Book Title 1
Book Editors
10S Press, 2003

Tag-Based Cooperation in Peer-to-Peer
Networks with Newscast

Andrea Marcozzt, David Hales', Gian Paolo Jesi, Stefano Artecori,
Ozalp Babaogla

aUniversity of Bologna Dept. of Computer Science
Via Mura Anteo Zamboni, 7
40127 Bologna, Italy
{marcozzi, hales, jesi, arteconi, babaoglu}@cs.unibo.it

Abstract. Recent work has proposed how socially inspired mechanibased
on “tags” and developed within social science simulationgght be applied in
peer-to-peer overlay networks to maintain high coopemabietween peers even
when they act selfishly. The proposed mechanism involvesardic re-wiring al-
gorithm called “SLAC”. The algorithm assumes a random sémgpdervice over
the entire population of nodes but does not implement telfitIin this paper
we re-implement SLAC on an open source peer-to-peer simonléstbed called
“PEERSIM". For the random sampling service we utilize ansgrg protocol
called “NEWSCAST". We present the results of some experimare performed
in which peers play the Prisoner’s Dilemma game with theiginigours. Our re-
sults demonstrate that SLAC augmented with NEWSCAST preslinigh levels
of cooperation. This increases our confidence that previesidts from SLAC are
generally applicable and valid and also that SLAC could reyglications in real
implemented systems. Finally we discuss the open issuesehkd to be addressed
for SLAC to progress to a valuable deployable protocol.

Keywords. peer-to-peer, cooperation, social networks, adaptitétys

1. Introduction

In recent works a novel socially inspired algorithm basedhen'tag" idea [7] has been
applied to the problem of sustaining cooperation in pegrder networks composed of
nodes behaving selfishly [4].

In the earlier tag models, individual agents interact ranlgqin the form of mean-
field interaction) under the constraint that they are mdcelyi to interact with agents
sharing an identical or similar tag.

In the context of the social scientific interpretation taggresent arbitrary surface
markings attached to agents that can be observed and copagbldy agents. They have
no direct behavioural significance [7]. In human societystegn be viewed as fashions:

1Based on the Laurea thesis of Andrea Marcozzi, March 200%iafa supported by the EU within the
6th Framework Programme under contract 001907 “Dynaryi€alblving, Large Scale Information Systems”
(DELIS).

styles of dress, colors of hat, brand logos or cosmetic nak&he key property of
tags s that although they are distinctive and immediatedentable they can be quickly
changed and copied.

A number of simulation models have demonstrated that ovepadorange of pa-
rameter values high levels of cooperation and altruism geamhen agents bias their
interaction towards others sharing the same tag [5,11]s& beevious models follow an
evolutionary approach in which agents reproduce and mtitetebehaviours and tags.
In such models those gaining higher utility are more likelygproduce their tags and be-
haviours with the addition of small amounts of mutation -seodr random variation. The
assumptions underlying this approach is that such an égnhry mechanism can cap-
ture the essential elements of cultural learning within@ety - that agents are bounded
optimizers, copying the tags and behaviours of those whgaireng higher utility than
themselves.

We have previously described, in detail, the modificatioedwesl to transform (via a
series of simulation models) the evolutionary models imaigorithm more applicable
to a target application of peer-to-peer file sharing [4]. ldwer, in that work the final
algorithm (the SLAC algorithm) was tested on a non-publakgilable and highly ab-
stracted simulation test bed. Also, SLAC relies on a randamding service over the
entire P2P network and this was assumed rather than imptechen

In this paper we describe a re-implementation of, and erparis with, SLAC on
the open source PEERSIM system [13]. PEERSIM offers a maléstie P2P simula-
tion environment - protocols previously tested on it haverbguccessfully implemented
[17]. In addition the missing random sampling service wawjated by the NEWSCAST
protocol which is already implemented on PEERSIM. Both Slak@d NEWSCAST are
highly scalable (up-to millions of nodes), robust (recavgfrom noise and the removal
of nodes) and completely decentralized (requiring no ediméd services).

In the following sections we describe the original tag-lbbeseolutionary algorithm
and the derived SLAC P2P algorithm. We then discuss brieflyaghplication task we
tested our system with - the Prisoner’s Dilemma game foltbtwe an overview of the
PEERSIM P2P simulation environment and the NEWSCAST paidtée then discuss
the SLAC implementation details and present the resultxpéements performed. Fi-
nally we conclude with a discussion of the results and regieme of the open issues that
need to be addressed in order to progress towards a valugtiteydble implementation.

