These previous models follow an
evolutionary approach in which agents reproduce and mutatetheir behaviours and tags.
In such models those gaining higher utility are more likely to reproduce their tags and be-
haviours with the addition of small amounts of mutation - noise or random variation. The
assumptions underlying this approach is that such an evolutionary mechanism can cap-
ture the essential elements of cultural learning within a society - that agents are bounded
optimizers, copying the tags and behaviours of those who aregaining higher utility than
themselves.

We have previously described, in detail, the modification needed to transform (via a
series of simulation models) the evolutionary models into an algorithm more applicable
to a target application of peer-to-peer file sharing [4]. However, in that work the final
algorithm (the SLAC algorithm) was tested on a non-publiclyavailable and highly ab-
stracted simulation test bed. Also, SLAC relies on a random sampling service over the
entire P2P network and this was assumed rather than implemented.

In this paper we describe a re-implementation of, and experiments with, SLAC on
the open source PEERSIM system [13]. PEERSIM offers a more realistic P2P simula-
tion environment - protocols previously tested on it have been successfully implemented
[17]. In addition the missing random sampling service was provided by the NEWSCAST
protocol which is already implemented on PEERSIM. Both SLACand NEWSCAST are
highly scalable (up-to millions of nodes), robust (recovering from noise and the removal
of nodes) and completely decentralized (requiring no centralized services).

In the following sections we describe the original tag-based evolutionary algorithm
and the derived SLAC P2P algorithm. We then discuss briefly the application task we
tested our system with - the Prisoner’s Dilemma game followed by an overview of the
PEERSIM P2P simulation environment and the NEWSCAST protocol. We then discuss
the SLAC implementation details and present the results of experiments performed. Fi-
nally we conclude with a discussion of the results and reviewsome of the open issues that
need to be addressed in order to progress towards a valuable deployable implementation.

2. Previous Tags Models

The basic algorithm has been adapted from previous (quite different) simulation work
using “tags”. This work demonstrates a novel method of maintaining high levels of coop-
eration in environments composed of selfish, adaptive agents. The emphasis of the pre-
vious work has been towards understanding biological and social systems [5]. Tags are
markings or social cues that are attached to individuals (agents) and are observable by
others, often represented in models by a single number, theyevolve like any other trait
in a given evolutionary model. The key point is that the tags have no direct behavioural
implication for the agents that carry them. But through indirect effects, such as the re-
striction of interaction to those with the same tag value, they can evolve from initially
random values into complex ever changing patterns that serve to structure interactions.

The simulated environments in which tags have been applied have generally been very
simple with interactions based on pair-wise games with immediate payoffs. Neverthe-
less, we have attempted to adapt the salient features of suchtag systems for application
in P2P networks. These features are that agents:

• Restrict interaction to those with whom they share a group defined by tag value
• Selfishly and greedily optimize by preferentially copying the behaviour and tag

of others with higher utility
• Periodically mutate their tags and behaviours

By copying and mutating tags, agents effectively move between interaction groups.
By restricting interaction within groups free riders tend to kill (reduce the membership)
of their own group over time because exploited agents will tend to move elsewhere to
get better payoffs, while cooperative groups tend to spreadvia mutation of the tag. Pre-
vious tag models have demonstrated high levels of cooperation in “commons tragedy”
[6] scenarios (e.g. in the Prisoners Dilemma – see below). Wewill not cover the results
of the previous tag models in detail here, since the emphasisis not relevant and space
precludes detailed treatment, rather we will present our newly derived algorithm (based
on the salient features outlined above) and the results we obtained when applying it to
two different simulated P2P scenarios.

3. Cooperation and the Prisoner’s Dilemma

Distributed P2P applications often require that nodes behave cooperatively or altruisti-
cally to help others in the network. For example, in a file-sharing system, nodes are re-
quired to host and upload files on demand to other nodes that require them. Also they
need to reply to queries concerning what files they host. But why should nodes do this?
In an open system there is an incentive for nodes the behave selfishly - saving their own
storage and bandwidth but using other nodes. This problem isnot limited to file-sharing
because any application that requires other peers to perform actions on their behalf, in
some sense, relies on a degree of cooperation from those others. Obviously cooperative
behaviours can be built into the peer client software but in an open system how can we
ensure that such software will not be changed?

