

The SLACER Algorithm

Stefano Arteconi

Dipartimento di Scienze dell'Informazione Università di Bologna

Cooperation in P2P Networks

- Prisoners' Dilemma
- Slacer Algorithm
 - Sociological Inspiration
 - Tag Systems
 - Description
 - Performances

Cooperation in P2P

P2P Networks

- Decentralized
- No central control
- Possibility to free-ride
- Act selfishly
 - Improve own performances
 - Degrade global performances
 - Leechers in a file sharing system

An Abstract Model: The Prisoners' Dilemma

PD constraints *T>R>P>S* 2*R>T+S*

- Tragedy of commons
- Both C
 - Higher total payoff
- At least one D
 - D gets the better payoff
 - Lower total payoff

- Originate in Computational Sociology (Holland 1992)
- Tags are observable "markings
 - Hairstyle, Dress, ...
- Tags evolve just like any other artificial gene
- Limiting interactions between agents with similar tags leads to cooperative altruistic behaviour

Tag Systems' Agents

- Agents characterized by
 - Tag
 - Behavior
 - Utility
- Main agents features in tag systems
 - Interaction restricted to agents with similar tag
 - Selfish optimization through copy of tag and behavior of better performing agents
 - Periodic mutation of tag and behavior

From Tag to P2P

- Agents represented by nodes
- Tag represented by set of neighbors (view)
 - Interaction between neighbors
- Behavior
 - Application level behavior (i.e. share files or leech files)
- Utility
 - Evaluated at application level (i.e. number of files downloaded)

SLACER Algorithm

SLACER Outline

- Attempt to translate Tag Systems in P2P networks
- Nodes perform application task
 - Get utility value
- Strategy and Neighborhood of better performing nodes are copied

Network Evolution

Nodes move to find better neighbors (higher utility)

- Network topology evolves
- Group-like selection between clusters of nodes
 - Cooperative nodes group and spread
 - Selfish nodes become isolated

SLACER Pseudocode

Node *p* periodically executes the following:

q = SelectPeer()

if utility_{*q*} > utility_{*p*}

drop each current link with probability *W link* to node *q* and copy its strategy and links *mutate* (with low probability) strategy and links

fi

Peer selection based on a random overlay network (newscast), whereas *copying*, *rewiring* and *mutating* are with respect to an application (strategy) over an "interaction network"

SLACER Simulation

SLACER has been implemented in Peersim

Newscast used for random sampling

- Utility comparison
- PD used as a test application
 - At each cycle each node plays a single round with a random neighbor
 - Only pure strategies (*always C* or *always D*)

SLACER Architecture

3 layers architecture
Random sampling

Newscast
Cooperation and topology
Slacer

Application task

PD

Cooperative

Random nodes

(reproduction)

Neighbors

SLACER Results: Cooperation Trend

SLACER Results: Time to Cooperation

Largest Cooperative Component

- Largest Cooperative Component (LCC)
 - Subnetwork composed only by cooperative nodes
 - Size of the largest component taken into account

Cooperative Connected Paths

- Cooperative path:
 - Direct connection
 - Connection through a path composed by cooperative nodes
- Cooperative Connected Paths (CCP)
 - Proportion between
 - Pair of nodes connected through cooperative paths
 - Every possible pair of nodes
 - (a,b) (b,c) (b,d) (b,e) (b,f) (c,f) (d,e) (d,f) (e,f)
 - 9/15=0.6
- Cooperative Connected Path Length (CCPL)
 - Average path length evaluated only on cooperative paths

SLACER Results: LCC and CCP

Cooperation vs. Randomness Tradeoff

- Drop probability value lead to different kind of topology
 - W=1 highly partitioned network
 - W=0.9 Small world-like network
- The lower the W the more random the network
 - More robust
 - Lower cooperation

- Cooperation in P2P networks
- Slacer algorithm
 - Simple local rules
 - Pushes network to cooperation
 - Provides a small world-like topology
- Tuning W is possible to obtain different kinds of topology
 - Disconnected
 - Small World like
 - Random-like

- D. Hales and S. Arteconi. Slacer: A self-organizing protocol for coordination in peer-to-peer networks. *IEEE Intelligent Systems*, 21(2):29–35, Mar/Apr 2006.
- D. Hales and S.Arteconi. Friends for Free: Self-Organizing Artificial Social Networks for Trust and Cooperation. Technical Report UBLCS-2005-20. Available at: http://www.cs.unibo.it/pub/TR/UBLCS/2005/2005-20.pdf