2. Previous TagsModels

The basic algorithm has been adapted from previous (quifiereint) simulation work
using “tags”. This work demonstrates a novel method of nadnirig high levels of coop-
eration in environments composed of selfish, adaptive ag&hte emphasis of the pre-
vious work has been towards understanding biological aniksystems [5]. Tags are
markings or social cues that are attached to individualer(es) and are observable by
others, often represented in models by a single number.gihaye like any other trait
in a given evolutionary model. The key point is that the taggehno direct behavioural
implication for the agents that carry them. But throughiiedi effects, such as the re-
striction of interaction to those with the same tag valueytban evolve from initially
random values into complex ever changing patterns thaegerstructure interactions.

The simulated environments in which tags have been apptied generally been very
simple with interactions based on pair-wise games with icliate payoffs. Neverthe-
less, we have attempted to adapt the salient features oftagdystems for application
in P2P networks. These features are that agents:

e Restrict interaction to those with whom they share a grodimée by tag value

e Selfishly and greedily optimize by preferentially copyitng tbehaviour and tag
of others with higher utility

e Periodically mutate their tags and behaviours

By copying and mutating tags, agents effectively move betwateraction groups.
By restricting interaction within groups free riders tendkill (reduce the membership)
of their own group over time because exploited agents wiltiteo move elsewhere to
get better payoffs, while cooperative groups tend to spvéachutation of the tag. Pre-
vious tag models have demonstrated high levels of cooperati“commons tragedy”
[6] scenarios (e.g. in the Prisoners Dilemma — see below)wiNaot cover the results
of the previous tag models in detail here, since the emplimsist relevant and space
precludes detailed treatment, rather we will present owynderived algorithm (based
on the salient features outlined above) and the results war@al when applying it to
two different simulated P2P scenarios.

3. Cooperation and the Prisoner’s Dilemma

Distributed P2P applications often require that nodes Welaoperatively or altruisti-
cally to help others in the network. For example, in a filerglgasystem, nodes are re-
quired to host and upload files on demand to other nodes thaireesthem. Also they
need to reply to queries concerning what files they host. Bt should nodes do this?
In an open system there is an incentive for nodes the behHighle- saving their own
storage and bandwidth but using other nodes. This problemtimited to file-sharing
because any application that requires other peers to peidotions on their behalf, in
some sense, relies on a degree of cooperation from thoses o@lgviously cooperative
behaviours can be built into the peer client software bunimpen system how can we
ensure that such software will not be changed?

The fundamental issue, then, l®w can one maintain cooperative (socially benefi-
cial) interactions within an open system under the asswnf high individual (peer)
autonomyAn archetype of this kind of social dilemma has been dewaddp the form
of a minimal game called the Prisoner’s Dilemma (PD) gamenBmic and social sci-
entists have often deployed this minimal game as a candioical of the contradiction
that can arise between individual and collective interests

In the PD game two players each selected a move from two attees and then the
game ends and each player receives a score (or pay-offyeFigghows a so-called ‘pay-
off matrix’ for the game. If both choose the ‘cooperate’ mtven both get a ‘reward’ —
the score R. If both select the ‘defect’ move they are ‘pumish— they get the score P.
If one player defects and the other cooperates then thetdefgets T (the ‘temptation’
score), the other getting S (the ‘sucker’ score). When tpageoffs, which are numbers
representing some kind of desirable utility (for examplaney), obey the following
constraintsT > R > P > S and2R > T + S then we say the game represents a

Table 1. A payoff matrix for the two-player single round Prisoner'ddinma (PD) game. Givei® > R >

P > S A2R > T + S the Nash equilibrium is for both players to select Defectlimth selecting Coop-
erate would produce higher social and individual returrsweler, if either player selects Cooperate they are
exposed to Defection by their opponent — hence the dilemma

|| Cooperate| Defect|

Cooperate R, R S, T
Defect T,S P, P

Prisoner’s Dilemma (PD). When both players cooperate #sasents maximizing of
the collective good but when one player defects and anotagarates this represents a
form of free-riding. The defector gains a higher score (dmaptation) at the expense of
the co-operator (who then becomes the ‘sucker’).