The fundamental issue, then, is:how can one maintain cooperative (socially benefi-
cial) interactions within an open system under the assumption of high individual (peer)
autonomy. An archetype of this kind of social dilemma has been developed in the form
of a minimal game called the Prisoner’s Dilemma (PD) game. Economic and social sci-
entists have often deployed this minimal game as a canonicalform of the contradiction
that can arise between individual and collective interests.

In the PD game two players each selected a move from two alternatives and then the
game ends and each player receives a score (or pay-off). Figure 1 shows a so-called ‘pay-
off matrix’ for the game. If both choose the ‘cooperate’ movethen both get a ‘reward’ —
the score R. If both select the ‘defect’ move they are ‘punished’ — they get the score P.
If one player defects and the other cooperates then the defector gets T (the ‘temptation’
score), the other getting S (the ‘sucker’ score). When thesepay-offs, which are numbers
representing some kind of desirable utility (for example, money), obey the following
constraints:T > R > P > S and2R > T + S then we say the game represents a

Table 1. A payoff matrix for the two-player single round Prisoner’s Dilemma (PD) game. GivenT > R >

P > S ∧ 2R > T + S the Nash equilibrium is for both players to select Defect butboth selecting Coop-
erate would produce higher social and individual returns. However, if either player selects Cooperate they are
exposed to Defection by their opponent — hence the dilemma

Cooperate Defect

Cooperate R, R S, T

Defect T, S P, P

Prisoner’s Dilemma (PD). When both players cooperate this represents maximizing of
the collective good but when one player defects and another cooperates this represents a
form of free-riding. The defector gains a higher score (the temptation) at the expense of
the co-operator (who then becomes the ‘sucker’).

A game theoretic analysis drawing on the Nash equilibrium solution concept (as de-
fined by the now famous John Nash [10]) captures the intuitionthat a utility maximiz-
ing player would always defect in such games because whatever the other player does a
higher score is never attained by choosing to cooperate.

In the context of a P2P system how do we solve this problem without going back
to centralized control or closed systems? In the following section we describe the “tag”
inspired SLAC algorithm.

4. The SLAC Algorithm

The SLAC algorithm [4] assumes that peer nodes have the freedom to change behaviour
(i.e. the way they handle and dispatch requests to and from other nodes) and drop and
make links to nodes they know about. In addition, it is assumed nodes have the ability
to discover other nodes randomly from the network, compare their performance against
other nodes and copy the links and (some of) the behaviours ofother nodes.

As discussed previously we assume that nodes will tend to usetheir abilities to self-
ishly increase their own utility in a greedy and adaptive way, that is if changing some be-
haviour or link increases utility then nodes will tend to select it. The algorithm relies on
Selfish Link and behaviour Adaptation to produce Cooperation (SLAC) - a task domain
independent outline is given below.

Over time nodes engage in some activity and generate some measure of utilityU .
This might be number of files downloaded or jobs processed etc, depending on the do-
main. Periodically, each node(i) computes its performance and compares this against
another node(j), randomly selected from the population. IfUi < Uj nodei drops all
current links and copies all nodej links and adds a link toj itself - see Figure 1.

Also, periodically, and with low probability, each node adapts its behaviour and links
in some randomized way using a kind of “mutation“ operation.Mutation of the links
involves removing all existing links and replacing them with a single link to a node
randomly drawn from the network. Mutation of the behaviour involves some form of
randomized change - the specifics being dictated by the application domain. Previous tag
models, on which SLAC is based have indicated that the rate ofmutation applied to the
links needs to be significantly higher than that applied to the behaviour - by about one
order of magnitude [3].

