

The BISON Project

Stefano Arteconi

Dipartimento di Scienze dell'Informazione Università di Bologna

- Current networked information systems are fragile (not robust), rigid (not adaptive) and are notoriously difficult to configure and maintain (not self-organizing)
- Many natural (biological, social) systems are exactly the opposite — they are robust, adaptive and self-organizing despite being highly decentralized
- Can we build information systems that are more "organic" or "life-like"?
- Do this by drawing inspiration from biology

- The problem is further aggravated in modern network structures
 - Mobile ad-hoc networks (MANET)
 - Overlay Networks
 - Peer-to-Peer systems
 - Grid computing
- Due to their extreme size and extreme dynamism

- Funded by IST-FET under FP5
- Partners
 - University of Bologna, Italy (Coordinator)
 - Telenor Communication AS, Norway
 - Technical University of Dresden, Germany
 - IDSIA, Lugano, Switzerland
- 1 January 2003 start date, duration 36 months
- Total cost €2,251,594
- **■** EU funding €1,128,000
- URL: http://www.cs.unibo.it/bison

- Complex adaptive system CAS are collections (swarm) of "agents", acting in a decentralized and distributed fashion found in
 - Nature and biological processes
 - Social structures
 - Economies, financial markets
- Behavior of CAS is often self-organizing, adaptive and robust ("nice properties")
- We want to implement a number of functions on a variety of network structures using ideas from CAS
- Note that we are not interested in modeling or developing theories for explaining particular CAS

BISON expected results

- Decentralized, self-organizing, adaptive and robust solutions to important technological problems that arise in dynamic networks
- Systematic framework and a coherent set of heuristics to guide the synthesis of complex systems that solve interesting technological problems

BISON biological inspirations

- Social insects, ants
- Amoebae
- Chemotaxis
- Immune system
- Epidemics (gossip)
- Aggregation
- Neurons
- Regeneration

BISON functions, services

- Routing (MANET)
- Power management (MANET)
- Load balancing
- Searching
- Collective computation
- Monitoring
- Topology management

Swarm intelligence

- The set of local agents that are equals (peers) forms the "swarm"
- The agents interact (locally)
- Each individual agent has very limited intelligence (i.e., simple rules)
- But the swarm has a collective intelligence that can handle difficult challenges
- The intelligent behavior that the swarm exhibits (built from simple agents following simple rules) is called "emergence"

- Emergence is all around us
 - A city
 - Car traffic
 - The brain
 - The immune system
 - An ant colony
- Emergent behavior is collective behavior arising from the interaction of many autonomous units, where the units obey simple rules, and yet it is:
 - Complex and interesting (maybe even adaptive)
 - Difficult to predict from knowledge of the agents' rules

BISON applies these ideas to large-scale, dynamic networks of computers, PDAs, phones, etc. to solve important problems such as efficient routing of traffic; load balancing; search over distributed content; distributed computation

- Biology is a rich source of inspiration for developing solutions with "nice properties" to technological problems
- To date, we have looked at five biological systems with interesting behavior:
 - Ants: path finding using pheromone, gathering
 - Slime mold amoebae: physical aggregation as a response to collective hunger, using chemotaxis
 - Immune cells: search, recognition, and response to antigens
 - Viruses: epidemic spreading, collective computation