A game theoretic analysis drawing on the Nash equilibriulutsm concept (as de-
fined by the now famous John Nash [10]) captures the intuttian a utility maximiz-
ing player would always defect in such games because whatevether player does a
higher score is never attained by choosing to cooperate.

In the context of a P2P system how do we solve this problemowttigoing back
to centralized control or closed systems? In the followiecti®n we describe the “tag”
inspired SLAC algorithm.

4. The SLAC Algorithm

The SLAC algorithm [4] assumes that peer nodes have thedre¢d change behaviour
(i.e. the way they handle and dispatch requests to and frber oiodes) and drop and
make links to nodes they know about. In addition, it is assimades have the ability
to discover other nodes randomly from the network, comgee# performance against
other nodes and copy the links and (some of) the behaviowthef nodes.

As discussed previously we assume that nodes will tend ttheseabilities to self-
ishly increase their own utility in a greedy and adaptive what is if changing some be-
haviour or link increases utility then nodes will tend toeszlit. The algorithm relies on
Selfish Link and behaviour Adaptation to produce Coopenai8L.AC) - a task domain
independent outline is given below.

Over time nodes engage in some activity and generate somsunaeaf utility U.
This might be number of files downloaded or jobs processedlefmending on the do-
main. Periodically, each node) computes its performance and compares this against
another nodé;), randomly selected from the populationlf < Uj nodei drops all
current links and copies all nogdinks and adds a link tg itself - see Figure 1.

Also, periodically, and with low probability, each node ptiits behaviour and links
in some randomized way using a kind of “mutation operatibutation of the links
involves removing all existing links and replacing themtwé single link to a node
randomly drawn from the network. Mutation of the behaviauralves some form of
randomized change - the specifics being dictated by thecgtiglh domain. Previous tag
models, on which SLAC is based have indicated that the rateutétion applied to the
links needs to be significantly higher than that applied ®slikhaviour - by about one
order of magnitude [3].

When applied in a suitably large population, over time, tigedthm follows a kind
of evolutionary process in which nodes with high utility teto replace nodes with low

Figure 1. An illustration of ‘replication’ and ‘mutation’ as appliebh the Selfish Link-based Adaptation
for Cooperation (SLAC) algorithm from [4]. Shading of nodepresents strategy. In (a) the arrowed link
represents a comparison of utility between A and F. AssurRihgs higher utility then (b) shows the state of
the network after A copies F’s links and strategy and linkE.té possible result of applying mutation to A's
links is shown in (c) and the strategy is mutated in (d).

utility (with nodes periodically changing behaviour andvimg in the network). How-
ever, as will be seen, this does not lead to the dominancédfistsbehaviour — as might
be intuitively expected — since a form of incentive mechan&merges via a kind of
ostracism in the network.

5. The Peersim System

Evaluating the performance of P2P protocols is a compldk fase of the main prob-
lems for their evaluation, is the extremely large scale tihey may reach. P2P networks
involving hundred of thousands of peers (or more) are nobommon (e.g., about 5 mil-
lions machines are reported to be connected to the Kazam#ekq15] network). In ad-
dition P2P systems are highly dynamic environments; theyiraa continuous state of
flux, with new nodes joining and leaving (or crashing).

These properties are very challenging to deal with. Evalgaéd new protocol in
a real environment, especially in its early stages of dgraknt, is not feasible. Dis-
tributed planetary-scale open platforms (e.g., Plané&t{LL6]) to develop and deploy net-
work services are available, but these solutions do notidemore than about 500 (at
the time of writing) nodes. Thus, for large-scale systenms;adable simulation test bed
is mandatory.

The Peersim P2P simulator [13] has been developed with theadeal with the
previously stated issues. Its first goals are: extremelsitigfaand support for dynamism.
Itis a GPL open-source Java based software project. Pebesipproved to be a valuable
tool and it is used as the default experimentation platfortmé BISON project [14]. In
the following, we provide a brief description of its charxistics.

5.1. Peersim Design Goals

The Peersim simulator is inspired by mainly two objectives:

e High scalability: P2P networks may be composed by millicitsoales. This result
can be achieved only with a careful design of the data strestinvolved, trying
to avoid (when possible) any overhead. But the memory faat® not the only
problem: the simulator engine must be also efficient.

e Support for dynamism: the simulator must manage nodesjgiaind leaving the
network at any time; this feature has tightly relations viite engine memory
management sub-system.