When applied in a suitably large population, over time, the algorithm follows a kind
of evolutionary process in which nodes with high utility tend to replace nodes with low

Figure 1. An illustration of ‘replication’ and ‘mutation’ as appliedin the Selfish Link-based Adaptation
for Cooperation (SLAC) algorithm from [4]. Shading of nodesrepresents strategy. In (a) the arrowed link
represents a comparison of utility between A and F. AssumingF has higher utility then (b) shows the state of
the network after A copies F’s links and strategy and links toF. A possible result of applying mutation to A’s
links is shown in (c) and the strategy is mutated in (d).

utility (with nodes periodically changing behaviour and moving in the network). How-
ever, as will be seen, this does not lead to the dominance of selfish behaviour – as might
be intuitively expected – since a form of incentive mechanism emerges via a kind of
ostracism in the network.

5. The Peersim System

Evaluating the performance of P2P protocols is a complex task. One of the main prob-
lems for their evaluation, is the extremely large scale thatthey may reach. P2P networks
involving hundred of thousands of peers (or more) are not uncommon (e.g., about 5 mil-
lions machines are reported to be connected to the Kazaa/Fasttrack [15] network). In ad-
dition P2P systems are highly dynamic environments; they are in a continuous state of
flux, with new nodes joining and leaving (or crashing).

These properties are very challenging to deal with. Evaluating a new protocol in
a real environment, especially in its early stages of development, is not feasible. Dis-
tributed planetary-scale open platforms (e.g., Planet-Lab [16]) to develop and deploy net-
work services are available, but these solutions do not include more than about 500 (at
the time of writing) nodes. Thus, for large-scale systems, ascalable simulation test bed
is mandatory.

The Peersim P2P simulator [13] has been developed with the aim to deal with the
previously stated issues. Its first goals are: extreme scalability and support for dynamism.
It is a GPL open-source Java based software project. Peersimhas proved to be a valuable
tool and it is used as the default experimentation platform in the BISON project [14]. In
the following, we provide a brief description of its characteristics.

5.1. Peersim Design Goals

The Peersim simulator is inspired by mainly two objectives:

• High scalability: P2P networks may be composed by millions of nodes. This result
can be achieved only with a careful design of the data structures involved, trying
to avoid (when possible) any overhead. But the memory footprint is not the only
problem: the simulator engine must be also efficient.

• Support for dynamism: the simulator must manage nodes joining and leaving the
network at any time; this feature has tightly relations withthe engine memory
management sub-system.

Another important requirement is themodularor componentinspired architecture.
Every entity in the simulation (such as protocols and the environment related objects)
must be easily replaceable with similar type entities.

The Peersim extreme performances can be reached only accepting some relaxing
assumptions about the simulation details. For example, theoverhead introduced by the
low level communication protocol stack (e.g., TCP or UDP) innot taken into account be-
cause of the huge additional memory and CPU time requirements needed to accomplish
this task.

5.2. Peersim Architecture

As previously stated, Peersim is inspired by a modular and very configurable paradigm,
trying to limit any unnecessary overhead. The simulator main component is theConfig-
urator entity targeted to read configuration files. A configuration file is a plain ASCII
text file, basically composed by key-value pairs. The Configurator is the only not inter-
changeable simulation component. All the other entities can be easily customized.

In a Peersim simulation, the following three distinct kind of elements can be present:
protocols, dynamics and observers. Each of them is implemented by a Java class specified
in the configuration file. The network in the simulation is represented by a collection of
nodes and each node can hold one or more protocols. The communication between node
protocols is based on method calls. To provide a specific kindof service, each component
must implement a specificinterface. For example a protocol has to implement at least
theProtocol or CDProtocol interface to run on Peersim.

Peersim has an utility class package to perform statistic computations or to pro-
vide some starting topology configuration based on well knowmodels (such as: random-
graph, lattice, BA-Graph,. . .).

TheSimulatorengine is the component that performs the computation; it has to run
the component execution according to the configuration file instructions. At the time of
writing, Peersim can perform simulation according to the following execution models:

• Cycle based: at each step, all nodes are selected in a random fashion and each
node protocol is invoked in turn;

• Event based: a support for concurrency is provided. A set of events (messages)
are scheduled in time and node protocols are run according tothe time message
delivery order.

This paper work is based on the first simulation model.

while(TRUE) do
wait(∆t);
neighbour = SELECTPEER();
SENDSTATE(neighbour);
n_state = RECEIVESTATE();
my_state.UPDATE(n_state);

while(TRUE) do
n_state = RECEIVESTATE();
SENDSTATE(n_state.sender);
my_state.UPDATE(n_state);

(a) Active Thread (b) Passive Thread

Figure 2. The gossip paradigm.

6. the Newscast protocol

Newscast [9] is a gossip-based topology manager protocol. Its aim is to continoulsy
rewire the (logical) connections between hosts. The rewiring process is designed in such
a way that the resulting overlay is very close to a random graph. The generated topology
is thus very stable and provides robust connectivity. This protocol has been used success-
fully to implement several P2P protocols, including broadcast [9] and aggregation [8].

As in any large P2P system, a node only knows about a small fixedset of other
nodes (due to scalability issues), calledneighbours. In Newscast, the neighbourhood
is represented by a partial, fixedc size view of nodedescriptorscomposed by a node
address and a logicaltime-stamp(e.g., the descriptor creation time).

Referring to the usual gossip scheme (see Figure 2), the protocol behaviour performs
the following actions: selects first a neighbour from the local view, exchanges the view
with the neighbour, then both participants update their actual view according to the re-
ceived view. The data actually sent over the network by any Newscast node is represented
by the node’s own descriptor plus its local view.

In Newscast, the neighbour selection process is performed in a random fashion by
the SELECTPEER() method. The UPDATE() method is the Newscast core behaviour. It
merges (

⋃
operation) a received view (sent by a node using SENDSTATE()) with the

current peer view in a temporary view list. Finally, Newscast trims this list to obtain
the newc size view. The node descriptors discarded are chosen from the most “old”
ones, according to the descriptor time-stamp. This approach changes continuously the
node descriptors hold in each node view; this implies a continuous rewiring of the graph
defined by the set of all node views. This behaviour is shown inFigure 3.

Even though the system is not synchronous, we find it convenient to describe the
gossip-scheme execution as a sequence of consecutive real time intervals of length∆
(see the “wait” statement in pseudo-code in Figure 2), called cyclesor rounds.

The protocol always tends to inject new informations in the system and allows an
automatic elimination of old node descriptors using the aging approach. This feature is
particularly desirable to remove crashed node descriptorsand thus to repair the overlay
with minor efforts. In addition, the protocol does not require any clock synchronization,
but only that the timestamp of node descriptors in each view are mutually consistent.

The topology generated by Newscast has a low diameter and it is close to a random
graph having out-degreec. Experimental results proved that a small 20 elements partial
view is already sufficient for a very stable and robust connectivity, regardless of the
network size.

Newscast is also cheap in terms of network communication. The traffic generated by
the protocol involves the exchange a few hundred bytes per cycle for each peer and is
estimated in [9].

F/5 D/5 O/5 I/5 J/4

C/5 E/5 B/5 W/4 H/4 A/6

A/6 E/5 C/5 I/5 O/5 F/5 D/5 H/4 W/4 J/4B/5

Node B

Update

C/5 E/5 B/5 W/4 H/4

F/5 D/5 O/5 I/5 J/4 B/6

B/6 E/5 C/5 I/5 O/5 F/5 D/5 H/4 W/4 J/4

Node A

Update

State Exchange

Figure 3. A Newscast exchange between node A (active) and B. Each node has its own 5 descriptor elements
view depicted inside the ellipses. A descriptor is anode-ID, timestamppair. After the state exchange node A
has received the node B view and viceversa; then each partecipant merges the received view with its own. The
result is depicted under the empty arrow: each node has selected the “freshest” descriptors at random and has
discarded the others (those inside the ellipse) to obtain new 5 element view. Note that in this basic example,
each node sends its entire view; however, the view can be purged by “old” descriptors before sending.