Another important requirement is ttmeodularor componentnspired architecture.
Every entity in the simulation (such as protocols and thdarenment related objects)
must be easily replaceable with similar type entities.

The Peersim extreme performances can be reached only imeceptne relaxing
assumptions about the simulation details. For exampleg¥kehead introduced by the
low level communication protocol stack (e.g., TCP or UDP) @t taken into account be-
cause of the huge additional memory and CPU time requiresms@ded to accomplish
this task.

5.2. Peersim Architecture

As previously stated, Peersim is inspired by a modular angl a@nfigurable paradigm,
trying to limit any unnecessary overhead. The simulatomneaimponent is th€onfig-
urator entity targeted to read configuration files. A configuratida i a plain ASCII
text file, basically composed by key-value pairs. The Coméipr is the only not inter-
changeable simulation component. All the other entitigshlmeasily customized.

In a Peersim simulation, the following three distinct kirf&eiements can be present:
protocols, dynamics and observers. Each of them is implezdday a Java class specified
in the configuration file. The network in the simulation ismegented by a collection of
nodes and each node can hold one or more protocols. The coigatian between node
protocols is based on method calls. To provide a specificdiisérvice, each component
must implement a specifiaterface For example a protocol has to implement at least
thePr ot ocol or CDPr ot ocol interface to run on Peersim.

Peersim has an utility class package to perform statistiopetiations or to pro-
vide some starting topology configuration based on well knawdels (such as: random-
graph, lattice, BA-Graph,...).

The Simulatorengine is the component that performs the computationsittaun
the component execution according to the configurationrériictions. At the time of
writing, Peersim can perform simulation according to théfeing execution models:

e Cycle based: at each step, all nodes are selected in a raratiori and each
node protocol is invoked in turn;

e Event based: a support for concurrency is provided. A sevefits (messages)
are scheduled in time and node protocols are run accorditigettme message
delivery order.

This paper work is based on the first simulation model.

while(TRUE) do

wait(At); while(TRUE) do

neighbour = SELECTPEER(); n_state = RECEIVESTATE();
SENDSTATE(neighbour); SENDSTATE(n_state.sender);
n_state = RECEIVESTATE(); my_state.UPDATE(n_state);
my_state. UPDATE(n_state);

(a) Active Thread (b) Passive Thread

Figure 2. The gossip paradigm.
6. the Newscast protocol

Newscast [9] is a gossip-based topology manager prototsohiin is to continoulsy
rewire the (logical) connections between hosts. The regiprocess is designed in such
a way that the resulting overlay is very close to a randomigrape generated topology
is thus very stable and provides robust connectivity. Thig¢qrol has been used success-
fully to implement several P2P protocols, including braastd9] and aggregation [8].

As in any large P2P system, a node only knows about a small figedf other
nodes (due to scalability issues), calleeighbours In Newscast, the neighbourhood
is represented by a partial, fixedsize view of nodalescriptorscomposed by a node
address and a logiciime-stampe.g., the descriptor creation time).

Referring to the usual gossip scheme (see Figure 2), thequoidiehaviour performs
the following actions: selects first a neighbour from thealodew, exchanges the view
with the neighbour, then both participants update theuaoctiew according to the re-
ceived view. The data actually sent over the network by anyddast node is represented
by the node’s own descriptor plus its local view.

In Newscast, the neighbour selection process is performadandom fashion by
the SELECTPEER() method. The UPDATE() method is the Nevtsae behaviour. It
merges |(J operation) a received view (sent by a node using SENDSTAT(h the
current peer view in a temporary view list. Finally, Newdctigns this list to obtain
the newc size view. The node descriptors discarded are chosen frenmtbst “old”
ones, according to the descriptor time-stamp. This apprehanges continuously the
node descriptors hold in each node view; this implies a oowtis rewiring of the graph
defined by the set of all node views. This behaviour is showkidnre 3.

Even though the system is not synchronous, we find it conmémdedescribe the
gossip-scheme execution as a sequence of consecutivénmeaihtervals of lengthA
(see the “wait” statement in pseudo-code in Figure 2), daljelesor rounds

The protocol always tends to inject new informations in thetem and allows an
automatic elimination of old node descriptors using thenggipproach. This feature is
particularly desirable to remove crashed node descriptotdsthus to repair the overlay
with minor efforts. In addition, the protocol does not raguany clock synchronization,
but only that the timestamp of node descriptors in each viewautually consistent.