A protocol such as Newscast provides a service to pick randomnodes from the whole
network and we can call itRandomizer Service. The chance to extract a fresh new node,
selected at random from the whole network, is a high desiderable source of information
for P2P protocols. We can consider such a service as abuilding block for many P2P
protocols. In this vision, the cost effectiveness of Newscast is very useful, because the
Randomizer Servicehas to be always-on and run by all peers involved in the overlay.

Such a randomizer service can also be a key component during the initialization
phase (bootstrap) for any higher level protocol in order to fill its view at the beginning.
We use Newscast both as a randomizer service and as a bootstrap facility in the Peersim
implementation of the SLAC algorithm. We describe this implementation in the next
section.

7. Implementing SLAC in Peersim

Now we purpose to implement and test the solutions proposed by the SLAC algorithm
into the Peersim platform, on top of Newscast. We have already seen that Newscast
has lots of desirable properties such as scalability, robustness and the ability to main-
tain a random topology. This is why we based our experiments on top of such protocol.
Newscast has been previously implemented within Peersim (as previously discussed) and
therefore we do not discuss implementation details here.

For SLAC we implemented three classes in Peersim whose namesare:PdDistri-
butionInitializer, PdObserver and of coursePdProtocol. The first one initializes the
nodes of the network with a strategy (cooperate or defect), the second one calculates and
prints the results from the simulations.PdProtocol is the core of our SLAC implemen-
tation and hence deserves a more complete discussion.

The PdProtocol (an overview)

As we have already seen, Peersim is highly modular. So it wasn’t so hard to implement a
new protocol based on the NetWorld [1] model specifications (which implements SLAC)

compatible with its structure. Peersim simulations [13] are performed through a series
of cycles and in each of these some operations are performed.During the simulation our
protocol is involved in three phases:

• phase 0: initialization of an auxiliary array for neighbours list (nodes are provided
by Newscast);

• phase 1: the PD game is played and the appropriate payoffs aredistributed;
• phase 2: two nodes are randomly chosen from the network (these are provided by

Newscast) and their payoffs are compared (this is the reproduction phase).

Phase 0 is performed at the first simulation cycle: each node just copies its neighbour
list from its Newscast’s instance.

In phase 1 the PD game is played between nodes. Each node is initialized with
a random value chosen from a set of two (True = Cooperate, False = Defect) and at
each cycle each node plays a round of the PD game with one of itsrandomly chosen
neighbours. After this game interaction, payoffs are calculated and distributed.

With phase 2 is performed the reproduction task. It takes place everyI cycles (in our
experiments we haveI = 4). In this phase we want to compare the average payoffs of
two nodes chosen within the network. The first node we take into account is randomly
chosen within the network; the second one, as in phase 0, is taken from Newscast: it
is a randomly chosen neighbour of the Newscast instance of the first node. Once two
nodes (i, j) are selected this way, reproduction phase can start. Let’s consider the case in
which nodei has a higher average payoff thanj, the following operations are performed
(obviously if j’s payoffs is greater thani’s the symmetric rules apply):

• all j’s neighbours delete their links toj itself; 1

• j’s neighbours list is cleared;
• j’s neighbours list is filled in with new items:i’s neighbours;
• the winner itself (i) is added toj’s neighbours list;
• strategy is copied fromi to j;
• some variables held byj are cleared (e.g. number of games played);
• j is added to the respective neighbours lists of the winners neighbours;
• j itself is added toi’s neighbours list;
• mutation is applied with a certain probability.

Neighbours lists have a fixed sizeF , hence it is not permitted to add nodes when such
a limit is reached. That is why this operation is performed byan appropriate function
which ensures this limit is not exceed: before adding a new node, a check on the actual
size of the list is performed; if it is equal toF , a randomly chosen node is deleted and
then the new one is added, else, if the actual size is smaller thanF , the new node is
simply added.

This is what happens wheni has an average payoff greater thanj. Of course ifj had
an average payoff greater thani, the same algorithm will be performed but withi andj

in inverted positions. When the two nodes hold the same valuethe winner is randomly
chosen between the two nodes and then the same operations listed above are performed.

1Actually, in this implementation of SLAC, this first action was not implemented, interestingly, this change
did not stop high cooperation from emerging.

Table 2. Simulation parameter.

Parameter Value

Cycles 1000

Network size 4000,8000,12000,16000

Initial topology Random

Maximum degree 20

Strategy mutation rate (MR) 0.001

Tag mutation rate (MRT) 0.001

Reproduction interval (I) 4

Table 3. PD payoffs adopted in the model.

1st player Strategies 2nd player

1 DC 0

0.8 CC 0.8

0.1 DD 0.1

0 CD 1

At the end of each reproduction stepmutationis performed. It is applied with low
probability (mutation rate, MR = 0.001), to the node losing the comparison at the begin-
ning of the reproduction phase. Mutation is applied to both strategy and tags (neighbor
list). When applied to the strategy bit, it implies the flipping of such bit; when applied to
the neighbor list, it involves the cancellation of all the links in the node’s neighbors list
and the substitution of such nodes with just one node that is randomly selected from the
entire network.

8. Simulation Experiments and Results

A series of experiments were done with this new “tag-based” protocol on Newscast. Ob-
tained results relate to experiments done varying several parameters: size of the network,
simulation seed, strategy initialization.

The main parameters used are illustrated in Table 2 while thePD payoffs used are
those in Table 3.

In the next subsections we will show some of these results anddraw some conclu-
sions.

8.1. Cooperation with different network sizes

Results shown in Figures 4 and 5 relates experiments done on networks having different
sizes.

The diagram in Figure 4 represents the number of cycles needed to obtain high lev-
els of cooperation (about 93%) over a series of 1000 cycles. The diagram compares the
results obtained performing the experiments on four different network size. The results
shown in the figure represents the average and standard deviation (out of N sims) of the

� ��� ��� ��� ��� ���

�.

�.

��.

��.

1H
WZ

RU
N�
VL]

H

&\FOHV�WR�FRRSHUDWLRQ

6WGHY
$YJ

Figure 4. Average number of cycles needed to obtain high levels of cooperation (about 93%) and the relative
standard deviation with four different seeds. MR = MRT = 0.001, I = 4, payoffs from table 3. Results from
different network size are compared.

number of cycles needed to obtain cooperation. The network was started from complete
defection, the mutation rate used was the same both for the strategy and the neighbour
list (MR = MRT = 0.001) and the number of cycles occurring between a reproduction
phase and the next one wasI = 4. Let’s note the average cycles number for a network of
4000 nodes: it is much higher than the average for the other network sizes and this is be-
cause with seed 1, the 93% of cooperation was obtained just after 772 cycles. The same
experiment was also performed with a different seeds table but the results we obtained
are nearly identical to those just given.

Figure 5 gives the percentage of cooperating nodes over a series of 4000 cycles. The
figure just shows the first 150 cycles since after that point there are no relevant changes
in the results. Even here the mutation rate was the same both for the strategy and the
tag, experiments were performed over different network size and parameterI was set
to 4. On the contrary of the previous experiment, here was used always the same seed,
hence the percentages we give are not an average. Nodes were initialized at random: at
the beginning of the simulation we had a population composedof about half cooperating
nodes and half defecting nodes; after the first few cycle, thepercentage of cooperating
nodes decreased but soon after the 23th cycle it started increasing toward good levels of
cooperation.

Observations

From both the diagrams it’s easy to note the good level of scalability of the model we
are testing: results of Figure 4 are an average of results obtained with different seeds
and we succeeded in obtaining similar results for three different network size. The only
difference is found with the network composed of 4000 nodes where we obtained a very

�

��

��

��

���

� �� ��� ���
&\FOHV

�
�R
I�&

RR
S�
1R

GH
V

�.
�.
��.
��.