The topology generated by Newscast has a low diameter andlitse to a random
graph having out-degree Experimental results proved that a small 20 elementsgdarti
view is already sufficient for a very stable and robust cotiniég, regardless of the
network size.

Newscast is also cheap in terms of network communicatioe tiiific generated by
the protocol involves the exchange a few hundred bytes pee dgr each peer and is
estimated in [9].

Node A

. State Exchange N
< >

Update l Update

45’5 ‘5/5 “”5‘ s ‘0/5 ‘ Fis ‘D’5 ‘H/“ ‘W/“‘ J"“ ‘AIG ‘E/S ‘C/S‘ /s ‘0/5 ‘ FI5 ‘DIS BIS |Hi4 ‘wm‘ J/4‘

Node B

Figure 3. A Newscast exchange between node A (active) and B. Each rasdigstown 5 descriptor elements
view depicted inside the ellipses. A descriptor isae-ID timestamppair. After the state exchange node A
has received the node B view and viceversa; then each gaateanerges the received view with its own. The
result is depicted under the empty arrow: each node hadagltde “freshest” descriptors at random and has
discarded the others (those inside the ellipse) to obtainfelement view. Note that in this basic example,
each node sends its entire view; however, the view can beegurg “old” descriptors before sending.

A protocol such as Newscast provides a service to pick rarmdmtas from the whole
network and we can call Randomizer Servic& he chance to extract a fresh new node,
selected at random from the whole network, is a high dedidesource of information
for P2P protocols. We can consider such a service bsilding blockfor many P2P
protocols. In this vision, the cost effectiveness of Newsdés very useful, because the
Randomizer Servideas to be always-on and run by all peers involved in the oyerla

Such a randomizer service can also be a key component ddméninitialization
phase lpootstrap) for any higher level protocol in order to fill its view at thedinning.
We use Newscast both as a randomizer service and as a bpdésiitiay in the Peersim
implementation of the SLAC algorithm. We describe this iempéntation in the next
section.

7. Implementing SLAC in Peersim

Now we purpose to implement and test the solutions propogedebSLAC algorithm
into the Peersim platform, on top of Newscast. We have ajresaen that Newscast
has lots of desirable properties such as scalability, toless and the ability to main-
tain a random topology. This is why we based our experimemtsp of such protocol.
Newscast has been previously implemented within Peersipréviously discussed) and
therefore we do not discuss implementation details here.

For SLAC we implemented three classes in Peersim whose naraeBdDistri-
butionlnitializer, PdObserver and of coursd”dProtocol. The first one initializes the
nodes of the network with a strategy (cooperate or defdet)second one calculates and
prints the results from the simulatiorRdProtocol is the core of our SLAC implemen-
tation and hence deserves a more complete discussion.

The PdProtocol (an overview)

As we have already seen, Peersim is highly modular. So it weshard to implement a
new protocol based on the NetWorld [1] model specificatiovts¢h implements SLAC)

compatible with its structure. Peersim simulations [13 performed through a series
of cycles and in each of these some operations are perfoiDugihg the simulation our
protocol is involved in three phases:

e phase 0: initialization of an auxiliary array for neighbslist (nodes are provided
by Newscast);

e phase 1: the PD game is played and the appropriate payoffssaributed;

e phase 2: two nodes are randomly chosen from the networke(tvesprovided by
Newscast) and their payoffs are compared (this is the retaxh phase).

Phase 0 is performed at the first simulation cycle: each nedeppies its neighbour
list from its Newscast's instance.

In phase 1 the PD game is played between nodes. Each nod¢iatized with
a random value chosen from a set of two (True = Cooperateg FaBefect) and at
each cycle each node plays a round of the PD game with one rritomly chosen
neighbours. After this game interaction, payoffs are dated and distributed.

With phase 2 is performed the reproduction task. It takesgpdaeryl cycles (in our
experiments we havé = 4). In this phase we want to compare the average payoffs of
two nodes chosen within the network. The first node we tal@actount is randomly
chosen within the network; the second one, as in phase Okés fom Newscast: it
is a randomly chosen neighbour of the Newscast instanceedfidt node. Once two
nodes (i, j) are selected this way, reproduction phase eah ket's consider the case in
which nodei has a higher average payoff tharthe following operations are performed
(obviously if j's payoffs is greater thails the symmetric rules apply):

all j’s neighbours delete their links toitself;

j's neighbours list is cleared;

j's neighbours list is filled in with new itemg's neighbours;

the winner itself {) is added tgj’'s neighbours list;

strategy is copied fromto j;

some variables held hyare cleared (e.g. number of games played);
j is added to the respective neighbours lists of the winndéghbeurs;
j itself is added ta’s neighbours list;

mutation is applied with a certain probability.

Neighbours lists have a fixed siZ& hence it is not permitted to add nodes when such
a limit is reached. That is why this operation is performedabyappropriate function
which ensures this limit is not exceed: before adding a neslena check on the actual
size of the list is performed; if it is equal t8, a randomly chosen node is deleted and
then the new one is added, else, if the actual size is smaler i, the new node is
simply added.

This is what happens wherhas an average payoff greater tha®f course ifj had
an average payoff greater thgrthe same algorithm will be performed but witland j
in inverted positions. When the two nodes hold the same \hleigvinner is randomly
chosen between the two nodes and then the same operattedslixove are performed.

1Actually, in this implementation of SLAC, this first actioras not implemented, interestingly, this change
did not stop high cooperation from emerging.

Table 2. Simulation parameter.

Parameter Value
Cycles 1000
Network size 4000,8000,12000,1600
Initial topology Random
Maximum degree 20
Strategy mutation rate (MR 0.001
Tag mutation rate (MRT) 0.001
Reproduction interval (1) 4

Table 3. PD payoffs adopted in the model.

1st player | Strategies | 2nd player
1 DC 0
0.8 cC 0.8
0.1 DD 0.1
0 CD 1

At the end of each reproduction steputationis performed. It is applied with low
probability (nutation rate, MR = 0.00)1 to the node losing the comparison at the begin-
ning of the reproduction phase. Mutation is applied to batategy and tags (neighbor
list). When applied to the strategy bit, it implies the flipgiof such bit; when applied to
the neighbor list, it involves the cancellation of all thels in the node’s neighbors list
and the substitution of such nodes with just one node thaindamly selected from the
entire network.

8. Simulation Experiments and Results

A series of experiments were done with this new “tag-baseadtfozol on Newscast. Ob-
tained results relate to experiments done varying sevarahpeters: size of the network,
simulation seed, strategy initialization.

The main parameters used are illustrated in Table 2 whiléh¢ayoffs used are

those in Table 3.
In the next subsections we will show some of these resultddasmd some conclu-

sions.
8.1. Cooperation with different network sizes

Results shown in Figures 4 and 5 relates experiments donetaorks having different
sizes.

The diagram in Figure 4 represents the number of cycles ddedwbtain high lev-
els of cooperation (about 93%) over a series of 1000 cycles.diagram compares the
results obtained performing the experiments on four dffiénetwork size. The results
shown in the figure represents the average and standardide\iaut of N sims) of the

16K Stdev

W Avg

[y
N
~

Network size

(o)
~

|
|

100 200 300 400 500
Cycles to cooperation

o

Figure 4. Average number of cycles needed to obtain high levels of eatjpn (about 93%) and the relative
standard deviation with four different seeds. MR = MRT = @0D= 4, payoffs from table 3. Results from
different network size are compared.

number of cycles needed to obtain cooperation. The netwaskstarted from complete
defection, the mutation rate used was the same both for theegy and the neighbour
list (MR = MRT = 0.001) and the number of cycles occurring between a reproduction
phase and the next one whs- 4. Let's note the average cycles number for a network of
4000 nodes: it is much higher than the average for the othewonle sizes and this is be-
cause with seed 1, the 93% of cooperation was obtained jiest&f2 cycles. The same
experiment was also performed with a different seeds tali¢hie results we obtained
are nearly identical to those just given.

Figure 5 gives the percentage of cooperating nodes oveies £64000 cycles. The
figure just shows the first 150 cycles since after that poietettare no relevant changes
in the results. Even here the mutation rate was the same bothéd strategy and the
tag, experiments were performed over different network simd parametef was set
to 4. On the contrary of the previous experiment, here wad abeays the same seed,
hence the percentages we give are not an average. Nodesitializéd at random: at
the beginning of the simulation we had a population compo$atiout half cooperating
nodes and half defecting nodes; after the first few cyclepdreentage of cooperating
nodes decreased but soon after the 23th cycle it startegdsiog toward good levels of
cooperation.