Figure 5. Cooperating nodes over a series of 4000 cycles (single run).MR=MRT=0.001, I=4, payoffs from
table 3. Nodes are initialized with a random strategy. Results after cycle 150 do not increase significantly. Note:
the “staircasing” effect is an artefact of the synchronous reproduction at every 4 cycles - with asynchronous
reproduction the artefact is not visible.

high value with just one seed. It would be interesting to makefurther experiments with
more seeds. Figure 5 gives the same important result: here using always the same seed,
we obtained the same trend with all the sizes.

8.2. Cooperation with long runs

Some experiments were done with a big number of cycles. On a network composed of
4000 nodes were performed a series of experiments; for each of them we used a different
random seed,MR = MRT = 0.001, I = 4 and performed 10000 cycles.

Results are very close for each seed used, hence in Figure 6 wejust propose those
obtained with one of them. The diagram shows that good levelsof cooperation can be
obtained from cycle 645 (95.5 %): from this cycle to cycle 10000 the average percentage
of cooperating nodes is 95.40 and the standard deviation is 1.03.

Observations

The experiments just proposed have a great importance sincethey test the reliability of
the model in the time. From all the tests we made (some even with 50000 generations),
and also in those proposed in this section, we found that oncecooperation has started, it
never claps and can be sustained for long times; we also learned that cooperation can be
sustained at good levels.

�

��

��

��

���

� �� �� �� �� ���
&\FOHV

�
�R
I�&

RR
S�
1R

GH
V

Figure 6. Cooperation with a series of 10000 cycles (single run). Nodes = 4000, MR=MRT=0.001, I=4, pay-
offs from table 3.

9. Discussion and Conclusion

The results we obtained indicate that high cooperation is produced when nodes follow
the SLAC algorithm. Even though the SLAC algorithm implements nodes that behave
selfishly in a myopic and greedy way - that is, they copy other nodes in the network that
have higher utility - high levels of cooperation are produced in the single round Prisoner’s
Dilemma (PD) game.

These new results therefore confirm those results previously found[2,4] in similar
simulation experiments and this adds confidence that SLAC isrobust to different simu-
lation implementation details. Here, for example, we interleaved the reproduction phase
with the interaction phase whereas in previous simulationsreproduction followed at the
end of each cycle of interaction. Also in further experiments (not shown here) we found
that similar results were obtained when reproduction was interleaved with interaction
in a fully asynchronous way - where each node has a probability of reproduction after
interaction.

Interestingly, the results shown in Figure 4 appear to recover some of the reverse
scaling properties demonstrated in an early non-network based tag model [5] which ap-
peared to have been lost in our initial network model [2]. However, more runs and analy-
sis are needed to explore this question. However, we can certainly state that in all the ex-
periments so far performed with the SLAC algorithm larger networks do not take longer
to converge and often converge more quickly. This is obviously a valuable property for
any candidate algorithm for large scale systems.

A further finding of these new results appears to contradict earlier generalizations [3]
that tag-type models needed to have higher mutation rates onthe “tag” than the strategy -
in the case of SLAC this would mean a higher mutation rate on the neighbour list or view
which contains the links to neighbour nodes than the behavioural strategy of the node
(either to cooperate or defect). But here high levels of cooperation were produced when

the mutation rate was the same. This indicates that further work is needed to circumscribe
such a generalization since it is currently unclear what difference in implementation has
allowed this assumption to be relaxed.

These results also demonstrate that the NEWSCAST protocol can be used to provide
the random sampling service required by SLAC but not previously explicitly modelled
in simulation. This is important since any actual implementation of SLAC must have
access to such a service that is both scalable and robust. NEWSCAST provides such a
service[9] with the additional benefit that it has actually been tested in the form of a real
implementation [17].

We have argued, and demonstrated previously, that cooperation in the single round
PD indicates that cooperation can be produced in other more realistic task domains [4].
We are therefore confident that these results indicate that the PEERSIM implementation
could support cooperation in other task domains (such as filesharing or other kinds of
resource sharing).