Observations

From both the diagrams it's easy to note the good level ofabdity of the model we

are testing: results of Figure 4 are an average of resultsradat with different seeds
and we succeeded in obtaining similar results for threefit network size. The only
difference is found with the network composed of 4000 nodesrerwe obtained a very

75

50

% of Coop Nodes

25

0 50 100 150
Cycles

Figure 5. Cooperating nodes over a series of 4000 cycles (single MREMRT=0.001, =4, payoffs from
table 3. Nodes are initialized with a random strategy. Restfter cycle 150 do not increase significantly. Note:
the “staircasing” effect is an artefact of the synchronamaduction at every 4 cycles - with asynchronous
reproduction the artefact is not visible.

high value with just one seed. It would be interesting to miakeher experiments with
more seeds. Figure 5 gives the same important result: herg alsvays the same seed,
we obtained the same trend with all the sizes.

8.2. Cooperation with long runs

Some experiments were done with a big number of cycles. Onveorlecomposed of
4000 nodes were performed a series of experiments; for ddlchra we used a different
random seedy/ R = M RT = 0.001, I = 4 and performed 10000 cycles.

Results are very close for each seed used, hence in Figurg@styaropose those
obtained with one of them. The diagram shows that good leMfet®operation can be
obtained from cycle 645 (95.5 %): from this cycle to cycle @0the average percentage
of cooperating nodes is 95.40 and the standard deviatio0% 1

Observations

The experiments just proposed have a great importance thiagdest the reliability of
the model in the time. From all the tests we made (some evdn50000 generations),
and also in those proposed in this section, we found that coaperation has started, it
never claps and can be sustained for long times; we alsoddahnat cooperation can be
sustained at good levels.

100

75
[")]
0
°
0
F4
Q

o 50
<]
o
N
o
S

25

0 T T T T
0 20 40 60 80 100

Cycles

Figure 6. Cooperation with a series of 10000 cycles (single run). I8gdd000, MR=MRT=0.001, 1=4, pay-
offs from table 3.

9. Discussion and Conclusion

The results we obtained indicate that high cooperationasiyced when nodes follow
the SLAC algorithm. Even though the SLAC algorithm implensenodes that behave
selfishly in a myopic and greedy way - that is, they copy otletas in the network that
have higher utility - high levels of cooperation are prodiitethe single round Prisoner’s
Dilemma (PD) game.

These new results therefore confirm those results prewidaahd[2,4] in similar
simulation experiments and this adds confidence that SLAGhgst to different simu-
lation implementation details. Here, for example, we ilei@red the reproduction phase
with the interaction phase whereas in previous simulatiepsoduction followed at the
end of each cycle of interaction. Also in further experinsgmot shown here) we found
that similar results were obtained when reproduction werleaved with interaction
in a fully asynchronous way - where each node has a probabfliteproduction after
interaction.

Interestingly, the results shown in Figure 4 appear to receeme of the reverse
scaling properties demonstrated in an early non-netwoskdbéag model [5] which ap-
peared to have been lost in our initial network model [2]. ldo@r, more runs and analy-
sis are needed to explore this question. However, we caaiclrstate that in all the ex-
periments so far performed with the SLAC algorithm largamweeks do not take longer
to converge and often converge more quickly. This is obvioawaluable property for
any candidate algorithm for large scale systems.

A further finding of these new results appears to contradidtex generalizations [3]
that tag-type models needed to have higher mutation ratdseditag” than the strategy -
in the case of SLAC this would mean a higher mutation rate em#ighbour list or view
which contains the links to neighbour nodes than the bebazistrategy of the node
(either to cooperate or defect). But here high levels of epation were produced when

the mutation rate was the same. This indicates that furtbet is needed to circumscribe
such a generalization since it is currently unclear whdedéhce in implementation has
allowed this assumption to be relaxed.

These results also demonstrate that the NEWSCAST protandie used to provide
the random sampling service required by SLAC but not preslioaxplicitly modelled
in simulation. This is important since any actual implenagion of SLAC must have
access to such a service that is both scalable and robustSTAST provides such a
service[9] with the additional benefit that it has actuakieh tested in the form of a real
implementation [17].

We have argued, and demonstrated previously, that coapeiatthe single round
PD indicates that cooperation can be produced in other nealistic task domains [4].
We are therefore confident that these results indicatehled® EERSIM implementation
could support cooperation in other task domains (such asH#eing or other kinds of
resource sharing).

Finally, we note two major issues that could destroy codpmravithin SLAC.
Firstly, we currently assume that nodes are able to comp#itees correctly, that is, we
assume nodes report their utilities honestly when reqdéstdo so by nodes. But what
would happen if nodes lied about their utilities or just édilto report anything? This
introduces a kind of "second order" free-rider problem atittfiormational level because
if we assume nodes may behave selfishly and / or maliciously We need to demon-
strate individual incentives for supplying correct ugilitalues. Secondly, we also assume
nodes will allow themselves to be copied by supplying thelrdviour strategy and their
current neighbour list or view (containing their node links other nodes. Again, this
may not be case with malicious and selfish nodes in certaitextm Both of these issues
we aim to address in future work.

Acknowledgements

This work would not have been possible without perceptigewsions with many peo-
ple, particularly those in the Bologna group including: M3aelasity, Alberto Montresor
and Simon Patarin. Additionally, we thank the anonymougexeers of the initial draft
of this paper for their comments and suggestions.

References

[1] D. Hales, B. Edmonds Applying a socially-inspired teichue (tags) to improve cooperation
in P2P NetworksEEE Transactions in Systems, Man and Cybernetics - Parystens and
Humangpp.385-395 2005

[2] D. Hales. Self-Organizing, Open and Cooperative P2Refies B From Tags to Networks.
Proceedings of the 2nd Workshop on Engineering Self-OrgamiApplications (ESOA 2004),
LNCS 3464pp.123-137. Springer, 2005.

[3] D. Hales. Change Your Tags Fast! — a necessary conditipndoperationProceedings of
the Workshop on Multi-Agents and Multi-Agent-Based SitrarigMABS 2004), LNAI 3415
Springer, 2005.

[4] D. Hales. From selfish nodes to cooperative networks —rgem link based incen-
tives in peer-to-peer networks. IRroc. of the 4th IEEE International Conference on

Peer-to-Peer Computing (P2P2004)EEE Computer Soc. Press, 2004. Available at:
http://www.davidhales.com
[5] D. Hales. Cooperation without Space or Memory: Tags,upsoand the Prisoner’s Dilemma.
In Moss and Davidsson (eds.) Multi-Agent-Based SimulatibiAl 1979:157-166. Springer.
Berlin. 2000
[6] G. Hardin. The tragedy of the commor&cience162, 1243-1248. 1968
[7] J. Holland. The Effect of Lables (Tags) on Social Intei@ts. Santa Fe Institute Working
Paper 93-10-064Santa Fe, NM 1993
[8] M. Jelasity and A. Montresor, Epidemic-Style Proacti#ggregation in Large Overlay
Networks, inProceedings of the 24th International Conference on Chistted Comput-
ing Systems (ICDCS’04March 2004, pp. 102-109, IEEE Computer Society, Availattle
http://www.cs.unibo.it/bison/publications/icdcs0df p
M. Jelasity and W. Kowalczyk and M. van Steen Newscast @ating Technical Report IR-
CS-006 Vrije Universiteit Amsterdam, Department of Computere®de, November 2003,
Available at: http://www.cs.vu.nl/globe/techreps.hhi-CS-006.03
[10] J. F. Nash. Equilibrium Points in N-Person Gamegc. Natl. Acad. SciUSA 36, 48-49,
(1950).
[11] R. Riolo, M. D. Cohen, R. Axelrod. Cooperation withouedRprocity.Nature414, 441-443,
(2001).
[12] R. Tivers. The evolution of reciprocal altruis®. Rev. Biol46, 35-57. 1971
[13] Peersim Peer-to-Peer Simulator, Available at: hpp#grsim.sf.net
[14] The BISON Project, http://www.cs.unibo.it/bison
[15] Kazaa Web Site, http://www.kazaa.com
[16] PlanetLab Planetary-Scale Testbed, http://www.gtdab.org
[17] T. Binci. EpidEm: EPIDemic EMulator, Graduate Thesi:n iComputer Sci-
ence, University of Bologna, Department of Computer Saendvailable at:
http://bincit.web.cs.unibo.it/index.htm

[9

—_—