Finally, we note two major issues that could destroy cooperation within SLAC.
Firstly, we currently assume that nodes are able to compare utilities correctly, that is, we
assume nodes report their utilities honestly when requested to do so by nodes. But what
would happen if nodes lied about their utilities or just failed to report anything? This
introduces a kind of "second order" free-rider problem at the informational level because
if we assume nodes may behave selfishly and / or maliciously then we need to demon-
strate individual incentives for supplying correct utility values. Secondly, we also assume
nodes will allow themselves to be copied by supplying their behaviour strategy and their
current neighbour list or view (containing their node links) to other nodes. Again, this
may not be case with malicious and selfish nodes in certain contexts. Both of these issues
we aim to address in future work.

Acknowledgements

This work would not have been possible without perceptive discussions with many peo-
ple, particularly those in the Bologna group including: Mark Jelasity, Alberto Montresor
and Simon Patarin. Additionally, we thank the anonymous reviewers of the initial draft
of this paper for their comments and suggestions.

References

[1] D. Hales, B. Edmonds Applying a socially-inspired technique (tags) to improve cooperation
in P2P NetworksIEEE Transactions in Systems, Man and Cybernetics - Part A: Systems and
Humanspp.385-395 2005

[2] D. Hales. Self-Organizing, Open and Cooperative P2P Societies Ð From Tags to Networks.
Proceedings of the 2nd Workshop on Engineering Self-Organizing Applications (ESOA 2004),
LNCS 3464, pp.123-137. Springer, 2005.

[3] D. Hales. Change Your Tags Fast! – a necessary condition for cooperation?Proceedings of
the Workshop on Multi-Agents and Multi-Agent-Based Simulation (MABS 2004), LNAI 3415.
Springer, 2005.

[4] D. Hales. From selfish nodes to cooperative networks – emergent link based incen-
tives in peer-to-peer networks. InProc. of the 4th IEEE International Conference on

Peer-to-Peer Computing (P2P2004). IEEE Computer Soc. Press, 2004. Available at:
http://www.davidhales.com

[5] D. Hales. Cooperation without Space or Memory: Tags, Groups and the Prisoner’s Dilemma.
In Moss and Davidsson (eds.) Multi-Agent-Based Simulation.LNAI 1979:157-166. Springer.
Berlin. 2000

[6] G. Hardin. The tragedy of the commons.Science, 162, 1243-1248. 1968
[7] J. Holland. The Effect of Lables (Tags) on Social Interactions. Santa Fe Institute Working

Paper 93-10-064. Santa Fe, NM 1993
[8] M. Jelasity and A. Montresor, Epidemic-Style ProactiveAggregation in Large Overlay

Networks, in Proceedings of the 24th International Conference on Distributed Comput-
ing Systems (ICDCS’04), March 2004, pp. 102–109, IEEE Computer Society, Availableat:
http://www.cs.unibo.it/bison/publications/icdcs04.pdf

[9] M. Jelasity and W. Kowalczyk and M. van Steen Newscast ComputingTechnical Report IR-
CS-006, Vrije Universiteit Amsterdam, Department of Computer Science, November 2003,
Available at: http://www.cs.vu.nl/globe/techreps.html#IR-CS-006.03

[10] J. F. Nash. Equilibrium Points in N-Person Games,Proc. Natl. Acad. Sci.USA 36, 48-49,
(1950).

[11] R. Riolo, M. D. Cohen, R. Axelrod. Cooperation without Reciprocity.Nature414, 441-443,
(2001).

[12] R. Tivers. The evolution of reciprocal altruism.Q. Rev. Biol.46, 35-57. 1971
[13] Peersim Peer-to-Peer Simulator, Available at: http://peersim.sf.net
[14] The BISON Project, http://www.cs.unibo.it/bison
[15] Kazaa Web Site, http://www.kazaa.com
[16] PlanetLab Planetary-Scale Testbed, http://www.planet-lab.org
[17] T. Binci. EpidEm: EPIDemic EMulator, Graduate Thesis in Computer Sci-

ence, University of Bologna, Department of Computer Science. Available at:
http://bincit.web.cs.unibo.it/index.htm

